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Abstract

Two robustness criteria are presented that are applicable to general clustering methods. Robustness and
stability in cluster analysis are not only data dependent, but even cluster dependent. Robustness is in the
present paper defined as a property of not only the clustering method, but also of every individual cluster
in a data set. The main principles are: (a) dissimilarity measurement of an original cluster with the most
similar cluster in the induced clustering obtained by adding data points, (b) the dissolution point, which is
an adaptation of the breakdown point concept to single clusters, (c) isolation robustness: given a clustering
method, is it possible to join, by addition of g points, arbitrarily well separated clusters?

Results are derived for k-means, k-medoids (k estimated by average silhouette width), trimmed k-means,
mixture models (with and without noise component, with and without estimation of the number of clusters
by BIC), single and complete linkage.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Stability and robustness are important issues in cluster analysis. As a motivation, Fig. 1 shows
the 7-means clustering of a four-dimensional data set of 80 images that are screen captures of
movies (only the first two variables are shown in all figures). The data set has been obtained by first
defining a visual distance measure between the images. Then the data have been embedded in the
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Fig. 1. First two variables of 80-images data set with 7-means clustering.

four-dimensional space by choosing four so-called “vantage objects’’ and taking their distances
to all objects as variables (see [23] for the full procedure). The images are from eight different
scenes, and therefore there is a “true clustering’’ (cluster 5 in Fig. 1 consists of the images of two
scenes). Originally, the data set consisted of 100 images from 10 scenes. The images from the
two omitted scenes are very different from the other images. Four of them are included in Fig. 2,
and they are used to illustrate the effect of “realistic’’ outliers on a clustering. The clustering in
Fig. 2 is further discussed in Section 3.4.

If only one of the outliers shown as “cluster 2’’ in Fig. 2 is added to the data set in Fig. 1, the
7-means solution reserves one cluster for the outlier and merges the well separated clusters 5 and
7 on the left side. This could be interpreted as a kind of breakdown or “dissolution’’ of at least
cluster 7 (cluster 5 consists of 20 points and still has the majority in the merged cluster).

The 8-means solution on the 80-images data splits cluster four into two parts instead of separat-
ing the two scenes underlying cluster 5. With additional outlier, 8-means generates the clustering
of Fig. 1 plus one cluster for the outlier, which seems to be an adequate clustering. Here, the
splitting of cluster 4 into two halves is unstable. The addition of suitable non-outliers to the center
of cluster 4 instead of the outlier added above would result in splitting up cluster 5 instead. As
opposed to the situation above, it seems to be inadequate to judge this latter instability as a serious
robustness problem of the clustering method, because from looking at the data alone it is rather
unclear if a good clustering method should split up cluster 4, cluster 5, both, or none of them.

This illustrates that not all instabilities in cluster analysis are due to weaknesses of the clustering
methods. There also exist data constellations that are unstable with respect to clustering. Some
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Fig. 2. Same data as in Fig. 1 with four outlying images added and average silhouette width (2-medoid) clustering.

features of a clustering are expected to be more stable than others (the separation between clusters
5 and 7 is clearly more meaningful than the question if cluster 4 should be split up or not). The
approach of the present paper to handle such feature-dependent instabilities is the introduction
of a cluster-dependent concept of robustness. Here is an even clearer example: be there 100 one-
dimensional points distributed more or less uniformly between 0 and 1, 15 points between 10 and
10.4 and 15 points between 10.6 and 11. It should be clear that a reasonably robust clustering
method (estimating k, say) should assign the first 100 points to a single stable cluster, while it
may depend on small variations in the data whether the remaining points are estimated as a single
cluster or split up into two clusters, and no sensible clustering method can be expected to be stable
in that respect.

The 80-images data set illustrates further that a proper estimation of the number of clusters,
which adds clusters fitting extreme outliers, could be a key to robustness against outliers. However,
not every method to estimate the number of clusters is suitable for this purpose, see Section 3.4.

The assessment of the effect of a perturbation of the data to a clustering has a long history
in cluster analysis ([37], a large number of references is given in [15, Chapter 7], and [34]).
Recently, there are also attempts to apply key concepts of robust statistics such as the influence
function [17] and the breakdown point [18,9] to certain cluster analysis methods [28,14,13,19].
The disadvantage of the latter influence/breakdown approach is that it only applies to cluster
analysis methods estimating parameters of statistical models, and the results are only comparable
between methods estimating the same parameters. While being able to handle and to compare
more general cluster analysis techniques, the disadvantage of the former cluster perturbation
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approach is that it consists mainly of simulation studies, and the results depend strongly on the
design of these studies.

The aim of the present paper is to develop robustness concepts for cluster analysis that can
be applied to a wide range of cluster analysis methods. Considerations are restricted to methods
yielding disjunct clusters, but the proposed methodology can also be applied to more general
cluster analysis methods [21].

An important difference between the theory given here and the results published so far is that
the present approach treats stability as a property of an individual cluster instead of the whole
clustering. It is intuitively clear and has been demonstrated above that a single data set can contain
at the same time stable and much less stable (in most cases this means: less clearly separated)
clusters.

The following two concepts are introduced in Section 2:

• The “dissolution point’’ is an adaptation of the breakdown point concept to all individual
clusters yielded by general cluster analysis methods.

• “Isolation robustness’’ means that a theorem of the following type can be shown: for g arbitrarily
large but fixed, a cluster with a large enough isolation (minimum distance between a point inside
and a point outside the cluster, depending on g) cannot be merged with points not belonging to
the cluster in the original data set by addition of g points to the data set.

The concepts are applied to various cluster analysis methods, namely k-means, k-medoids with
estimation of k by average silhouette width [26, Chapter 2], trimmed k-means [7, Section 3],
mixture models with and without noise and with and without estimation of the number of clusters
[11,33, Section 4], single and complete linkage agglomerative clustering (Section 5). The paper
is concluded with an overview of the robustness results and some discussion in Section 6.

2. Robustness concepts

2.1. The dissolution point and a dissimilarity measure between clusters

In [19], a definition of a breakdown point for a general clustering method has been proposed
(though applied only to ML-estimators for location-scale mixtures), of which the definition is
based on the assignments of the points to clusters and not on parameters to be estimated. This
concept deviates somewhat from the traditional meaning of the term “breakdown point’’, since
it attributes “breakdown’’ to situations that are not always the worst possible ones. Furthermore,
the definition is not linked to an equivariance property and it is not possible to derive a non-trivial
upper bound for this definition, which may be taken as a requirement for a breakdown point
definition, cf. [8]. Therefore, the proposed robustness measure is called “dissolution point’’. It
is thought to measure a kind of “breakdown’’ in the sense that the addition of points changes
the cluster solution so strongly that the pattern of the original data can be considered as “dis-
solved’’. The definition here is a modification of that given in [19]. Note, though, that [19]
only proposed the definition and gave some motivation, but no dissolution results are derived in
that paper.

A sequence of mappings E = (En)n∈N is called a general clustering method, if En maps a set
of entities xn = {x1, . . . , xn} (this is how xn is always defined throughout the paper) to a collection
of subsets {C1, . . . , Cs} of xn. Note that it is assumed that entities with different indexes can be
distinguished. This means that the elements of xn are interpreted as data points and that |xn| = n

even if, for example, for i �= j , xi = xj . This could formally be achieved by writing (xi, i) and
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(xj , j) instead, but for simplicity reasons such a notation has not been chosen. Assume for the
remainder of the paper that E is a disjunct cluster method (DCM), i.e., Ci ∩Cj = ∅ for i �= j �k.

Most popular DCMs yield partitions, i.e.,
k⋃

j=1
Cj = xn.

If E is a DCM and xn+g is generated by adding g points to xn, En+g(xn+g) induces a clustering
on xn, which is denoted by E∗

n(xn+g). Its clusters are denoted by C∗
1 , . . . , C∗

k∗ . E∗
n(xn+g) is a

disjunct clustering as well. k∗ may be smaller than k if E produces k clusters for all n.
The definition of stability with respect to the individual clusters requires a measure for the

similarity between a cluster of E∗
n(xn+g) and a cluster of En(xn), i.e., between two subsets C and

D of some finite set.
There are a lot of possible similarity measures. Such measures are used, e.g., in ecology to mea-

sure similarity of species populations of regions [39]. The Jaccard coefficient [25] is presumably
the most popular measure, and I suggest it for the purpose of the present paper (see Remark 2.4):

�(C, D) = |C ∩ D|
|C ∪ D| .

The definition of dissolution is based on the similarity of a cluster C ∈ En(xn) to its most similar
cluster in E∗

n(xn+g). A similarity between C and a clustering Ên(xn) is defined by

�∗(C, Ên(xn)) = max
D∈Ên(xn)

�(C, D).

How small should �∗ be to say that the pattern corresponding to C in the original data is dissolved
in E∗

n(xn)? The usual choice for a breakdown point in robust statistics would be the worst possible
value. In the present setup, this value depends on the data set and on the clustering method. The
key problem is that in a partition E∗

n(xn+g) there has to be at least one cluster that intersects
with C, so that the natural minimum value 0 of � cannot be attained. See [19] for examples of
data dependence of the worst values. In general, the worst possible value may be difficult to
compute, while one would judge a cluster as “broken down’’ or “dissolved’’ already in much
simpler constellations of E∗

n(xn+g). I propose

�∗ � 1
2 = �({x, y}, {x}) = �(C, C1) if C1 ⊂ C, |C1| = |C|/2, (2.1)

as a cutoff value to consider a cluster as dissolved. The definition of the Jaccard coefficient enables
a simple interpretation: if �∗(C, E∗

n(xn+g))� 1
2 , then the number of points of C and its most similar

cluster in E∗
n(xn+g) for which the two clusters differ is at least as large as the number of points

where they coincide.
The cutoff value 1

2 can be further motivated by the following Lemma, which means that every
cluster can dissolve, at least in absence of further subtle restrictions on the possible clusterings.

Lemma 2.1. Let En(xn) 	 C be a DCM with |En(xn)|�2. Let K ⊆ N be the set of possible
cluster numbers containing at least one element k�2. Let F = {F partition on xn : |F | ∈ K}.
Then ∃F̂ ∈ F : �∗(C, F̂ )� 1

2 . 1
2 is the smallest value for this to hold independently of C and

En(xn).

This is equivalent to [19, Lemma 3.3].
Note that F is restricted here to consist of partitions, not of disjunct clusterings. The reason for

this is that the claim of the Lemma would be trivial if the new clustering F̂ would be allowed to
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consist of no clusters at all or to assign only very few points to clusters. The Lemma shows that
dissolution is possible by new assignments of points to clusters, not only by not clustering points.

Definition 2.2. Let E = (En)n∈N be a DCM. The dissolution point of a cluster C ∈ En(xn) is
defined as

�(E, xn, C) = min
g

{
g

|C| + g
: ∃xn+g = (x1, . . . , xn+g) : �∗(C, E∗

n(xn+g))�
1

2

}
.

The dissolution point is defined by addition of points to the original data set here, which is not
the only possibility. See Section 6 for a discussion.

Note that it would be mathematically equivalent with respect to all theory presented in this
paper to define the dissolution point as the minimal g instead of g

|C|+g
. I suggest g

|C|+g
because

this enables comparisons between the dissolution points of different clusters and the choice of a
proportion between 0 and 1 follows the tradition of the breakdown point (though there is no proof
of the dissolution point to be bounded from above by 1

2 under some reasonable assumptions).

Remark 2.3. It follows from [19, Remark 3.5], that at least r �1 clusters of En(xn) dissolve if
|En(xn)| = k, |E∗

n(xn+g)| = k − r .

Remark 2.4. In Shi [39], 39 similarity measures between sets are compared. In [19], �1(C, D) =
2|C∩D|
|C|+|D| has been used, which is a monotone function of the Jaccard coefficient and leads to an

equivalent dissolution definition if the cutoff value 1
2 is replaced by 2

3 . The interpretation of (2.1)
seems to be most natural for the Jaccard coefficient and the cutoff value of 1

2 , and the Jaccard
coefficient is well known and widely used (though usually for much different purposes).

It does not depend on the number of points which are neither in C nor in D, it is symmetric
and attains its minimum 0 only for disjoint sets and its maximum 1 only for equal sets. 1 − � is a
metric [16]. Many of the measures listed in Shi [39] do not fulfill these basic requirements, others
are criticized by Shi for stability reasons. See [21] for a further discussion of the choice of the
Jaccard coefficient.

The comparison of whole clusterings has been treated, e.g., in [37,24].

2.2. Isolation robustness

In the following sections, there will be various results on dissolution points for different DCMs.
While these results are informative about the nature of the methods, in most cases they do not
allow a direct comparison. The concept of isolation robustness should enable such a comparison.
The rough idea is that it can be seen as a minimum robustness demand on cluster analysis that an
extremely well isolated cluster remains stable under the addition of points. The isolation i(C) of
a cluster C is defined as the minimum distance of a point of the cluster to a point not belonging
to the cluster, which means that a distance structure on the data is needed. The DCMs treated in
this paper, as far as they are not directly distance based, operate on the Euclidean space, so that
the Euclidean distance can be used. It is further assumed that the distance measure is a metric
because the idea of “isolation’’ is incompatible with the possibility that there may be a distance
of 100 between two points and a third point can be added that has a distance of 1 to both of them.

The definition below is a bit more complicated than the intuitive description above for two
reasons. The first reason is that a well-isolated cluster may be unstable not because of robustness
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problems with the DCM, but because of internal inhomogeneity. Isolation robustness addresses
only robustness of a good separation, not robustness of a large homogeneity. Under a sensible
DCM, it is always possible to construct data in which a rather inhomogeneous cluster is split
up in more than one part under addition of a single point. Therefore, the definition allows C
to be split up and prevents only that parts of C are joined with parts of xn \ C in the same
cluster.

The second reason is that the idea of “strong isolation’’ does not refer to an absolute value but
should be defined dependent on the within-cluster distances.

Definition 2.5. A DCM E = (En)n∈N is called isolation robust, if there exists a sequence of
functions vm : Mm × N �→ R, m ∈ N (where Mm is the space of distance matrices between
m objects permissible by the distance structure underlying the DCM) so that for n�m for any
data set xn, for given g ∈ N, for any cluster C ∈ En(x) with |C| = m, within-cluster distance
matrix MC and i(C) > vm(MC, g) and for any data set xn+g , where g points are added to xn the
following statement holds:

For all D ∈ E∗
n(xn+g) : D ⊆ C or D ⊆ xn \ C and ∃E∗

n(xn+g) 	 D ⊆ C.

Remark 2.6. It would be possible to define a weaker version of isolation robustness “of degree
�’’ by demanding the existence of vm(MC, g) only for g < �m. With such a definition, it would
not be necessary that for a large enough isolation the definition above holds for arbitrarily large g,
which may be even larger than n. However, the following theory will show that isolation robustness
is either violated already for g = 1 or it holds for arbitrarily large g, thus � = ∞, for any of the
discussed methods.

The dissolution point and isolation robustness are defined in order to take two different points
of view. Dissolution point results derive conditions on single clusters in concrete data sets
that enable robustness, while isolation robustness delivers a binary classification of clustering
methods.

3. Variations on k-means

3.1. Definition of methods

In the following subsection, dissolution and isolation robustness of some versions of the k-means
clustering method [31] will be investigated. These versions have been proposed to robustify the
k-means approach.

• The k-medoids method [27, Chapter 2], which uses (in its default form) the L1-norm instead of
the squared L2-norm and uses optimally chosen cluster members instead of means as cluster
centers. Thus, it can also be applied to data that come as distance matrix (the distances being
not necessarily L1-norms) and is a modification of k-medians.

• The trimmed k-means method [7] optimizes the k means criterion after an optimally chosen
portion of � of the data has been left out.

• The number of clusters k is often treated as fixed. It is also possible to estimate this number.
Many criteria have been proposed to do this (see, e.g., [35]). In the present paper, the “av-
erage silhouette width’’ criterion proposed for k-medoids (but applicable to all partitioning
techniques) by Kaufman and Rousseeuw [27, Chapter 2] is considered for the k-medoids case.
This criterion recently became very popular, see, e.g., Jörnsten [26].
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Definition 3.1. The k-means clustering of xn is defined by

En(xn) = arg min
{C1,...,Ck} partition of xn

n∑
i=1

min
j

‖xi − x̄j‖2
2, (3.1)

where x̄j = 1
|Cj |

∑
xi∈Cj

xi and ‖ • ‖p denotes the Lp-norm.

(For ease of notation, assume n�k even if “n ∈ N’’ is written.)

Definition 3.2. The k-medoids clustering of xn is defined by

En(xn) = arg min
{C1,...,Ck} partition of xn, x̃1∈C1,...,x̃k∈Ck

n∑
i=1

min
j

‖xi − x̃j‖1. (3.2)

Definition 3.3. The �-trimmed k-means clustering of xn is defined by

En(xn) = arg min
{C1,...,Ck} partition of y⊂xn, |y|=�n(1−�)�

n∑
i=1

1(xi ∈ y) min
j

‖xi − x̄j‖2
2, (3.3)

where �z� is the smallest integer larger or equal to z and 1(•) denotes the indicator function.

Definition 3.4. For xi ∈ xn with underlying distance measure d, a clustering Ek,n(xn) =
{C1, . . . , Ck} and xi ∈ Cj , s(i, k) = b(i,k)−a(i,k)

max(a(i,k),b(i,k))
is called silhouette width of point xi , where

a(i, k) = 1

|Cj | − 1

∑
x∈Cj

d(xi, x), b(i, k) = min
Cl �∈xi

1

|Cl |
∑
x∈Cl

d(xi, x).

If |Cj | = 1, s(i, k) = 0.
For k�2 (it is not possible to estimate k = 1 with this method; the method may be accompa-

nied with a test detecting the presence of any clustering), let Ek be a partitioning method with
|Ek,n(xn)| = k for all data sets.

En(xn) = E
k̂,n

(xn) with k̂ = arg max
k∈{2,...,n}

1

n

n∑
i=1

s(i, k)

is called average silhouette width-clustering corresponding to the partitioning method Ek .

Maximizing the average silhouette width means that, on average, the distance of the points
to their neighboring clusters is large compared to the distance to their own clusters, so that an
optimal solution can be expected to yield homogeneous clusters (which is easier for large k), but
so that neighboring clusters are far away from each other (which is not possible with k too large).
The average silhouette width in the given form assumes partitions and is therefore not applicable
to trimmed k-means.

3.2. General robustness problems with fixed k

With fixed k, all robustness results for the versions of k-means defined above (and for most other
reasonable clustering methods) depend on the structure of the whole data set. A characterization of
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dissolution robustness in terms of an individual cluster and its isolation is impossible. Therefore,
all these methods are not isolation robust. Here are the reasons:

• For k-means and k-medoids, consider a sequence of single outliers xn+1 to be added to the data
set xn so that minx∈xn ‖xn+1 − x‖1 → ∞ (then, of course, also the L2-distance converges to
infinity). If xn+1 is grouped together in the same cluster with points of xn, the target criterion
converges to infinity. If, for the clustering Ek,n+1(xn+1), D = {xn+1} is chosen as the first
cluster and xn is partitioned into k − 1 clusters, the target criterion is bounded from above.
Therefore, if the outlier is extreme enough, the best solution is to partition xn into k − 1
clusters, which means that at least one of the original clusters has to be dissolved because of
Remark 2.3. If all clusters are strongly isolated, points of at least two of them will be merged
into the same cluster (this happens to cluster 3 in Fig. 1). Isolation robustness is impossible.

• For trimmed k-means, single extreme outliers can be trimmed. However, isolation robustness
is still not possible, because for an arbitrarily strongly isolated cluster C, a constellation with
k+1 groups of points (including C) with very similar structure and isolation with the following
properties can always be constructed: in the k-clusters solution of the resulting data set, C is
a cluster and there is one cluster D corresponding to two others of the k + 1 groups (the two
groups are joined or, depending on �, one of them is as a whole or partly trimmed). If a single
point is added close to the mean of one of the groups corresponding to D, then the two groups
corresponding to D yield two new clusters and C is joined with another group or trimmed (or
some of its points are joined and some are trimmed) instead. Thus, trimmed k-means is unstable
if k is not well chosen. This violates even isolation robustness of degree � (Remark 2.6).

Example 3.5. An example can be constructed from the 80-images data. The left side of Fig. 3
shows a 0.1-trimmed 5-means solution for 79 of the 80 points. The solution for all 80 points is
shown on the right side (the point that has been left out on the left side belongs to cluster 3). In
this solution, some members of the well-separated former cluster 4 are joined with a part of the
former cluster 3 and the other former members of cluster 4 are trimmed. Similar things would
happen if the separation between all “natural groups’’ in the data (the clusters shown in Fig. 1,
say) would be uniformly increased. The separation of the former cluster 4 does not prevent parts
of it from being joined with points very far away by adding a single point.

These arguments hold for more general clustering methods with fixed k, and it has been pre-
sumed (and shown for mixture models) that the estimation of k is crucial for robustness in cluster
analysis [19]. Garcia-Escudero and Gordaliza [14] have already shown the non-robustness of
k-means and k-medians. They show that trimmed k-means is often breakdown robust (breakdown
defined in terms of the estimated means), but that the robustness is data dependent (see also
Example 3.9). In fact, while trimmed k-means are not isolation robust, a useful dissolution
robustness result can be derived.

3.3. Trimmed k-means, fixed k

For a given data set xn and a clustering C = {C1, . . . , Ck}, which is a partition of some
y(C) ⊆ xn (interpreted as non-exhaustive clustering on xn), let

Q(xn, C) =
n∑

i=1

1(xi ∈ y(C)) min
j∈{1,...,k} ‖xi − x̄j‖2

2.
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Fig. 3. Left side: 79-images data set (one image of 80-images data has been deleted, which belongs to cluster 5 of the
clustering on the right side) with 0.1-trimmed 5-means clustering. Right side: same with the 80-images data set. “N’’
denotes trimmed points.

Let Bn(C) = xn \ y(C) be the set of the trimmed points. Let Ek = (Ek,n)n∈N be the �-trimmed
k-means.

Theorem 3.6. Let n − �n(1 − �)��g ∈ N, C ∈ Ek,n(xn) with |C| > g. Consider partitions C∗
of subsets y(C∗) ⊂ xn with |y(C∗)| = �(n + g)(1 − �)� − g into l�k clusters so that

�∗(C, C∗)� 1
2 , (3.4)

there exist l possible centroids so that C∗ assigns every point of y(C∗)
to the closest centroid and all points of y(C∗) are closer to their closest centroid

than any point of xn \ y(C∗) is close to any of the centroids. (3.5)

If for any such C∗

min
y1,...,yg∈Bn(Ek,n(xn))

g∑
i=1

min
j

‖yi − x̄j‖2
2 < Q(xn, C∗) − Q(xn, Ek,n(xn)), (3.6)

then �(Ek, xn, C) >
g

|C|+g
.

The proof is given in the appendix. Note that (3.5) means that C∗ can occur as an induced
clustering of a clustering on some xn+g .

The theorem says that the cluster C cannot be dissolved by adding g points, if there are g
points among the originally trimmed points that are fitted well enough by the original clusters.
Dissolution point theorems are useful if they enable the computation of the dissolution point of a
given cluster in a given data set without being forced to find the worst g points to be added. The
computation of � according to Theorem 3.6 may be difficult, as (3.6) requires to be evaluated
for all possible partitions C∗. However, in simple situations it is easy to guess how to minimize
Q(xn, C∗).
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Fig. 4. “Standard’’ example data set: 25 points (0,1)-NSD combined with 25 points (5,1)-NSD.

Example 3.7. The following definition is used to generate reproducible reference data sets:

Definition 3.8. �−1
a,�2(

1
n+1 ), . . . ,�−1

a,�2(
n

n+1 ) is called a (a, �2)-Normal standard data set (NSD)

with n points, where �a,�2 denotes the cdf of the Normal distribution with parameters a, �2.

I will use a data set consisting of two NSDs with 25 points each, with (a, �2) = (0, 1), (5, 1),

respectively, as standard example, to which the robustness results are to be applied, see Fig. 4.
Let k = 2, � = 0.1. The �-trimmed k-means is obtained by trimming the four extreme points

of the two NSDs and one further point of the four extreme points of the remaining data. There are
two resulting clusters corresponding to the remaining points of the two NSDs, one with 22 (let
this be the C of interest) and one with 23 points, Q(xn, Ek,n(xn)) = 24.79,

min
y1,...,yg∈Bn(Ek,n(xn))

g∑
i=1

min
j

‖yi − x̄j‖2
2 = 14.75.

For g = 6, C can be dissolved because only five points are trimmed and one extreme outlier
can remain, which has to be fitted by its own cluster, compare Section 3.2. Let therefore g = 5.
How can Q(xn, C∗) be minimized over partitions of the 45 points of y(Ek,n(xn)) that dissolve
C? Because of (3.5), the clusters of C∗ have to be topologically connected. The two obvious
possibilities to do this are to take a subcluster of C with 11 points, trim the five points at one side
of the NSD of which C is a subset, and join the remaining points with the other NSD, which leads
to Q(xn, C∗) = 131.14, or to form a cluster with 44 points containing C, trim the five most extreme
points on the opposite side and take the second cluster to fit the remaining single point, which
even yields Q(xn, C∗) = 259.38. Thus, (3.6) is fulfilled and �(E2, xn, C) = 6

28 . For k-means and
k-medoids, for C1, C2 being the original clusters with 25 points each, �(E2, xn, Cj ) = 1

21 , j =
1, 2, because if xn+1 �24 (k-means) or xn+1 �67 (k-medoids) is added, the two original clusters
are merged.

Example 3.9. For the 8-images data, 0.1-trimmed 7-means (and also trimmed 7-means with
other choices of �) seems to be rather robust and yields the solution of Fig. 1 with some points
of cluster 4 being trimmed. A small enough number of added outliers is trimmed and does no
further harm than reducing the number of trimmed points of cluster 4.

The separations between the clusters seem to be different enough that “isolation dissolution’’
as in Example 3.5 could not be constructed for 0.1-trimmed 6-means by leaving out only one
point.

3.4. Average silhouette width

In Section 3.2 it has been presumed that the robustness problems of k-means and k-medoids
are mainly caused by the fixed number of clusters k. Unfortunately, the average silhouette width
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method to estimate k does not yield a better robustness behavior. The following theorem shows
that if a single extreme enough outlier is added to a data set, the average silhouette width clustering
consists of only two clusters one of which consists of only the outlier. Therefore, no isolation
robustness is possible and the dissolution point of any cluster C with |C|� n

2 is the smallest
possible value 1

|C|+1 .

Theorem 3.10. Let xn+1 = xn ∪ {xn+1}, where xn is a fixed data set with n pairwise different
points. If xn+1 large enough,

En+1(xn+1) = {xn, {xn+1}},

where (En)n∈N is the average silhouette width clustering corresponding to k-means or k-medoids.

The assumption that the points of xn are pairwise different is not crucial. It can be seen from the
proof that the given clustering will be preferred to any clustering with k < n but large including
at least one cluster that contains two non-identical points.

Example 3.11. In the standard example data set (Fig. 4), the necessary size of an outlier so that
the average silhouette width clustering joins the two original clusters by estimating two clusters,
one of which consists only of the outlier, is 67.

In the data set shown in Fig. 2, four outliers have been added to the 80-images data. This results
in only two clusters as shown, so that all original clusters are dissolved. Up to three of the shown
outliers make up a new cluster and leave the original clustering unchanged.

4. Mixture models

4.1. Definition of methods

In cluster analysis based on mixture models (including a model for “noise’’-points), the data
is assumed to be generated i.i.d. by a distribution of the form

f�(x) =
k∑

j=1

�j f�j
(x) + �0u(x), (4.1)

where f� is a density from some parametric family,
∑k

j=0 �j = 1, 0��j �1 for j = 0, . . . , k,
� = (k, �0, . . . , �k, �1, . . . , �k). u models points not belonging to any cluster (“noise
component’’). The “classical’’ mixture model assumes �0 = 0. For literature on models like
these and more structured models (mixtures of regressions etc.), see McLachlan and
Peel [33].

Having estimated � by �̂ = (k̂, �̂0, . . . , �̂k, �̂1, . . . , �̂k), and, if necessary, u by û (it may
be assumed that k̂ is constant or �̂0 = 0), a clustering on xn can be generated by En(xn) =
{C1, . . . , Ck̂

}. For j = 1, . . . , k̂:

Cj =
{
x ∈ xn : �̂j f�̂j

(x) > �̂0û(x), j = arg max
l

�̂lf�̂l
(x)

}
, (4.2)
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given a rule to break ties in the �̂j f�̂j
(x). For simplicity reasons, in the present paper one-

dimensional data and mixture models of the following form are considered:

f�(x) =
k∑

j=1

�j faj ,�j
(x) + �0u(x) where fa,�(x) = 1

�
f0,1

(
x − a

�

)
, (4.3)

f0,1 being continuous, symmetrical about 0, monotonically decreasing on [0, ∞], larger than 0
on R. Of particular interest is the standard normal distribution, which is often used in cluster
analysis [33,11] and the t�-distribution, which was suggested as a more robust alternative (with
�0 = 0; [36]). Banfield and Raftery [2] suggested robustification of the classical normal mixture
by including a noise component where u is taken to be the uniform distribution over the convex
hull of the data, i.e., for one-dimensional data, û(x) = 1

xmax,n−xmin,n
1(xmax,n �x�xmin,n), where

xmax,n and xmin,n are the maximum and the minimum of xn. Basic robustness properties will carry
over to the multivariate case.

For fixed k̂ = k, �̂ can be estimated by maximum likelihood, which is implemented by means
of the EM-algorithm in the software packages “EMMIX’’ [33] and “mclust’’ [12]. Because the
loglikelihood

Ln,k(�, xn) =
n∑

i=1

log

⎛
⎝ k∑

j=1

�j faj ,�j
(xi) + �0

xmax,n − xmin,n

⎞
⎠ (4.4)

converges to ∞ if â1 = x1 and �̂1 → 0, the parameter space has to be restricted if the likelihood
is to be maximized (consistent roots of the likelihood equation may be found without restriction).
Here, the restriction

�j ��0 > 0 (4.5)

for some pre-specified �0 is used (for a discussion of the choice of �0, see [20]). An alternative
would be to assume all �j to be equal.

The most frequently used methods to estimate k are the information criteria AIC [1] and BIC
[38]. The estimator k̂ with BIC (AIC has about the same robustness behavior) is defined as
k̂ = arg max

k

BIC(k), where

BIC(k) = 2Ln,k(�̂n,k, xn) − q(k) log n, (4.6)

where q(k) denotes the number of free parameters, i.e., q(k) = 3k − 1 for the classical mixture
and q(k) = 3k with noise component, and �̂n,k denotes the ML-estimator of � for xn under k
mixture components.

4.2. Robustness results

The robustness of these methods has already been investigated in Hennig [19], where param-
eter breakdown points have been considered and immediate consequences of these results for
dissolution points have been outlined. Here is a summary of these results for fixed k:

• For fixed k, the situation for all considered methods is similar to Section 3.2. If a single point
xn+1 → ∞ is added to xn, then it follows from [19, Lemma 4.1] that eventually {xn+1} is a
cluster. The necessary sizes of an outlier to dissolve the original k = 2 clusters by merging in the



C. Hennig / Journal of Multivariate Analysis 99 (2008) 1154–1176 1167

standard example data set (Fig. 4) are 15.2 (classical normal mixture), about 800 (t3-mixture),
3.8 × 106 (t1-mixture), 3.5 × 107 (normal mixture with noise). These values depend on �0,
which was chosen as 0.025. Note that the clusterings of the t-mixtures and the noise component
approach are somewhat robust even under the addition of more outliers, as long as they are not
all at the same point [20].

• The above argument does not hold if the noise component u is taken as some non-zero data
independent constant (improper density), because in this case the loglikelihood cannot diverge to
−∞, see [19, Theorem 4.11]. The same discussion as given for trimmed k-means in Section 3.2
applies. Unfortunately, dissolution results will be less tractable than Theorem 3.6, because such
results will be similarly difficult to evaluate (and more difficult to derive) than those given in
Theorem 4.1 below.

If extreme outliers are added under estimated k, the BIC will enlarge the number of mixture
components to fit the outliers, as opposed to the average silhouette width. However, while it
can be shown that the parameter estimators of the original mixture components are prevented
from diverging to infinity [19, Theorems 4.13 and 4.16], cluster dissolution is still possible
by adding points that change the local clustering structure. A corresponding theorem is easily
derived:

Theorem 4.1. For a data set xn, let k̂ be a maximizer of the BIC, and let E = (En)n∈N be
the corresponding maximum likelihood method according to (4.4) (�0 estimated or fixed = 0).
Let g ∈ N, C ∈ En(xn) with |C| > g. Consider parameter vectors �∗ for 1�k∗ �n mixture
components, so that �∗(C, C∗)� 1

2 for the corresponding clustering C∗. If for any such �∗

[L
n,k̂

(�̂
n,k̂

, xn) − Ln,k∗(�∗, xn) − 1
2 (5g + 3k̂ − 3k∗ + 2n) log(n + g) + n log n]>0,

(4.7)

then �(E, xn, C) >
g

|C|+g
.

The proof is completely analogous to the proof of Theorem 4.13 (Theorem 4.16 with noise
component) in [19].

Unfortunately, Theorem 4.1 is not as useful as Theorem 3.6, because the optimization of (4.7)
over all possible �∗ seems computationally intractable. Empirically, in the standard example data
set of Fig. 4, the addition of 12 (normal mixture with and without noise component) or 13 points
(t1-mixture) between the two original clusters yield k̂ = 1 and therefore dissolution of both
clusters.

The isolation robustness result is more expressive.

Theorem 4.2. Let E be a clustering method defined by maximizing (4.4) for given k and the BIC
over k (�0 estimated or fixed = 0). Then E is isolation robust. (The corresponding function vm

does only depend on g, but not on MC .)

The proof is given in Appendix A.
The fact that vm does not depend on the distance matrix within C in this case is a consequence

of the missing invariance property. If a clustering would not change under multiplication of the
data with a constant, the required isolation for robustness should not be constant but depend on
some spread measure of C. Invariance is violated by (4.5), and multiplying a data set with an
extremely large factor (depending on �0) would result in a clustering where k̂ would equal the
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number of pairwise distinct points in the data. This is irrelevant in practice, and clusterings can
be considered as “practically invariant’’ under linear transformations, unless �0 is chosen far too
small.

5. Agglomerative hierarchical methods

5.1. Definition of methods

Most agglomerative hierarchical methods assume that the objects of a data set xn are charac-
terized by an n × n distance matrix D = (dij )i,j=1,...,n, dij = d(xi, xj ), the distance between xi

and xj . In the present paper, d is assumed to be a metric, and it is assumed that the definition of
dij does not depend on the presence or absence of other points in the data set. Furthermore, it is
assumed that the underlying object space O ⊃ xn is rich enough that

∀ x ∈ xn, d∗ ∈ R+ ∃y ∈ O : d(x, y) = d∗, (5.1)

∀ x, y ∈ O, R+ 	 d∗ < d(x, y) ∃z ∈ O :
d(x, z) = d∗, d(y, z) = d(x, y) − d∗. (5.2)

These assumptions ensure that the possible “locations’’ of points to be added to xn are not too
restricted. They hold in the Euclidean space.

For simplicity, it is also assumed that the non-zero distances are pairwise distinct. I will restrict
considerations to the single linkage and the complete linkage method (see [15, Chapter 4], for
references). The isolation robustness results will carry over to compromises between these two
methods such as average linkage.

Definition 5.1. Let 	 : P(xn) × P(xn) �→ R+
0 be a dissimilarity measure between data subsets.

Let Cn = {{x} : x ∈ xn}, hn = 0. For k = n − 1, . . . , 1:

(Ak, Bk) = arg min
A,B∈Ck+1

	(A, B), hk = 	(Ak, Bk), (5.3)

Ck = {Ak ∪ Bk} ∪ Ck+1 \ {Ak, Bk}. (5.4)

C = ⋃n
k=1 Ck is called

(a) Single linkage hierarchy, if 	(A, B) = 	S(A, B) = min
xi∈A,xj ∈B

dij ,

(b) Complete linkage hierarchy, if 	(A, B) = 	C(A, B) = max
xi∈A,xj ∈B

dij ,

There are two simple methods to obtain a partition from a hierarchy. The first one is to cut the
hierarchy at a prespecified number of clusters k, the second one is to cut the hierarchy at a given
distance level h (the reader is referred to [15, Section 3.5], for more sophisticated methods to
estimate the number of clusters).

Definition 5.2. Given a hierarchy C = ⋃n
k=1 Ck on xn defined as in Definition 5.1 equipped

with a monotonically decreasing sequence of level number h1, . . . , hn, see (5.3), Ck is called the
k-number partition for given n�k ∈ N, and Ck(h) with hk(h) �h and hk(h)−1 > h is called the
h-level partition for given h�0.
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5.2. Robustness results

While the k-number and the h-level partition are similarly simple, their robustness properties are
different. The discussion in Section 3.2 applies to the k-number partition (not only of single and
complete linkage clustering, but also of all other agglomerative methods that I know). An extreme
enough outlier xn+1 always forms a cluster on its own, as long as k�2, because 	({xn+1}, A) can
be driven to infinity for all A ⊂ xn.

The h-level partition (denoted Eh = (Eh,n)n∈N in the following) is more stable. Let h be fixed,
Eh,n(xn) = Ck(h) = {C1, . . . , Ck(h)}.

Here are the results for single linkage. For two clusters Ci, Cj , i, j = 1, . . . , k(h), let g(i,j) =
�	S(Ci, Cj )/h�. If Ci and Cj were the only clusters, this would be the number of additional
points needed to join Ci and Cj . For given Ci, g ∈ N, let q(i, g) be the maximum number of
points of xn which are not members of Ci , but can be joined with Ci if g points are added to xn.

Theorem 5.3. Given the notation above, where Eh is the h-level partition of the single linkage
hierarchy,

�(Ci, E
∗
n(xn+g)) � |Ci |

|Ci | + q(i, g)
, (5.5)

|Ci |
|Ci | + q(i, g)

>
1

2
⇒ �(Eh, xn, Ci) >

g

|Ci | + g
. (5.6)

Further,

q(i, g) = max
{Cj1 ,...,Cjl

}∈Dg(Ci)

l∑
m=1

|Cjm | − |Ci |, (5.7)

where Dg(Ci) denotes the set of all “g-reachable cluster trees’’, i.e., subsets S of Ck(h) with the
following properties:

• Ci ∈ S,
• there exists Q ⊆ {(Cj1 , Cj2), Cj1 �= Cj2 ∈ S} so that the graph with the members of S as

vertices and Q as the set of edges is a tree, i.e., a connected graph without circles, and
∑

(Cj1 ,Cj2 )∈Q

g(j1,j2) �g. (5.8)

The proof is given in Appendix A.

Corollary 5.4. The h-level partition of the single linkage hierarchy is isolation robust.

This follows because for given g and i(Ci) = minj �=i 	S(Ci, Cj ) large enough, g(i,j) for any
j �= i is larger than g and q(i, g) = 0.

Example 5.5. The isolation of the two clusters corresponding to the NSDs in the standard example
data set of Fig. 4 is 1.462 and the largest within-cluster distance is 0.343. The 2-number partition
would join the two original clusters if a single point at 8.23 (original data maximum plus isolation)
is added. For the h-level partition, h could be chosen between 0.343 and 1.462 to generate two
clusters. If h > 0.713 (half of the isolation), �(Eh, xn, Cj ) = 1

26 . If h = 0.344, �(Eh, xn, Cj ) =
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4
29 . While the stability depends on h chosen favorably with respect to the data, the theory does
not allow h to be chosen data-dependent. The main problem with the h-level approach is that h
has to be chosen by use of background knowledge, and such knowledge does not always exist.
Furthermore, the h-level clusterings are not invariant with respect to multiplying all distances
with a constant.

The h-level partition of complete linkage is trivially isolation robust, because under complete
linkage no two points with a distance larger than h can be in the same cluster. Therefore, if
i(C) > h, no point of C can be together in the same cluster with a point that has not been in C
before the addition of g points with g arbitrarily large.

Contrary to single linkage, complete linkage h-level clusters can be split by addition of points.
Therefore it is more difficult to prevent dissolution. The following theorem gives a condition which
prevents dissolution. Let Eh = (Eh,n)n∈N be the h-level partition of complete linkage, d(C) be the
diameter of a set C (maximum distance within C), dh(C, D) = maxx∈D\C,y∈C,d(x,y)�h d(x, y)

(the maximum over ∅ is 0).

Theorem 5.6. For a given C ∈ Eh,n(xn), let H ⊂ C be a subcluster of C (i.e., a member of
Eh∗,n(xn) with h∗ = d(H)�h) with |H | >

|C|
2 . Define

m0 = max(d(H), dh(H, xn)), m1 = d(H) + dh(H, xn) + m0,

mg = d(H) + mg−1 + mg−2

for g�2. If mg �h and if

qH =
∣∣∣∣
{
y ∈ xn \ C : min

x∈H
d(x, y)�h

}∣∣∣∣ < 2|H | − |C|, (5.9)

then �(Eh, xn, C) >
g

|C|+g
.

H may be chosen in order to minimize mg . According to this theorem, dh(H, xn) has to be
much smaller than h to enable good dissolution robustness. This can happen if C is strongly
isolated and its diameter is much smaller than h. However, the proof of the theorem deals with a
very specific worst-case situation, and it will be very conservative for lots of data sets. This can
be seen in the following example. A better result under additional restrictions may be possible.

Example 5.7. The 2-number partition would join the two original clusters in the data set of Fig. 4
if a single point at about 11.8 is added. For the h-level partition, h could be chosen between 3.54
and 8.53 to generate two clusters. Theorem 5.6 does not yield a better lower bound than 1

26 for
the dissolution point of one of the clusters, the (0,1)-NSD, say. The only subcluster with �13
points is H = {x11 . . . x25}, d(H) = 1.96. Even for h = 3.54, there are points in the (5,1)-NSD
which are closer than h to all points of H, and dh(H, xn) = 3.54. In fact, dh(H, xn) > h

2 for any
h between 3.54 and 8.53, enforcing m1 > h. The theorem does not apply until h = 9.05 and
the second cluster is chosen as an (11.7,1)-NSD, in which case qH = 4 and m1 = 9.04, thus
�(Eh, xn, C1)� 2

27 .
However, the worst case scenario of the proof of Theorem 5.6 is impossible here and in fact

I have not been able to dissolve one of the two clusters by adding any g < |C| points unless
h�8, so that the result of the theorem is extremely conservative here. Fig. 5 shows data where
the dissolution point bound obtained in the theorem is attained.
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1 2 3 4 5 6 7 8

Fig. 5. Let (0.1, 2, 2, 3, 3, 4.85) (circles) form a well separated complete linkage cluster (4.8 < h < 7.6) in a data set.
Let H = {2, 2, 3, 3}. Thus, d(H) = 1, dh(H, xn) = m0 = 1.9, m1 = 4.8, m2 = 7.7, qH = 0. Therefore, � = 2

8 .
Dissolution works by adding points at 1.04 and 7.7 (stars). The resulting complete linkage clusters are shown below the
x-axis.

6. Summary and discussion

The aim of this paper was to provide a stability theory for cluster analysis that can be applied to
general methods for disjoint clustering. Here is a summary of the results concerning the different
clustering methods:

• All examined methods with a fixed number of clusters and without trimming (k-means, k-
medoids, normal or t-mixture with fixed k, k-number partitions of agglomerative hierarchical
clusterings) can be spoiled by adding a single outlier.

• The same holds for the average silhouette width estimation of k and for the mixture model
with noise, if the density of the noise component is taken as the uniform density on the convex
hull of the data. However, in the latter case, the outlier(s) that have to be added to the data set
to spoil the original clustering have to be extremely and presumably unrealistically large (the
same holds for t1-mixtures).

• Trimmed k-means and the normal mixture with fixed k and a data-independent noise density
are not isolation robust (which seems to matter mainly if k is misspecified), but well enough
separated clusters in data sets with not too many outliers and a well specified number of clusters
are robust against dissolution with these methods.

• Normal and t-mixture models with k estimated by the BIC or the AIC and the h-level partitions
of single and complete linkage are isolation robust. In practice, well enough separated clusters
will be robust against dissolution with these methods.

Results of practical relevance are the non-robustness of the average silhouette width to estimate
the number of clusters, the finding that fixing the level to cut the tree is much better than fixing
the number of clusters for agglomerative hierarchical methods, and that methods to estimate
the number of clusters should make it possible to classify added extreme outliers as one-point-
clusters without changing the clustering of the other points, at least if such points are not trimmed
or assigned to noise components.

In spite of the generality of the definitions given in the present paper, a general quality ranking of
the methods by means of the results is not justified. For example, the dissolution result for h-level
complete linkage is weak, but seemingly more conservative than the results for other methods.
The trimmed k-means is not isolation robust but outperforms at least the isolation robust h-level
single linkage in the one-dimensional standard example data set as well as some isolation robust
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methods in other data sets I have seen. This, however, requires a suitable choice of k. While the
theoretical results given in the present paper do not indicate a robustness advantage of complete
linkage over single linkage, it seems that such an advantage exists in practice, because isolated
clusters can be “chained’’ by single linkage usually under addition of much fewer points than by
complete linkage. More sensible definitions could be needed to capture such differences.

Robustness and stability are not the only requirements of a good clustering. For example, there
are many data sets where the density of points is high in a central area of the data space, which
might be significantly clustered (though the clusters are not strongly isolated), but the density
of points becomes much lower toward the borders of the data region. If single linkage (be it the
k-number or the h-level partition) is applied to such data, the solution is often one very large cluster
containing all central points and a lot of clusters containing only one or two more or less outlying
points. This general structure is then very robust against addition or removal of points (only the
exact composition of the outlier clusters changes), but it is not very useful. The most interesting
patterns are not revealed. Therefore, the robustness properties should be regarded as one of a
number of desirable features for a cluster analysis method. In the literature, lists of such desirable
features have been investigated for a long time to assess the quality of different methods, see, e.g.,
[10,6]. Differences between cluster stability in concrete data sets and theoretical properties of the
methods with respect to idealized situations have already been noted by Milligan [34].

The mixture models and the agglomerative hierarchical methods have also been applied to the
80-images data set. Single and complete linkage showed the expected robustness behavior. The
addition of a single outlier dissolved a well separated cluster using the k-number partitions, while
the h-level partitions with properly chosen h were reasonable and robust.

The add-on package mclust for the statistical software R (www.R-project.org) for
normal mixture modeling with BIC, however, ended up with suboptimal and non-robust solutions
because of computational problems. These were seemingly caused by the occurrence of non-
invertible covariance matrices during the iterations of the EM-algorithm (the software is described
in [11]; other implementations of normal mixtures seem to be sensitive to problems of this kind
as well). This illustrates that the practical stability of a clustering algorithm may deviate seriously
from the theoretical robustness of the underlying global optimization problem.

Concerning the practical relevance of the results, I have to admit that it was very difficult to find
a real data set illustrating at least the most interesting theoretical results given in the present paper.
The reason is that the results concern well separated clusters (not only isolation robustness, but
also the assumptions of the dissolution point theorems are connected to good separation), while
most cluster analysis methods yield at least some not well separated and often very unstable
clusters in most real data sets. Therefore, the robustness theory should be complemented with
methods to assess the stability of single clusters in a concrete clustering. A publication on using
the Jaccard similarity for this task is in preparation (see [21]). A graphical method to validate
single clusters is introduced in Hennig [22]. A choice of a cluster analysis method for a particular
application has always to depend on the data set and on the aim of the study.

In the robustness literature there are various definitions of a breakdown point [17,9]. In particu-
lar, breakdown (and dissolution) can be defined via addition and replacement of points (deletion is
usually not considered, because replacement is clearly stronger). In many situations, addition and
replacement are equivalent, see Zuo [40]. Unfortunately, this is not the case in cluster analysis.
As a simple example, consider two extremely well separated homogeneous clusters, one with
100 and the other with 10 points. The number of points to be added to lead the smaller cluster
into dissolution can be arbitrarily large if an isolation robust method is used. Under replace-
ment, the 10 points of the smaller cluster have simply to be taken into the domain of the other
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cluster. For single linkage, it is impossible to split a cluster by addition, but it would be possible
by replacement. Therefore it would be interesting if replacement based definitions would reveal
similar characteristics of the methods. The addition approach has been taken here for the sake of
simplicity.

An interesting result is the role of outliers in cluster robustness. Outliers are extremely dangerous
for some methods with fixed k, but are completely harmless for mixtures with BIC-estimated k and
h-level partitions. It is interesting if this holds for other methods to estimate k (see, e.g., [15,5,32,
Section 3.5]). With fixed k, trimmed k-means can handle a moderate number of outliers (unless k
is ill-specified) and t-mixtures and normal mixtures with noise are only sensitive to such extreme
outliers that they can be easily discarded by a routine inspection of the data (less extreme outliers
may be dangerous if there are some of them at the same point). Local instability, caused by points
between the clusters or at their borders, seems often to be the more difficult robustness problem
in cluster analysis.

Appendix A: Proofs

Proof of Theorem 3.6. Assume that �(Ek, xn, C)� g
|C|+g

, i.e., it is possible to add g points to
xn so that C is dissolved. Let xn+1, . . . , xn+g be the corresponding points, xn+g be the resulting
data set, D = Ek,n+g(xn+g), D∗ = E∗

k,n(xn+g).
Let F be a clustering on xn+g , which is defined as follows: take the original clusters C1, . . . , Ck

and add the g minimizing points y1, . . . , yg ∈ Bn(Ek,n(xn)) of
∑g

i=1 minj ‖yi − x̄j‖2
2 to their

corresponding clusters Cj . Trim

Bn+g(F) = Bn(Ek,n(xn)) ∪ {xn+1, . . . , xn+g} \ {y1, . . . , yg}.
Because maximal g points have been added to any Cj , C with |C| > g is not dissolved in the
induced clustering, which equals F , because all added g points have been trimmed. But C is
assumed to dissolve. Therefore,

Q(xn+g, D) < Q(xn+g, F).

Because D is a trimmed k-means clustering, D∗ fulfills (3.5), where the centroids are the cluster
means of D (otherwise D could be improved by changing assignments so that points are assigned
to the cluster with the closest centroid, and trimmed points are changed into clusters to whose
centroid they are closer than some of its former members). A contradiction of (3.6) follows from

Q(xn+g, F) = min
y1,...,yg∈Bn(Ek,n(xn))

g∑
i=1

min
j

‖yi − x̄j‖2
2 + Q(xn, Ek,n(xn)),

Q(xn+g, D) � Q(xn, D∗),
because all summands of Q(xn, D∗) also appear in Q(xn+g, D). �

Proof of Theorem 3.10. Consider xn+1 → ∞. For D = {xn, {xn+1}} get s(n + 1, 2) = 0
and s(i, 2) → 1 for i = 1, . . . , n, because a(i, 2) does not change while b(i, 2) → ∞. Thus,

1
n+1

∑n+1
i=1 s(i, k) → n

n+1 .
Because of the arguments given in Section 3.2, {xn+1} will be contained eventually in the

optimal clustering for any k. For any partition in which there are non-empty different clusters
C1 ⊂ xn and C2 ⊂ xn, eventually b(i, k)� maxx,y∈xn d(x, y), where d is the underlying distance,
a(i, k)� minx,y∈xn d(x, y) > 0 as long as xi does not form a cluster in itself, and therefore there
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exists a constant c so that 1
n+1

∑n+1
i=1 s(i, k) < c < n

n+1 . For large enough xn+1, this is worse than
D, and therefore D is the average silhouette width clustering. �

Proof of Theorem 4.2. First consider the case without noise component, i.e., �0 = 0. Let C ∈
En(xn) with isolation i(C), |En(xn)| = k̂. Let fmax = 1

�0
f0,1(0). Under addition of g points

to xn,

BIC(n + g)�2
n+g∑
i=1

log

⎛
⎝n+g∑

j=1

1

n + g
fmax

⎞
⎠ − (3(n + g) − 1) log(n + g). (A.1)

The latter can be attained by fitting xn+g with the following n + g mixture components:

aj = xj , �j = �0, �j = 1

n + g
, j = 1, . . . , n + g.

If this would be the solution maximizing the BIC, there would be no violation of isolation robust-
ness, because every point would form a cluster, so that there would be no cluster in E∗

n(xn+g)

joining points of C and of xn \ C.
Suppose that there exists D ∈ E∗

n(xn+g) so that neither D ⊆ C nor D ⊆ xn \ C, i.e., ∃x, y ∈
xn : x ∈ C ∩ D, y ∈ (xn \ C) ∩ D. Thus, |x − y|� i(C), and there exists a mixture component
l in �∗ = �̂

n+g,k̂∗ (k̂∗ maximizing the BIC for xn+g; the components of �∗ being denoted by
�∗

j , a
∗
j , �∗

j ) so that

l = arg max
j

�∗
j fa∗

j ,�∗
j
(x) = arg max

j

�∗
j fa∗

j ,�∗
j
(y).

By choosing i(C) large enough, at least one of the fa∗
l ,�∗

l
(z), z = x, y, can be made arbitrarily

small, and therefore
∑k̂∗

j=1 �∗
j fa∗

j ,�∗
j
(z) and even L

n+g,k̂∗(�∗, xn+g) can be made arbitrarily small

as well. Hence, i(C) can be made so large that 2L
n+g,k̂∗(�∗, xn+g) − 3(k̂∗ − 1) log(n + g) is

smaller than the lower bound in (A.1), which contradicts the existence of D ∈ E∗
n(xn+g) joining

points of C and xn \ C. Since E∗
n(xn+g) is a partition, it must contain C or a subset of C.

There exists an upper bound on min(fa,�(x), fa,�(y)), which is independent of a and � (namely
max�∗ ��0

1
�∗ f0,1

( x−y
2�∗

)
because |x−y|�2 max(|x−a|, |y−a|)) and converges to 0 as |x−y| →

∞. All proportion parameters are �1, and the number of clusters is smaller or equal to n + g

(see [30, p. 22]). (A.1) is independent of xn and C, and therefore the above argument holds for
large enough i(C) uniformly over all xn and C for given n. This proves isolation robustness.

If a noise component is added, E∗
n(xn+g) is not necessarily a partition, so that the argument

guaranteeing the existence of C ⊇ D ∈ E∗
n(xn+g) does no longer hold. The former arguments are

not affected by introduction of the noise component. It remains to show that E∗
n(xn+g) contains C

or a subset of C, which means that not all members of C are assigned to the noise component. But
by choosing i(C) large enough, 1

xmax−xmin
becomes arbitrarily small, and assigning even a single

point of C to the noise component can make the loglikelihood arbitrarily small in contradiction
to (A.1) with �∗

0 = 0. �

Proof of Theorem 5.3. It is well known (see, e.g., [4, p. 389]) that the single linkage h-level
clusters are the connectivity components of the graph G(xn) where all members of the data set
are the vertices and there is an edge between xl and xm whenever dlm �h.
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Since it is not possible to reduce connectivity components by adding points, ∃D ∈ E∗
n(xn+g) :

Ci ⊆ D. Let q∗(i, g) be the right side of (5.7). q(i, g) = q∗(i, g) holds because

• two clusters Cj and Cl can always be linked by adding g(j,l) equidistant points between the
points xj and xl with djl = 	S(Cj , Cl) because of (5.2);

∑l
m=1 |Cjm |−|Ci | points can be joined

by adding g points if {Cj1 , . . . , Cjl
} ∈ Dg(Ci) because of (5.8), therefore q(i, g)�q∗(i, g),

• q(i, g)�q∗(i, g) because for all x, y ∈ D there must be a path P between x and y in G(xn+g),
and the minimum set of clusters from Eh,n(xn) needed to cover P ∩ xn, i.e. the path without
the g added points, can obviously be joined by these g points, fulfills (5.8) and is therefore a
member of Dg(Ci).

Get �(Ci, D)� |Ci ||Ci |+q(i,g)
, therefore (5.5), (5.6) follows directly. �

Proof of Theorem 5.6. Suppose that in the induced clustering E∗
n(xn+g) the points of H are not

in the same cluster. It will be shown by complete induction over g�1 that max 	C(C1, C2)�mg ,
where the maximum is taken over C1, C2 ∈ En+g(xn+g) with C1 ∩H �= ∅, C2 ∩H �= ∅ and that
furthermore for such Cj , j = 1, 2, the largest possible dh(H ∩ Cj , Cj )�mg−1 and the second
largest possible dh(H ∩ Cj , Cj )�mg−2. If mg �h, the clusters C1, C2 would be joined in the h-
level partition, because all distinct clusters must have distances larger or equal to h from each other.

g = 1: 	C(C1, C2)�dh(H ∩ C1, C1) + dh(H ∩ C2, C2) + d(H), because d is a metric and
d(z1, z2)�d(z1, x1) + d(z2, x2) + d(x1, x2) for z1 ∈ C1, z2 ∈ C2, x1 ∈ C1 ∩ H, x2 ∈ C2 ∩ H .
Observe d(xn+1, H) = minx∈H d(xn+1, x)�d(H), because otherwise the points of H would
be joined as in the original data set at the level d(H), before xn+1 can change anything about
H. Points x ∈ H not being in the same cluster as xn+1 can only be joined with y ∈ xn if
d(x, y) < dh(H, xn). Thus, one of the dh(H ∩Cj , Cj ), j = 1, 2 (namely where xn+1 ∈ Cj ) has
to be � max(dh(H, xn), d(H)) and the other one has to be �dh(H, xn).

1�g → g + 1: Order the points xn+1, xn+2, . . . so that the smaller d(xn+j , H), the smaller
the index. Observe still d(xn+1, H)�d(H), d(xn+q+1, H)�mq, q �g + 1, the latter because
otherwise all clusters containing points of H obtained after addition of xn+q are joined before
xn+q+1 can affect them. Thus, for g + 1 added points, mg is the largest possible value for dh(H ∩
Cj , Cj ), j = 1, 2, and it can only be reached if xn+g+1 is a member of the corresponding cluster.
The largest possible dh(H ∩ Cj , Cj ), j = 1, 2, for xn+g+1 �∈ Cj can be attained by either one
of xn+l ∈ Cj , l�g or is dh(H, xn). Observe dh(H ∩ Cj , Cj )�mg−1 for all these possibilities.
This finishes the induction.

This means that all points of H are in the same induced h-level cluster C∗ if g points are added
and mg �h. Observe �(C, C∗)� |H |

|C|+qH
> 1

2 , because by (5.9) no more than qH points outside
of C can be joined with H. �

References

[1] H. Akaike, A new look at the statistical identification model, IEEE Trans. Automat. Control 19 (1974) 716–723.
[2] J.D. Banfield, A.E. Raftery, Model-based Gaussian and non-Gaussian clustering, Biometrics 49 (1993) 803–821.
[4] H.-H. Bock, Automatische Klassifikation, Vandenhoeck und Ruprecht, Göttingen, 1974.
[5] G. Celeux, G. Soromenho, An entropy criterion for assessing the number of clusters in a mixture, J. Classification

13 (1996) 195–212.
[6] Z.M. Chen, J.W. Van Ness, Space-contracting, space-dilating, and positive admissible clustering algorithms,

Pattern Recognition 27 (1994) 853–857.
[7] J.A. Cuesta-Albertos, A. Gordaliza, C. Matran, Trimmed k-means: an attempt to robustify quantizers, Annals of

Statistics 25 (1997) 553–576.



1176 C. Hennig / Journal of Multivariate Analysis 99 (2008) 1154–1176

[8] P.L. Davies, U. Gather, Breakdown and groups, Ann. Stat. 33 (2005) 977–1035.
[9] D.L. Donoho, P.J. Huber, The notion of breakdown point, in: P.J. Bickel, K. Doksum, J.L. Hodges Jr. (Eds.), A

Festschrift for Erich L. Lehmann, Wadsworth, Belmont, CA, 1983, pp. 157–184.
[10] L. Fisher, J.W. Van Ness, Admissible clustering procedures, Biometrika 58 (1971) 91–104.
[11] C. Fraley, A.E. Raftery, How many clusters? Which clustering method? Answers via model based cluster analysis,

Comput. J. 41 (1998) 578–588.
[12] C. Fraley, A.E. Raftery, Enhanced model-based clustering, density estimation, and discriminant analysis software:

MCLUST, J. Classification 20 (2003) 263–286.
[13] M.T. Gallegos, Clustering in the presence of outliers, in: M. Schwaiger, O. Opitz (Eds.), Exploratory Data Analysis

in Empirical Research, Springer, Berlin, 2003, pp. 58–66.
[14] L.A. Garcia-Escudero, A. Gordaliza, Robustness properties of k means and trimmed k means, J. Amer. Statist. Assoc.

94 (1999) 956–969.
[15] A.D. Gordon, Classification, 2nd ed., Chapman and Hall, Boca Raton, FL, 1999.
[16] J.C. Gower, P. Legendre, Metric and Euclidean properties of dissimilarity coefficients, J. Classification 3 (1986)

5–48.
[17] F.R. Hampel, A general qualitative definition of robustness, Ann. Math. Statist. 42 (1971) 1887–1896.
[18] F.R. Hampel, The influence function and its role in robust estimation, J. Amer. Statist. Assoc. 69 (1974) 383–393.
[19] C. Hennig, Breakdown points for ML estimators of location-scale mixtures, Ann. Statist. 32 (2004) 1313–1340.
[20] C. Hennig, Robustness of ML estimators of location-scale mixtures, in: D. Baier, K.-D. Wernecke (Eds.), Innovations

in Classification, Data Science, and Information Systems, Springer, Heidelberg, 2004, pp. 128–137.
[21] C. Hennig, A general robustness and stability theory for cluster analysis. Preprint no. 2004-07, Universität Hamburg,

Fachbereich Mathematik—SPST, 2004. 〈www.homepages.ucl.ac.uk/∼ucakche/papers/classbrd.ps〉;
C. Hennig, Cluster-wise assessment of cluster stability, Comput. Stat. Data An. (2006), in press,
doi:10.1016/j.csda.2006.11.025.

[22] C. Hennig, A method for visual cluster validation, in: C. Weihs, W. Gaul (Eds.), Classification—The Ubiquitous
Challenge, Springer, Heidelberg, 2005, pp. 153–160.

[23] C. Hennig, L.J. Latecki, The choice of vantage objects for image retrieval, Pattern Recognition 36 (2003)
2187–2196.

[24] L. Hubert, P. Arabie, Comparing partitions, J. Classification 2 (1985) 193–218.
[25] P. Jaccard, Distribution de la flore alpine dans la Bassin de Dranses et dans quelques regions voisines, Bull. Soc.

Vaudoise Sci. Naturelles 37 (1901) 241–272.
[26] R. Jörnsten, Clustering and classification based on the data depth, J. Multivariate Anal. 90 (2004) 67–89.
[27] L. Kaufman, P.J. Rousseeuw, Finding Groups in Data, Wiley, New York, 1990.
[28] Y. Kharin, Robustness in Statistical Pattern Recognition, Kluwer Academic Publishers, Dordrecht, 1996.
[29] P. Legendre, L. Legendre, Numerical Ecology, second ed., Elsevier, Amsterdam, 1998.
[30] B.G. Lindsay, Mixture Models: Theory, Geometry and Applications, NSF-CBMS Regional Conference Series in

Probability and Statistics, Hayward, 1995.
[31] J. MacQueen, Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth

Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, 1967, pp. 281–297.
[32] G.J. McLachlan, On bootstrapping the likelihood ratio test statistic for the number of components in a normal mixture,

Appl. Statist. 36 (1987) 318–324.
[33] G.J. McLachlan, D. Peel, Finite Mixture Models, Wiley, New York, 2000.
[34] G.W. Milligan, Clustering validation: results and implications for applied analyses, in: P. Arabie, L.J. Hubert,

G. De Soete (Eds.), Clustering and Classification, World Scientific, Singapore, 1996, pp. 341–375.
[35] G.W. Milligan, M.C. Cooper, An examination of procedures for determining the number of clusters in a data set,

Psychometrika 50 (1985) 159–179.
[36] D. Peel, G.J. McLachlan, Robust mixture modeling using the t distribution, Statist. Comput. 10 (2000) 335–344.
[37] W.M. Rand, Objective criteria for the evaluation of clustering methods, J. Amer. Statist. Assoc. 66 (1971) 846–850.
[38] G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (1978) 461–464.
[39] G.R. Shi, Multivariate data analysis in palaeoecology and palaeobiology—a review, Palaeogeography,

Palaeoclimatology, Palaeoecology 105 (1993) 199–234.
[40] Y. Zuo, Some quantitative relationships between two types of finite sample breakdown point, Statist. Probab. Lett.

51 (2001) 369–375.

http://www.homepages.ucl.ac.uk/ucakche/papers/classbrd.ps
http://10.1016/j.csda.2006.11.025

