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Making decisions under uncertainty, from perceptual

judgments to reward-guided choices, requires combining

multiple pieces of decision-relevant information — a cognitive

process modeled as statistical inference. In such conditions,

human and animal decisions exhibit a large suboptimal

variability whose origin and structure remains poorly

understood. This variability is usually hypothesized as noise at

the periphery of inferential processes, namely sensory noise in

perceptual tasks and stochastic exploration in reward-guided

learning, or as suboptimal biases in inference per se. Here we

outline a theoretical framework aiming at characterizing the

origin and structure of choice variability in uncertain

environments, with an emphasis on the computational

imprecision of inferential processes usually overlooked in the

literature. We indicate how to modify existing computational

models and behavioral paradigms to dissociate computational

imprecisions from suboptimal biases in inference.

Computational imprecisions have critical consequences for

understanding the notion of optimality in decision-making.
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From normative to algorithmic descriptions of
decision-making
In uncertain or changing environments, making decisions

requires combining multiple pieces of ambiguous or con-

flicting information. In such conditions, human choices

exhibit a suboptimal variability whose origin and structure

remains poorly specified to date [1��,2�,3��]. Normative

descriptions of decision-making in terms of optimal sta-

tistical inference — defined by the Bayes theorem of

probabilistic inference [4] — have provided common
www.sciencedirect.com 
metrics to quantify human performance in various deci-

sion problems, ranging from visual search [5] to reward-

guided learning [6]. However, this approach falls short of

explaining the pervasive variability and sub-optimality of

human decisions and its implications in terms of cognitive

and neural architecture [7].

These limitations have to do with the level of description

at which Bayesian formulations are set [8,9]. Indeed,

normative descriptions seek by definition to characterize

the ‘computational’ problems that the brain tries to solve

in terms of information processing. In this regard, Bayes-

ian models of perception have been tremendously help-

ful in showing that humans perform inference on noisy

sensory signals using contextual knowledge (or ‘priors’)

about their environment. This computational descrip-

tion of brain function, inspired by the pioneering work of

Helmholtz in the late 1800s, is still very influential in the

field [10]. However, and despite recent attempts [11,12],

this function-level description of the brain as an ‘infer-

ence machine’ remains inherently blind to its neurobio-

logical implementation — that is, the ‘representational’

or ‘algorithmic’ level of description according to

Marr’s hierarchy. In particular, one can write virtually

any departure from the Bayesian optimum as a mixture

of wrong priors and probabilistic (‘softmax’) decision

rules in an otherwise optimal inference process [7]

(Figures 1–3).

Dominant views go as far as proposing sensory noise (at

the input of the decision process) to be the dominant

source of choice suboptimality in perceptual tasks [13–
15], whereas stochasticity in response selection (at the

output of the decision process) would cause suboptimal

reward-guided choices in the purpose of ‘random’ explo-

ration of environmental contingencies [16,17] (see also

[18,19] for a comparison between ‘directed’ and ‘random’

forms of exploration). However, the behavioral para-

digms on which these claims are based cannot distinguish

choice suboptimality originating from the peripheries of

the decision process from computational imprecisions in

inference, at the core of the decision process. This

distinction requires adapting current computational

models of decision-making which either make the as-

sumption that inferential computations are performed

with infinite precision (such as the updating of beliefs in

probabilistic learning models, see [6]) or do not specify

the origin of observed variability in the decision variable

(such as random-walk drifts in sequential sampling mod-

els, see [20�]).
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Figure 1

three distinct sources of choice variability and suboptimality
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Theoretical distinction between three sources of choice variability and suboptimality. Computational description of decision-making as statistical

inference: evidence from stimulus s, corresponding to the likelihood of stimulus features given possible generative hypotheses H, is accumulated

across stimuli in the form of a decision variable DV, corresponding to the posterior belief of possible generative hypotheses given observed

stimuli, and finally translated into an appropriate action a. Two mapping rules control: (a) which stimulus features are relevant for the decision, at

the input of the inference process, and (b) the ‘task set’ which determines which action to take depending on the decision variable, at the output

of the inference process. Three sources of variability can affect the decision process: (1) sensory noise during the processing of decision-relevant

stimulus features (green), (2) probabilistic action selection in the purpose of exploration (purple), and (3) imperfections in inference (yellow).

Sensory noise is stimulus-dependent but task-independent, whereas inferential imperfections should depend on the complexity of the inference

process (e.g., the number of possible generative hypotheses to choose from). Probabilistic action selection, in contrast to inferential imperfections,

is independent from the number of inference steps performed (i.e., the number of presented stimuli minus one) to reach a decision.
Modifying theory and practice to quantify
inferential imprecisions
At the theoretical level, identifying the origin of choice

suboptimality requires to compare human or animal

choice accuracy to the statistical optimum — defined in

terms of noise-free probabilistic inference. In this frame-

work, statistical optimality is defined as a fixed upper

bound on choice accuracy, and choice suboptimality as

departures from statistically optimal behavior. At the

practical level, however, it is often impossible to dissoci-

ate the impact of inferential imprecisions on choice sub-

optimality from ‘peripheral’ variability (at the sensory

and/or response selection stages) in classical behavioral

paradigms.

To measure inferential imprecisions in decision-making

separately from sensory variability, one needs to distin-

guish the decision space in which inference is per-

formed from the relevant sensory feature(s) of the

presented samples (whose sensory discriminability is

known on the basis of past literature or can be measured

empirically). In practice, one can use a non-linear map-

ping between sensory features and decision categories,

or compare conditions using identical stimuli but

different numbers of decision categories. In such
Current Opinion in Behavioral Sciences 2016, 11:109–115 
conditions, one can estimate the predicted impact of

inferential imprecisions on choice variability, indepen-

dently from sensory variability. To distinguish inferen-

tial imprecisions from variability in response selection

(e.g., a probabilistic ‘softmax’ selection rule), one also

needs an experimental condition where random explo-

ration is neither necessary nor useful. This is by defini-

tion the case in perceptual categorization tasks where

subjects are observers of the environment — that is,

stimuli act as cues about a hidden state of the environ-

ment, not as outcomes of previous actions. Reward-

guided learning tasks, which rely heavily on exploration,

can be modified to include a condition where random

exploration is useless — for example, by providing

‘counter-factual’ feedback from unchosen alternatives

simultaneously with feedback from the chosen action

[21,22]. Indeed, in this condition, the decision-maker

is provided with current values of both chosen and

unchosen alternatives, and has thus no incentive for

random exploration of unchosen alternatives [16].

Selective modifications of classical protocols used to

study human perceptual and reward-guided decisions

can therefore be made to distinguish between sources of

variability at the sensory, inference and response selec-

tion stages.
www.sciencedirect.com
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Figure 2
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Distinguishing inferential imprecisions from other candidate sources of choice variability. (a) Theoretical and experimental distinction between

inferential imprecisions and sensory noise. Left panel: two independent perceptual decisions. The measured perceptual sensitivity to each of the

two stimuli s1 and s2 can be used to predict a perceptual sensitivity to the combination of s1 and s2, assuming noisy sensory processing followed

optimal statistical inference. Right panel: two sequential perceptual decisions (on the basis of two stimuli drawn from the same perceptual

category). The second decision is made on the basis of the two same stimuli — that is, results from mental inference. The measured perceptual

sensitivity to the combination of s1 and s2 can thus be compared to the predicted estimate assuming optimal statistical inference. A discrepancy

between predicted and observed perceptual sensitivities indicates the presence of inferential imprecisions during the combination of s1 and s2

which impacts the second decision. (b) Theoretical and experimental distinction between inferential imprecisions and probabilistic selection during

a typical probabilistic reversal learning paradigm. Left panel: predictions from a probabilistic selection source of choice variability. Successive

stimuli sk and sk+1 are drawn from the same generative category, with a reversal probability prev. A probabilistic action selection policy predicts

that the decision variable follows deterministically the predictions of optimal statistical inference given observed stimuli, and results in no repetition

bias across successive actions. Right panel: predictions from an inferential source of choice variability. Inferential imprecisions predict that the

variability on the decision variable after stimulus sk propagates to the decision variable after stimulus sk+1, and results in a repetition bias across

successive actions whose magnitude scales with the extent of inferential imprecisions.

www.sciencedirect.com Current Opinion in Behavioral Sciences 2016, 11:109–115
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Figure 3

modeling choice variability in terms of a bias-variance trade-off
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Modeling choice variability in terms of a bias-variance trade-off. The

observed choice variability resulting from fits of multiple computational

models to the same choice data should decrease when true

underlying suboptimal biases in inference are fitted to the data — in

contrast to the normative (statistically optimal) model which makes

correct assumptions about the generative structure of the task. The

bias-variance trade-off can be expressed in terms of the proportion of

observed choice variability fitted using the normative model explained

by a suboptimal model including all biases present in decision-makers.

A key challenge consists in devising an experimental strategy which

affords to estimate this bias-variance trade-off without having to

assume explicitly all possible biases which could be present in tested

decision-makers — which is unobservable in experimental conditions.

Current computational models and theories predict that the variance

term resulting from inferential imprecisions is negligible (a). However,

preliminary data from our lab [40] suggests that human choice

variability during perceptual categorization is constituted of a large

variance term (b) which amounts to about two thirds of the overall

choice variability measured in this task.
In terms of computational modeling, inferential impreci-

sions bear a specific statistical signature on choice behav-

ior which can be distinguished from variability in sensory

processing or action selection. Indeed, inferential impre-

cisions produce correlated drifts of the decision variable

across inference ‘steps’ (i.e., the combination of a current

belief with new incoming information) — which should

increase in spread with the number of presented samples

and with the complexity of the inference being performed

(e.g., the number of sensory dimensions relevant for the

decision, or the number of possible alternatives to choose

from). By contrast, the correlated drifts in the decision

variable predicted by sensory noise should depend

solely on the discriminability of the relevant sensory

features, and not on the complexity of inference. Sto-

chasticity in response selection, in turn, should be uncor-

related across successive decisions, and should not

depend on the complexity of inference. It is therefore

possible, given an appropriate protocol: (1) to design

theoretical models featuring distinct (or combinations

of) sources of choice suboptimality, and (2) to quantify

the respective and distinct contributions of variability in

sensory, inference and response selection to human and
Current Opinion in Behavioral Sciences 2016, 11:109–115 
animal performance — instead of assuming a particular

source of choice variability.

Distinguishing bias and variance terms of
inferential imprecisions
Dominant psychological theories have attributed decision

suboptimality to a mixture of cognitive biases and random

noise. As a prime example of this dual nature of decision

suboptimality, signal detection theory [23] has theorized

the detection of a noisy sensory signal by human obser-

vers along two orthogonal dimensions: (1) the sensory

detectability of the signal — corresponding to the quality

of perceptual processing, and (2) the decision criterion

used by the observer to report the signal as present —

corresponding to a cognitive bias which affords to label

observers as ‘conservative’ or ‘liberal’ as a function of their

decision criterion. Dynamic extensions of signal detec-

tion theory offered by sequential sampling models [20�]
hypothesize a similar distinction between the rate of the

drifting decision particle and the level of the criterion at

which a decision is taken — which controls the speed-

accuracy tradeoff of the decision maker.

Similarly, inferential imprecisions can be of two forms,

which can be formally distinguished in terms of the bias-

variance trade-off found in estimator theory. Inferential

imprecisions can be in part deterministic (i.e., the ‘bias’

term) and reflect fixed, systematic approximations or

heuristics in the algorithms used to perform inference.

In fact, recent theories postulate that most of the sub-

optimality of human decisions is caused by such deter-

ministic imprecisions [1], due in part to the intractability

of statistically optimal inference in environments featur-

ing complex correlation structures [2�]. By contrast, the

intrinsic stochasticity of inference imprecisions (i.e., the

‘variance’ term) reflects the effective precision at which

inference is performed.

Fractioning observed choice suboptimality between

these two forms of inferential imprecisions remains an

open challenge [3��], which strongly limits the ability of

computational modeling efforts to understand the origin

and structure of suboptimality in human and animal

decision-making. Indeed, the variability term fitted by

a computational model (e.g., an additive noise spread, or a

choice ‘temperature’) can reflect both core stochasticity in

the decision-maker, but also biases not captured by the

computational model. Therefore, quantifying the fraction

of choice suboptimality ultimately attributable to biased

computations provides a measure of the core stochasticity

of mental inference — and thus of the core unpredict-

ability of the decision-maker.

We propose that the effective precision of inference con-

stitutes an important source of choice suboptimality in the

canonical protocols used to study decision-making, from

perceptual categorization (where inference is modeled by
www.sciencedirect.com
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sequential evidence accumulation, see, e.g., [20�]) to re-

ward-guided learning (where inference is modeled by

sequential probabilistic learning of action-outcome asso-

ciations, see, e.g., [6]). Inference should be seen as a

biologically costly computation in the decision process,

which can only be performed by large populations of

neurons at a limited computational precision. By assigning

suboptimality to the peripheries (input or output) of the

decision process, and therefore by assuming implicitly that

inferential imprecisions are negligible, current computa-

tional models likely overestimate sensory noise in percep-

tual tasks where noisy sensory samples need to be

combined and accumulated over time [14], and likely

overestimate exploratory/foraging behavior in reward-

guided learning tasks where reward-maximizing actions

need to be taken in face of a volatile environment [6,17].

Consequences of inferential imprecisions for
decision theory
Hypothesizing the existence of sizable inferential impre-

cisions during decision-making has far-reaching conse-

quences regarding not only its function, but also known

and pervasive cognitive biases in decision-making. First,

in tasks featuring sequential decisions (such as reward-

guided learning tasks), repetition biases can be seen as an

overt manifestation of inferential imprecisions in the

updating of the decision variable which are correlated

across successive decisions. More specifically, postulating

inferential imprecisions leads to a quantitative (and em-

pirically testable) relationship between the spread of

inferential imprecisions (which can be estimated by fit-

ting it as a model parameter) and the magnitude of the

repetition bias (which can be measured empirically in

human choices). In practice, the repetition bias is

expected to grow positively with inferential imprecisions,

both within and across decision-makers.

A second important question concerns the potential func-

tion of inferential imprecisions: why have these ‘errors’ not

been canceled through natural selection if they constrain

substantially the accuracy and consistency of decision-

making? In stable environments where the information

is highly redundant, inferential errors are likely to be

outweighed by the amount of available information and

have thus a minimal impact on behavior. However, in

uncertain and/or volatile environments, inferential impre-

cisions are not necessarily detrimental to decision accura-

cy. Indeed, inferring the volatility (i.e., the rate of change)

of the environment using explicit, normative computations

is very costly [6] and leads typically only to small improve-

ments in obtained rewards. Inferential imprecisions can

offer an implicit tracking of environmental volatility at a

zero computational cost. Indeed, if the spread of inferential

imprecisions scales positively with the magnitude of the

performed inference step — as predicted by the pervasive

‘Weber law’ observed in behavior and neural activity, then

the impact of inferential imprecisions on choice behavior
www.sciencedirect.com 
should grow with volatility and thus trigger more random

exploration in more volatile environments (see also [24] for

an ‘extreme’ switch to random behavior in rodents in

unpredictable environments).

Postulating the existence of inferential imprecisions

raises important questions regarding the decision-maker’s

knowledge of these imprecisions. Indeed, the notion of

statistical optimality defined above does not consider

computational constraints (such as inferential impreci-

sions) in the decision process. Consequently, computa-

tions considered as ‘biased’ in terms of statistical

optimality, such as the pervasive ‘recency’ effect ob-

served across tasks and species [25], can be seen as the

consequence of an optimization of computations in a

biological system which features sizable inferential

imprecisions. Indeed, in a biological system poised with

inferential imprecisions, prior beliefs become progres-

sively less reliable over time due to propagating errors

and should be down-weighted in the face of new incom-

ing evidence — as a function of the perceived reliability

of the incoming evidence. In other words, postulating

inferential imprecisions requires to revisit the hypothe-

sized suboptimal nature of cognitive biases from the

perspective of a biological system with no variability in

inference.

Last, if the behavioral expression of variability in infer-

ence can be dissociated from variability in sensory pro-

cessing and response selection, then it should be

selectively modulated by certain cognitive variables, such

as executive attention and/or training. Describing infer-

ence as a biologically costly process implies that the

computational precision of inference should be selec-

tively and flexibly adapted to the cognitive demands of

the environment. In practice, humans should increase the

precision of inference when it is deemed necessary (in the

absence of contextual information, or under high mone-

tary incentives) and decrease it when they can rely on

computationally ‘cheaper’ sources of information about

their environment. This results in a predicted trade-off

between the amount of contextual information available

to the decision maker and the precision of inference being

performed to make a decision. Note that such trade-off is

suboptimal in information terms (where the precision of

inference should always be maximized), but optimal in

biological terms if inference is assumed to bear a sizable

biological cost for the organism. Executive attention

should be able to modulate selectively the computational

precision of inference (i.e., independently of sensory

discriminability or response selection variability) as a

function of the cognitive resources which can be allocated

to inference [26�,27]. By contrast, extensive training

should influence not the precision of inference per se,

but instead reduce systematic inferential imperfections

(biases) resulting from approximate or wrong assumptions

about the generative structure of the environment.
Current Opinion in Behavioral Sciences 2016, 11:109–115
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Behavioral versus neural measures of
inferential imprecisions
Quantifying inferential imprecisions can be performed at

several levels, from single-cell recordings from neurons in

brain regions representing the relevant sensory features to

be combined (such as motion-sensitive cells during the

presentation of a random-dot kinematogram, see, e.g.,

[28,29]) or the decision variable [30], to the behavioral

accuracy of the resulting decisions. Measuring neural

variability in particular brain regions have proved difficult

to relate to the psychometric accuracy of the decision

maker [31] — in part due to the presence of noise corre-

lations which complicate the interpretation of neural

measures of stimulus and choice sensitivity [32��,33].

Besides, neural correlates of inferential imprecisions

could reflect not only the precision of cortical representa-

tions decodable from multi-dimensional neural record-

ings from parietal and prefrontal regions [34,35], but also

neuromodulatory influences from basal ganglia circuits

(see, e.g., [36,37] in humans and [38,39] in songbirds). We

argue that a behavioral quantification of inferential impre-

cisions — through a paradigm which affords to simulate

optimal behavior — provides a particularly adequate

method to measure the effective, function-level precision

of underlying neural computations.

In other words, considering how much information is lost

due to suboptimal computations provides an estimation of

the effective precision of the decision process. Important-

ly, this effective precision sets an upper bound on the

accuracy and predictability of human and animal deci-

sions which, as we have outlined above, has important

consequences in terms of its function and the existence of

well-characterized cognitive biases (such as repetition

biases or recency effects). Quantifying and comparing

the computational precision of inference in humans and

animals in a wide range of decision problems thus con-

stitutes an important empirical and theoretical challenge

for cognitive research at large in future years.
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