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a b s t r a c t

Although mitochondrial dysfunction and oxidative stress have been proposed to play a crucial role in
several types of muscular dystrophy (MD), whether a causal link between these two alterations exists
remains an open question. We have documented that mitochondrial dysfunction through opening of the
permeability transition pore plays a key role in myoblasts from patients as well as in mouse models of
MD, and that oxidative stress caused by monoamine oxidases (MAO) is involved in myofiber damage.
In the present study we have tested whether MAO-dependent oxidative stress is a causal determinant of
mitochondrial dysfunction and apoptosis in myoblasts from patients affected by collagen VI myopathies.
We find that upon incubation with hydrogen peroxide or the MAO substrate tyramine myoblasts from
patients upregulate MAO-B expression and display a significant rise in reactive oxygen species (ROS)
levels, with concomitant mitochondrial depolarization. MAO inhibition by pargyline significantly
reduced both ROS accumulation and mitochondrial dysfunction, and normalized the increased incidence
of apoptosis in myoblasts from patients. Thus, MAO-dependent oxidative stress is causally related to
mitochondrial dysfunction and cell death in myoblasts from patients affected by collagen VI myopathies,
and inhibition of MAO should be explored as a potential treatment for these diseases.
& 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

Muscular dystrophies (MDs) are a group of inherited human
diseases caused by mutations of genes encoding for different
proteins of the extracellular matrix, the sarcoplasmic reticulum,

or the cytoskeleton [1]. Typically, MDs are characterized by
progressive skeletal muscle wasting and weakness [2].

The extracellular matrix protein collagen VI (ColVI) is a hetero-
trimeric protein involved in maintaining tissue integrity by pro-
viding a structural link between different constituents of connec-
tive tissue basement membranes and cells [3]. In humans, two
major skeletal muscle diseases are caused by mutations in the
genes coding for ColVI, namely Bethlem myopathy (BM) [4] and
Ullrich congenital MD (UCMD) [5]. BM is relatively mild and in
most cases slowly progressive, whereas UCMD is severe and shows
diffuse wasting and weakness of skeletal muscles, associated with
degeneration and regeneration of muscle fibers with a premature
death due to respiratory failure [6].

Experimental models have allowed a better understanding of
how the genetic defects result in loss of viability, and a crucial role
has been attributed to mitochondrial dysfunction caused by open-
ing of the mitochondrial permeability transition pore (PTP) [7–9].
However, the mechanisms linking mitochondrial derangements to
defects in structural proteins interacting with the sarcolemma
remain ill defined. A likely candidate is oxidative stress, since
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increased levels of reactive oxygen species (ROS) have been docu-
mented as a causative effect in mdx mice, the murine model of
Duchenne MD [10]. Oxidative stress may cause damage to proteins,
membrane lipids, and DNA. Increased protein oxidation, as detected
by carbonylation or thiol oxidation, was observed both in different
experimental models of MDs [11,12] and in muscle biopsies from
Duchenne MD patients [13]. Moreover, previous studies showed that
antioxidant treatments were able to rescue MD phenotypes [14,15].
The most relevant ROS sources and their relationships with mito-
chondrial dysfunction remain unclear, however.

MAO are flavoproteins existing in two isoforms—MAO-A
and MAO-B—that catalyze the oxidative deamination of neuro-
transmitters and dietary amines, generating aldehydes, ammonia,
and hydrogen peroxide [16]. MAO catalyze catecholamine removal
and have been widely studied in the central nervous system,
while their impact in muscle function has been investigated
only recently [11]. It must be considered that skeletal muscle is
constantly exposed to the modulatory influence of neurohormones
released by the sympathetic neurons and the adrenal gland.
Many chronic diseases are characterized by an increased level
of catecholamines, and this may include MD. For instance, in
Duchenne patients the urinary catecholamine levels were found to
be increased [17]. Of note, in a pioneer study a model of MD was
obtained by serotonin administration associated with imipramine,
an inhibitor of monoamine reuptake [18].

Increased expression of MAO occurs in many pathologies as
well as in aging [19–21]. A number of transcription factors and
hormones, such as corticosteroids, regulate in a different and com-
plex way the two isoforms of the enzyme [22,23]. Inmdx and ColVI
null (Col6a1� /�) mice we found an increase of the protein levels,
as well as the enzymatic activity of MAO, suggesting that accu-
mulation of ROS related to MAO activity plays a pivotal role in both
loss of cell viability and contractile derangements [11]. Of note, we
showed that treatment with pargyline, an inhibitor of both MAO-A
and MAO-B [16], led to recovery from the dystrophic phenotype,
indicating that in these diseases MAO are a major source of
ROS and that their inhibition has a protective effect on muscle
structure and function. Although MAO-induced ROS formation is
likely to cause mitochondrial dysfunction, direct experimental
evidence is still lacking.

This study aimed at assessing the role of MAO in the alterations
of myoblasts obtained from patients with genetic defects of ColVI.
The results show that treatment with the MAO inhibitor pargyline
significantly reduced ROS accumulation and mitochondrial dys-
function while normalizing the occurrence of apoptosis. These
findings prove a direct link between MAO-dependent oxidative
stress and mitochondrial dysfunction caused by PTP opening.

Materials and methods

Participants

UCMD and BM were diagnosed according to the criteria of the
European Neuromuscular Center [24]. All probands were exam-
ined and underwent a muscle biopsy. Genetic data for patients 1,
2, 4, and 5 have been published previously [5,25–28]. All partici-
pants provided written informed consent, and approval was
obtained from the Ethics Committee of the Rizzoli Orthopedic
Institute (Bologna, Italy). The basic features of the patients analy-
zed in this study are summarized in Table 1.

Myoblast cultures

Myoblast cultures were established from muscle biopsies of two
healthy donors (Ctrl) and from UCMD (1–4) and BM (5) patients.

Myoblasts were prepared by enzymatic and mechanical treatment of
muscle biopsies, plated in DMEM supplemented with 20% FCS,
penicillin, streptomycin, and amphotericin B as previously described
[29], and stored in liquid nitrogen.

Immunoblotting

Western blot analysis was performed to evaluate MAO-B
protein level. Briefly, myoblasts were seeded onto 75 cm2

flasks,
grown to confluence, and lysed in a buffer containing PBS, 1%
NP-40, 1 mM NEM, 2 mM EDTA, protease (Complete mini EDTA-
free, Roche Diagnostics, Indianapolis, IN), and phosphatase inhi-
bitors (phosphatase inhibitor cocktail 3, Sigma). After centrifuga-
tion, the supernatant was collected and protein concentration was
determined using Pierce BCA protein assay kit (Pierce, Rockford,
IL). Equal amounts of protein (15 mg) were loaded onto 12% SDS-
PAGE and electrophoretically transferred to nitrocellulose mem-
brane (Bio-Rad Laboratories, Milan, Italy). Subsequently, after
blocking in 5% fat-free dry milk in TBS (Tris-buffered saline) for
1 h at room temperature, samples were immunoblotted with the
anti-monoamine oxidase B antibody M1821, and subsequently
with horseradish peroxidase-conjugated secondary antibodies.
Staining was detected by means of an enhanced chemilumines-
cence kit (LiteAblot Extend, EuroClone, Milan, Italy). Densitometric
analysis was performed on the digital images obtained with Kodak
Image station and software (Perkin Elmer, Boston, MA). The
protein levels of MAO-B were quantified by image analysis using
ImageJ software (National Institutes of Health, Bethesda, MD).
MAO-B protein level was normalized to Red Ponceau staining as
previously described [11].

Real time RT-PCR

To detect the MAO-A mRNA expression, myoblasts were seeded
onto a 75 cm2

flask and grown to confluence and total RNA was
isolated with TRIzol Reagent (Life Technologies, Monza, Italy) and
purified. Total RNA was then quantified with Nanodrop spectro-
photometer (Thermo Scientific, Waltham, MA) and reverse-
transcribed to the single-strand cDNA using the SuperScript III
Reverse Transcriptase (Life Technologies). The Power SYBR Green
PCR Master mix (Applied Biosystems, Foster City, CA) and the
Rotor-Gene3000 detection system (Corbett Research, Cambridge-
shire, UK) were used to estimate the mRNA of interest compared
with the reference control. cDNA (1 μg) from the reverse tran-
scription reactions was added to 20 μl reaction mixture for PCR.
The PCR program included a denaturation step at 95 1C/9 min, 40
cycles of two amplification steps (95 1C/30 s and annealing exten-
sion at 58 1C/30 s), and melting curve (72–95 1C with a heating
rate of 1 1C/5 s). The following primers were used for MAO-A
(GenBank Accession Number NM_000240): forward primer,
50-AGCGGCTACATGGAAGGGGCA-30; and reverse primer, 50-AGGC-
CAGAAACAGAGGGCAGGTT-30; amplicon size, 179 bp. All samples
were amplified in triplicate and the human glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was used as the reference
gene to normalize the data (GenBank Accession Number NM_
002046): forward primer 50-ACGGATTTGGTCGTATTGGG-30; and
reverse primer, 50-CTCCTGGAAGATGGTGATGG-30; amplicon size,
212 bp. The specificity of the amplification was tested at the end
of each run by melting curve analysis, using the Rotor-Gene
software.

During the exponential phase, the fluorescence signal thresh-
old was calculated and the number of PCR cycles required to reach
the threshold (cycle threshold, Ct) was determined. Ct values
decreased linearly with increasing input target quantity and were
used to calculate the relative mRNA expression, according to the
mathematical quantification model proposed by Pfaffl, which
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defines a parameter for the relative gene expression [30]. This
parameter is significantly higher or lower than 1.0 when up-
regulation or down-regulation of the gene of interest occurs,
respectively [31].

ROS detection

Mitochondrial ROS was detected using the fluorescent probe
MitoTracker Red CM-H2XRos (MTR, Molecular Probes, Eugene, OR).
Myoblasts were seeded onto 24-mm-diameter round glass cover-
slips and grown for 2 days in DMEM supplemented with 20% FCS.
Cells were rinsed once and then incubated with the MAO inhibitor
pargyline (100 mM) for 20 min in serum-free DMEM, followed by
H2O2 (100 mM) or tyramine (20 mM) for 45 min. Finally, myoblasts
were loaded with MTR (20 nM) for 15 min. All the steps were
carried out at 37 1C with 5% CO2. Myoblasts were then washed
twice and the chambered coverslips transferred to an Olympus
IMT-2 inverted microscope (Center Valley, PA), equipped with a
xenon lamp and a 12-bit digital cooled CCD camera (Micromax,
Princeton Instruments, Trenton, NJ). Mitochondrial fluorescence
was measured in 10–15 random fields per chamber and data were
averaged per field. For each group, 4–6 chambers were generally
analyzed. Experiments with the different agents as described
above were always performed in comparison with their respective
controls. Fluorescence emission was monitored by using 5687
25 nm excitation and 585 nm longpass emission filter setting.
Images were collected with an exposure time of 100 ms by using
a x40, 1.3 N.A. oil immersion objective. Data were acquired and
analyzed using Metafluor software (Universal Imaging).

Mitochondrial membrane potential

This parameter was measured based on the accumulation of
tetramethylrhodamine methyl ester (TMRM, Molecular Probes).
The extent of cell and, hence, mitochondrial loading with poten-
tiometric probes is affected by the activity of the plasma mem-
brane multidrug resistance pump. To prevent probe release
through this system, in all experiments with TMRM the medium
was supplemented with 1.6 mM CsH, which inhibits the multidrug
resistance pump but not the PTP [32]. Myoblasts were treated with
tyramine (20 mM) for 30 min in the absence or in the presence (as
a 20 min pretreatment) of MAO inhibitor pargyline (100 mM) or
CsA (1.6 mM), followed by the addition of 25 nM TMRM. At the end
of each experiment, mitochondria were fully depolarized by the
addition of the protonophore carbonyl cyanide p-trifluoromethox-
yphenylhydrazone (FCCP, 4 mM). Images were collected and ana-
lyzed as detailed in the previous section. TMRM fluorescence was
evaluated as the difference between values obtained before and
after FCCP.

Rotenone (2 mM) was added after treatment for 40 min with
pargyline (100 mM). Clusters of several mitochondria (10–30) were
identified as regions of interest, and fields not containing cells
were taken as the background. Sequential digital images were
acquired every 2 min, and the average fluorescence intensity of all
relevant regions was recorded and stored for subsequent analysis.

Detection of apoptosis

The rate of apoptosis was measured in myoblast cultures using
the terminal deoxynucleotidyltransferase-mediated dUTP nick end
labeling (TUNEL) method. Myoblast cultures were seeded onto
12-mm-diameter round glass coverslips and grown to confluence
in DMEM supplemented with 20% FCS. Cells were then incubated
in serum-free DMEM in the presence or in absence of MAO
inhibitor pargyline (100 mM) and staurosporine (1 mM) as positive
control for 24 h. Cells were fixed in 50% acetone/50% methanol and
processed for TUNEL analysis by using the DeadEnd Fluorometric
TUNEL System (Promega, Madison, WI). Visualization of all nuclei
was performed by staining with Hoechst 33258. The number of
total and TUNEL-positive nuclei was determined in randomly
selected fields by using a Zeiss (Oberkochen, Germany) Axioplan
microscope (�40 magnification) equipped with a digital camera.

Data analysis and statistical procedures

All data are expressed as the mean 7 SEM. Comparisons between
two groups were performed using nonpaired two-sample Student's
t test, and values with Po0.05 were considered significant.

Chemicals

Unless otherwise stated all chemicals used were purchased
from Sigma-Aldrich (St. Louis, MO, USA).

Results

The increased ROS level in myoblasts from patients affected by ColVI
myopathies is reduced by MAO inhibition

We studied myoblasts from four UCMD patients and one BM
patient (Table 1). The patients affected by UCMD have different
mutations, located either in the triple helical domain or in the
C-terminal region of different ColVI chains. Patients 1 and 3 were
recessive UCMD cases, whereas patients 2 and 4 carried dominant
de novo mutations. The mutation detected in patient 3, a nonsense
change located in the last COL6A2 exon, has never been reported
before.

Table 1
Clinical and genetic features of patients included in the study.

Patient Phenotype Clinical features Mutation(s) Collagen VI Refs.

P1 UCMD Floppy at birth, walker 3–7 yrs, DL, FC,
SC, MV age 10 yrs.

COL6A2 heterozygous intron 17 c.1459-2 A4G; p.Gly 487-Ala495delAspfsX48
and Heterozygous intron 23 c.1771-1G4A; p.Glu591-Cys605delThrfsX148

Marked
reduction

[5,25]

P2 UCMD Floppy at birth, CHD, DL, FC, SC, walker
20 ms-6 yrs, MV age 11 yrs.

COL6A1 heterozygous exon 8 c.798_804þ8del 15; p.Pro254_Glu268del Reduced at the
basal lamina

[28]

P3 UCMD Floppy at birth, CHD, FC, DL, SC, aided
walker age 5 yrs.

COL6A2 homozygous exon 28 c.2572 C4T omo; p.Gln858Xn Reduced at the
basal lamina

P4 UCMD Floppy at birth, NAW, DL, FC, SC, RI age
10 yrs.

COL6A1 heterozygous exon 9 c. 819_833del; p.Pro274_Gly278del Reduced at the
basal lamina

[27]

P5 BM Early onset, never able to run, diffuse
contractures, W age 30, moderate RI.

COL6A2 heterozygous exon 26 c.2098 G4A; p.Gly700Ser Normal [26]

ColVI levels are based on immunohistochemistry as described in the original references, which also contain further details about the gene mutations and their mode of
inheritance. DL, distal laxity; FC, finger contractures; SC, skin changes (keloid formation, follicular hyperkeratosis); MV, nocturnal mechanical ventilation; W, walker; NAW,
never able to walk; RI, respiratory insufficiency; CHD, congenital hip dislocation.
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First, we investigated the susceptibility to oxidative stress.
Under basal conditions (i.e., in the absence of stimuli promoting
ROS formation) ROS levels did not show major differences
between myoblasts from healthy donors and patients (Fig. 1A).
However, when myoblasts were incubated with hydrogen perox-
ide (100 mM), the level of ROS was significantly higher in patients
affected by UCMD and BM than in myoblasts from healthy donors
(Fig. 1B). Interestingly, the MAO inhibitor pargyline was able to
abolish the accumulation of ROS, suggesting that MAO play a role
in the response of cells from patients to oxidative stress.

To investigate more directly the role of MAO, we next incubated
myoblasts with tyramine, a substrate for both MAO-A and MAO-B.
A higher level of ROS was detected in patient myoblasts as
compared with healthy donor cells and, importantly, this abnor-
mal ROS increase was prevented by pargyline (Fig. 2A). The
pargyline-inhibitable ROS accumulation was associated with an
increase in MAO-B protein levels in patient myoblasts (Fig. 2B
and C). Unfortunately, the available anti-MAO-A antibodies do
not recognize reliably this isoform in patient myoblasts. A similar

problem exists for mRNA expression of both MAO-A and MAO-B
that was barely detectable according to previous reports [33].
Notably, however, we could measure an increase in MAO-A mRNA
expression (1.8070.19, P¼0.011, and 1.3570.27, P¼0.163, for
patient 2 and 5, respectively) only in the two patients displaying
high MAO activity.

MAO activity contributes to mitochondrial dysfunction in myoblasts
from patients affected by ColVI myopathies

Previous results demonstrated occurrence of mitochondrial
dysfunction in fibers from skeletal muscle of Col6a1�/� mice [7],
as well as in myoblasts from patients affected by UCMD [27,34].
The role of the intracellular MAO-dependent ROS accumulation on
mitochondrial function in muscle cell cultures was investigated by
assessing mitochondrial membrane potential (ΔΨm) with TMRM.
To exclude artifacts due to the different loading capacity of the
various cells, which can be erroneously interpreted as ΔΨm

differences, FCCP, an uncoupler that collapses ΔΨm, was added at
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the end of each experiment. Thus, in each cell the difference of
fluorescence intensities obtained before and after FCCP provides a
reliable assessment of ΔΨm [35].

In keeping with our previous results [36], addition of the
complex I inhibitor rotenone to patient cells promptly caused
mitochondrial depolarization (Fig. 3A), in contrast to cultures from
healthy donors in which mitochondrial membrane potential is
maintained by ATP hydrolysis due to the inverted operation of FOF1
ATP synthase. Interestingly, the response to rotenone was com-
pletely normalized by treatment with the MAO inhibitor pargyline,
suggesting that the latent mitochondrial dysfunction in myoblasts
from UCMD and BM patients can be amplified selectively by
MAO-dependent ROS production (Fig. 3A).

To further investigate the role of MAO, myoblasts were incubated
with the MAO substrate tyramine (Fig. 3B). It is worth noting that

myoblasts cannot be exposed to continuous light in the presence of
tyramine, probably due to the combined formation of ROS by
tyramine and photosensitization by TMRM. ΔΨm was therefore mea-
sured as an endpoint after 1 h of incubation. Tyramine addition to
cultures caused a drop in ΔΨm only in cells from UCMD and BM
patients. Remarkably, the decrease in mitochondrial membrane
potential was fully prevented by treatment with pargyline, suggest-
ing that reduced production of ROS due to MAO activity was
paralleled by improved mitochondrial function (Fig. 3B). Although a
role of oxidative stress in pathogenesis of MD has been suggested in
several reports, the present findings assign a central role to MAO as
the source, and to mitochondria as the target, in causing dysfunction
and cell death of dystrophic myocytes.

CsA prevents mitochondrial dysfunction in myoblasts from
UCMD patients by desensitizing the PTP [27]. We tested whether
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graph. Values are the mean of at least four independent experiments. *P o 0.05 for Tyr-treated vs Basal; #P o 0.05 for Parg þ Tyr-treated vs Tyr-treated myoblasts. (C) CsA
does not prevent mitochondrial dysfunction induced by tyramine. Myoblasts from a UCMD patient (P2) were incubated for 1 h with tyramine (Tyr, 20 mM, black bars) in the
absence or in the presence of CsA (1.6 μM, as a 20 min pretreatment) or pargyline (Parg, 100 μM, as a 20 min pretreatment) and then loaded with TMRM (25 nM) to assess the
mitochondrial membrane potential as described in panel B. All the treatments were also performed in the absence of tyramine (w/o Tyr, gray bars). Values are the mean of at
least four independent experiments. *P o 0.05 for Tyr-treated vs Tyr-untreated myoblasts; #P o 0.05 for Parg þ Tyr-treated vs Tyr-treated myoblasts.
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CsA reduces mitochondrial dysfunction due to MAO-dependent
ROS accumulation as well. Unlike pargyline, CsA could not prevent
mitochondrial depolarization induced by tyramine (Fig. 3C). These
data suggest that MAO-dependent ROS accumulation is upstream
of PTP opening, and that oxidative stress makes the latter event
insensitive to CsA.

The incidence of apoptosis in myoblasts from patients affected
by ColVI myopathies is reduced by MAO inhibition

The occurrence of apoptosis was evaluated in myoblasts from
UCMD and BM patients. As already demonstrated by Angelin et al.
[27], cells from dystrophic patients displayed a higher incidence of
apoptosis compared to cells from healthy donors. Here, we found
that the MAO inhibitor pargyline reduced the occurrence of
apoptosis to baseline levels (Fig. 4).

A mild cellular phenotype requires stronger stimuli to elicit
mitochondrial dysfunction.

Fig. 5B shows that tyramine induced a less severe mitochon-
drial depolarization in patient 3 compared to other patients
(Fig. 3B). In addition, the concentration needed to induce this
effect was 5-fold higher (100 mM) and the effect of rotenone
was reduced (Fig. 5C). Notably, this milder cellular phenotype
was associated with the lowest amount of MAO-B protein level
(Fig. 2B) and extent of apoptosis (Fig. 4), supporting the relevance
of MAO-induced oxidative stress in mitochondrial dysfunction and
cell death in dystrophic myocytes. A similar association among
MAO expression, oxidative stress, and negative outcome has been
recently described for human atrial fibrillation [37].

Discussion

The present findings demonstrate a relevant role for MAO-
dependent ROS production in human ColVI myopathies. Indeed,
(i) oxidative stress is strongly linked to cell death in MDs; (ii) a
causal relationship exists between MAO-dependent ROS formation
and mitochondrial dysfunction; (iii) MAO activity plays a determi-
nant role in these pathologies; and (iv) MAO inhibition is able to
prevent the ROS accumulation, mitochondrial dysfunction, and
loss of cell viability that characterize these pathologies.

MAO and mitochondrial dysfunction in MDs

We previously demonstrated in MD murine models that
MAO-dependent oxidative stress is causally linked to both con-
tractile dysfunction and cell death [11]. MAO involvement in MDs
has been already suggested by studies carried out during the
seventies, when the genetic causes of MD pathologies were
still unknown. In particular, catecholamines and their metabolites
were shown to be increased in experimental and clinical MDs
[17,38,39]. Moreover, the alteration in catecholamine metabolism
was shown to correlate with disease severity [17], in keeping with
the present observation that in patient 3 a lower MAO expression
and activity are associated with a less severe cellular phenotype.

The present results also demonstrate that oxidative stress
generated by increased MAO activity causes mitochondrial dys-
function, matching evidence obtained in neonatal cardiac myo-
cytes [40]. Therefore, the larger ROS formation due to an increased
MAO activity contributes to bridge the gap between alterations of
ColVI and mitochondrial derangements responsible for the func-
tional and structural abnormalities of MDs [7,27].

Although mitochondrial dysfunction is commonly associated
with increased ROS levels, the precise mechanisms through which
oxidative stress causes mitochondrial dysfunction have not been
elucidated conclusively. ROS could modulate the expression level
and posttranslational modification of proteins involved in mito-
chondrial dysfunction. For instance, Cys 39 nitrosylation in ND3
subunit of mitochondrial complex I has been associated with
myocardial protection against ischemia/reperfusion injury [41].
Cyclophilin D (CypD) oxidation at Cys 203 appears to be necessary
for PTP opening related to oxidative stress [42]. An additional
relevant target of ROS is FOF1 ATP synthase. Multiple posttransla-
tional oxidative modifications occur at Cys 294 in the α-subunit,
providing evidence for the role of this residue as a redox sensor
[43]. In addition, posttranslational modifications (namely disulfide
bonds between Cys 294 neighboring α-subunits) cause FOF1 ATP
synthase inhibition in a model of heart failure [43]. Besides
modifications in complex I and CypD, ROS-induced changes in
FOF1 ATP synthase are likely to be relevant for promoting PTP
opening. Indeed, the molecular identity of the PTP has been
attributed recently to the dimerization of FOF1 ATP synthase [44].
Based on the present findings, MAO-dependent ROS formation is
likely to contribute to mitochondrial protein oxidative modifica-
tions that result in PTP opening and mitochondrial dysfunction.

The role of PTP in MD is supported by numerous studies
showing that pharmacological inhibition or genetic ablation of
CypD ameliorates biochemical and structural alterations in differ-
ent models of MD [7–9]. It is worth noting that CypD is not a PTP
component but just one of its many modulators. Therefore, a lack
of effect of CypD inhibition is far from being a convincing argu-
ment to rule out the involvement of PTP opening in a given
condition. This concept, which unfortunately is frequently over-
looked, applies also to the present findings that CsA does not
prevent the collapse of ΔΨm when MAO activity is maximal due to
tyramine addition. It is tempting to speculate that severe oxidative
stress reduces the voltage threshold for PTP opening [36], making
this process independent of CypD inhibition. Accordingly, an
excessive ROS formation would mimic a condition of intramito-
chondrial Ca2þ overload where PTP opening is observed also in
the presence of CypD inhibition or deletion [45,46]. This hypoth-
esis might also contribute to explain why treatment of MD
patients with CsA displayed partial efficacy, with correction of
mitochondrial alterations and reduced cell death in the limbs, but
not in respiratory muscles [47].

Treatment of secondary pathological changes has enormous
potential to improve the quality of life and to extend life span in
MD patients. Although many studies have reported that MDs are
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associated with oxidative stress in both animal models and in
patients [13,48], the sources of ROS and their involvement
remained ill defined. Obviously, this is a prominent concern for
developing antioxidant interventions [49]. Several antioxidants,
such as N-acetylcysteine or polyphenols from green tea extracts,
demonstrated their efficacy in ameliorating the muscle pathophy-
siology of a Duchenne mouse model [14,15], but these drugs can
only reduce the levels of ROS that are already formed, by acting as
scavengers. MAO inhibitors instead act by preventing ROS forma-
tion, thus making this class of drugs more attractive.

Study limitations

As reported previously [50], myoblasts after 9 passages lose
their mitochondrial phenotype. To reduce variability due to this
limitation we performed experiments until the 8th passage. More-
over, besides the scarce reliability of MAO-A antibodies and low
level of expression of its mRNA described above, an additional
limitation of the study is the lack of functional characterization
that cannot be carried out in myoblasts.

Conclusions

The present findings extend to myoblasts from UCMD and BM
patients previous results obtained in murine models of MD,
demonstrating that: (i) increased MAO expression and activity
cause an increase in ROS level, and (ii) MAO-dependent ROS
production induces mitochondrial dysfunction involved in cell
death. These results provide a rationale for future clinical trials

with MAO inhibitors, well-characterized drugs already used for
the treatment of neurological disorders.
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