Experimental and physical model of the melting zone in the interface of the explosive cladding bar

Bingfeng Wang, Fangyu Xie, Xiaozhou Luo, Jindian Zhou

State Key Laboratory for Powder Metallurgy, Central South University, Changsha, People’s Republic of China
School of Materials Science and Engineering, Central South University, Changsha, People’s Republic of China
Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha, People’s Republic of China

Abstract

Local melting zone encountered in sections of the cladding interface is a distinguished phenomenon of the explosive cladding technique. The thickness and morphology of the melting zone in the Ti/NiCr explosive cladding bar are investigated by means of optical microscopy. Results show that the distribution of the melting zone in the interface of the Ti/NiCr explosive cladding bar is uniform and axissymmetric, and boundaries of the melting zone are circular arcs, whose center points to the center of the NiCr bar. The bamboo-shaped cracks generated in the melting zone. The thickness of the melting zone decreases with reducing of the stand-off distance and the thickness of the explosive. A physical model of the melting zone in the interface of the explosive cladding bar is proposed.

Keywords:
Light microscopy
Composites
Non-ferrous alloys
Welding
Interfaces

1. Introduction

Explosive cladding is a solid state metal joining process which produces a weld joint by high velocity colliding, aided by controlled detonation with an explosive charge [1]. It is best known for its capability to join a wide variety of both similar and dissimilar combinations of metals that cannot be joined by fusion welding or any other bonding methods [2]. Up to now, over 260 various similar and dissimilar metal and alloy combinations can be welded by using explosive cladding technique [3].

Local melting zones, which seriously affect the properties of the explosive cladding composite, are often encountered in sections of the cladding interface. The melting zones showed unique and interesting microstructure and properties become the hot topic of the explosive cladding technique in recent years. The bonding interface of the explosive cladding presents three morphologies: wavy, straight and melting zone [2]. Many scholars have involved themselves into the study of these morphologies. Some researches proposed that the bonding interface changed from a straight to a wavy structure with increasing the explosive loading and stand-off distance.

* Corresponding author.
E-mail: wangbingfeng@csu.edu.cn (B. Wang).
http://dx.doi.org/10.1016/j.jmrt.2016.04.001
2238-7854/© 2016 Brazilian Metallurgical, Materials and Mining Association. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Yang and Wang [10] described the structural changes in the melting zones as the vortex structure during the explosive cladding of titanium to mild steel. The vortex zones composed of amorphous and nanograins are easy to fracture during deformation. Honarpisheh and Asemabadi [11] investigated the formation of brittle intermetallic compounds in the melting zones. The intermetallic compounds exhaust the ductility and increase the risk of brittle fracture of the deformed metal [12–16]. The quality of the bonds and the melting zones strongly depends on careful control of the cladding parameters including the explosive load, the detonation velocity, the stand-off distance, the load ratio and/or collision angle. The selection of parameters is often based upon the mechanical properties, density and shear wave velocity of each component [1,17–19]. We often use the weldability windows to determine the possible values of the cladding parameters for the explosive cladding [2,4]. However, the relation between the thickness of the melting zone and the processing parameters of the explosive cladding is yet not clear.

The aims of this paper are (1) to investigate the thickness and morphology of the melting zones in the interface of the Ti/NiCr explosive cladding bar, and (2) to propose a physical model of the thickness of the melting zone, and (3) to discuss the effects of the cladding parameters on the thickness of the melting zone.

2. Method

The chemical composition and properties of the pure Ti and NiCr alloy used in the present work are given in Table 1. Commercial purity titanium (CP-Ti) tube was used as the clad material, and NiCr alloy bar was used as the base material. The surfaces of the base and clad materials were used as received. The emulsified explosive with the detonation velocity 3500–4000 m/s and the density 0.8–1.0 g/cm³ was chosen as explosive material. The cylindrical arrangement was used for experimental set-up for explosive cladding as described elsewhere [15,16]. The explosive was uniformly placed around the tube. Selected parameters for explosive cladding bars were listed in Table 2.

Samples for optical microscope observations were cut in the cross-section of the cladding bar and normal to the plane of the cladding interface. The etchant for Ti side is 4 ml HNO₃ + 6 ml HCl + 5 ml HF + 100 ml H₂O, and the NiCr alloy side is not etched. Investigations of optical microscopy were performed with POLYVAR-MET. And then, the thickness of the melting zone was measured on the cross-section interface of the Ti/NiCr explosive cladding bar. We specify the radian interval (about 7 degrees) for measuring the thickness of the melting zone in the interface of the Ti/NiCr explosive cladding bar.

3. Results and discussion

3.1. Thickness and morphology of the melting zones

The Ti/NiCr explosive cladding bars were fabricated as shown in Fig. 1. Due to the inhomogeneous distribution of the explosive, the surfaces of the samples were slightly burned.

Fig. 1 – (a) Picture of the Ti/NiCr explosive cladding bars, (b) the corresponding cross-section images.

Fig. 2 shows the morphology of the interface of the explosive cladding bar. It can be seen that boundaries of the melting zones are nearly circular arcs, whose center points to the center of the NiCr bar.

Cross-sections optical microscope of the cladding bar is given in Fig. 3. Local melting zones are encountered in sections of the cladding interface. Lots of Bamboo-shaped cracks can also be found in the melting zones. The amorphous and the intermetallic compounds exhaust the ductility and increase the risk of brittle fracture of deformed metal. The bamboo-shaped cracks are formed in the melting zone [15,16].

Fig. 4 shows the thickness and distributions of the melting zones in the cross-sections of the Ti/NiCr explosive cladding.
Table 1 – The chemical composition of the materials (wt%).

<table>
<thead>
<tr>
<th>Elements</th>
<th>C</th>
<th>Si</th>
<th>N</th>
<th>S</th>
<th>Ti</th>
<th>Cr</th>
<th>Fe</th>
<th>Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>NiCr</td>
<td>0.08</td>
<td>1.38</td>
<td>–</td>
<td>0.12</td>
<td>–</td>
<td>21.27</td>
<td>0.37</td>
<td>76.78</td>
</tr>
<tr>
<td>CP-Ti</td>
<td>0.08</td>
<td>0.02</td>
<td>0.03</td>
<td>–</td>
<td>99.57</td>
<td>–</td>
<td>0.30</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 2 – The cladding parameters and the corresponding thickness of the melting zones.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Load ratio (R)</th>
<th>Base bar diameter (R/mm)</th>
<th>Stand-off distance (d/mm)</th>
<th>Explosive thickness (i_p/mm)</th>
<th>Thickness of the melting zone (i_m/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>2.48</td>
<td>7</td>
<td>5</td>
<td>20</td>
<td>0.2773</td>
</tr>
<tr>
<td>No. 2</td>
<td>4.22</td>
<td>13</td>
<td>2</td>
<td>34</td>
<td>0.2360</td>
</tr>
<tr>
<td>No. 3</td>
<td>2.48</td>
<td>13</td>
<td>2</td>
<td>20</td>
<td>0.1377</td>
</tr>
<tr>
<td>No. 4</td>
<td>1.99</td>
<td>13</td>
<td>2</td>
<td>16</td>
<td>0.1728</td>
</tr>
<tr>
<td>No. 5</td>
<td>1.24</td>
<td>13</td>
<td>2</td>
<td>10</td>
<td>0.1237</td>
</tr>
<tr>
<td>No. 6</td>
<td>1.24</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>0.0696</td>
</tr>
<tr>
<td>No. 7</td>
<td>1.24</td>
<td>7</td>
<td>0.5</td>
<td>10</td>
<td>0.0356</td>
</tr>
</tbody>
</table>

Fig. 2 – Interfacial morphology of the Ti/NiCr explosive cladding bar (sample No. 7).

bar (sample No. 3). The average thickness of the melting zones is about 0.1377 mm. Table 2 illustrates the average thickness of the melting zones vs. the cladding parameters in all samples. It can be seen that the average thickness of melting zones decreases with reducing of the stand-off distance or the thickness of the explosive.

3.2. Physical model of the melting zone

We assume that the material is homogeneous and incompressible, and the effect of air in the flyer tube movement and the influence of lateral rarefaction wave can be ignored, and circumferential stress in the flyer tube movement are negligible, and the stress on the materials are homogeneously distributed.

Fig. 3 – The typical morphology of the melting zone.

After flyer pipe collided to the base bar, the kinetic energy of flyer pipe (E) converts into various forms of energy, including bonding energy (E_1), plastic deformation energy (E_2), vibration energy (E_3), crater energy (E_4), sound energy (E_5) and the kinetic energy of sand or gravel (E_6). The kinetic energy of flyer pipe (E) and the energy conversion can be described as follows.

\[E = \frac{1}{2} M V_p^2 \] \hspace{1cm} (1)
\[E = E_1 + E_2 + E_3 + E_4 + E_5 + E_6 \] \hspace{1cm} (2)

where \(V_p \) is the impact velocity, \(M \) is the weight of the unit area of the flyer metal. The bonding energy (E_1) induces the melting of materials in the interface. That is, part of the kinetic energy converted into melting heat energy leading to the formation of the melting zone. Thus,

\[\frac{1}{2} M V_p^2 k_b = C M \Delta T \] \hspace{1cm} (3)
\[M_0 = \rho s_m \] \hspace{1cm} (4)
where \(k_0 \) is a conversion coefficient between kinetic energy and heat energy; \(C, M_0, \Delta T, \delta_m \) and \(\rho \) are specific heat of the melting zone, the weight per area, temperature rise, the thickness and the density of the melting zone, respectively.

For explosive cladding technique, the cladding parameters can be summarized as follows: the impact velocity \((V_p) \), the collision point velocity \((V_w) \), the dynamic angle of collision \((\beta) \), the explosive detonation velocity \((V_d) \), the thickness of explosive \((\delta) \), and stand-off distance \((S) \). As the detonation is initiated, the flyer metal (plate or pipe) is drastically accelerated by the pressure of detonation and flies with high velocity toward the base metal (plate or pipe), as shown in Fig. 5. The stand-off distance provides the distance across which the flyer metal can be accelerated and reached the necessary impact velocity for the formation of metallurgical bonding between flyer metal and the base metal [20]. Thus, the bonding process can be described as follows.

\[
P(t)S = \frac{1}{2}M(V_p^2 - V_0^2) \tag{5}
\]

The stand-off distance \((S) \) can be obtained by the following equation.

\[
S = \frac{M(V_p^2 - V_0^2)}{2P(t)} \tag{6}
\]

where \(P(t) \) and \(V_0 \) are the pressure on the flyer metal and the initial velocity of the flyer metal, respectively. The flyer metal reaches a velocity at the moment of the detonation and flies toward the base metal at this velocity [21,22]. The initial velocity of the flyer metal can be obtained as follows.

\[
V_0 = 2V_d \sin \left(\frac{\beta}{2} \right) \tag{7}
\]

where \(V_d \) is explosive detonation velocity. The appropriate value of the dynamic angle of collision \((\beta) \) is often as \(5^\circ < \beta < 25^\circ \) [8]. The jet between the cladding materials cannot generate until \(\beta \) is above \(\beta_c \) [7]. The following equation gives the critical value of the dynamic angle of collision \((\beta_c) \).

\[
\beta_c = k_1 \sqrt{\frac{HV}{\rho V_d^2}} \tag{8}
\]

where \(\beta_c \) is in radians, \(k_1 \) is a constant, and \(HV \) is the Vickers hardness. \(k_1 \) is determined by the conditions of the cladding materials’ surface. The values of \(k_1 \) for high-quality pre-cleaning of surfaces and imperfectly cleaned surfaces are 0.6 and 1.2, respectively. Generally, the value of \(k_1 \) is 0.85 [22].

The pressure on the flyer metal is given by [22]:

\[
P(t) = \frac{\rho_0 V_d^2}{1+\gamma} \left\{ \left[\frac{\gamma+1}{\gamma} \right] \left[\frac{\sqrt{V_d^2+U^2} - V_d}{t} \right] \right\} \tag{9}
\]

where \(b \) and \(c \) are constants, \(\rho_0, R, \gamma, \delta_f \) and \(t \) are the density of explosive, load ratio, polytropic exponent, the thickness of the explosive, and the time, respectively. Generally, \(\gamma = 3 \) [22].

At the beginning of the explosive detonation, the pressure on the flyer metal reaches to the maximum value \(P_{max} \), as follows.

\[
P_{max} = \frac{\rho_0 V_d^2}{(1+\gamma)} \tag{10}
\]

The pressure on the flyer metal reduces gradually during the explosive cladding. Thus, the average pressure \((P_a) \) on the flyer metal can be obtained as follows.

\[
P_a = \frac{P_{max}}{2} = \frac{\rho_0 V_d^2}{2(1+\gamma)} \tag{11}
\]

Substituting Eqs. (5), (7) and (11) into Eqs. (3) and (4), the thickness of melting zone \((\delta_m) \) is obtained as follows.

\[
\delta_m = \frac{k_0 (\rho_0 V_d^2 S + 16\rho_1 \delta_s V_d^2 \sin^2(\beta/2))}{8C\rho\Delta T} \tag{12}
\]

where \(\rho_1 \delta_s \) is given as follows [23].

\[
\rho_1 \delta_s = 0.1 \left(\frac{\rho_0 \delta_s}{k_2} \right)^2 \tag{13}
\]

where \(k_2 \) is a constant, and in the general case, \(k_2 = 1.5 \) [23]. And then,

\[
\delta_m = k_0 \left(\frac{K_{E1} S + 32 K_{E2} \delta_s^2}{45 K_M} \right) \tag{14}
\]

where \(K_{E1} \) and \(K_{E2} \) are constants of the explosive, \(K_M \) is constant of materials.

\[
K_{E1} = \rho_0 V_d^2 \tag{15}
\]

\[
K_{E2} = \left(\frac{\sin \beta}{2} \right)^2 \rho_0^2 V_d^2 \tag{16}
\]

\[
K_M = 8C\rho\Delta T \tag{17}
\]
Table 3 – Comparison of measured and calculated thickness of melting zone.

<table>
<thead>
<tr>
<th>Samples</th>
<th>No. 1</th>
<th>No. 2</th>
<th>No. 3</th>
<th>No. 4</th>
<th>No. 5</th>
<th>No. 6</th>
<th>No. 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured thickness (mm)</td>
<td>0.2773</td>
<td>0.2360</td>
<td>0.1377</td>
<td>0.1728</td>
<td>0.1237</td>
<td>0.0696</td>
<td>0.0356</td>
</tr>
<tr>
<td>Calculated thickness (mm)</td>
<td>0.2856</td>
<td>0.2826</td>
<td>0.1548</td>
<td>0.1304</td>
<td>0.1041</td>
<td>0.0605</td>
<td>0.0387</td>
</tr>
<tr>
<td>Relative error</td>
<td>2.9%</td>
<td>19.7%</td>
<td>12.5%</td>
<td>24.5%</td>
<td>13.4%</td>
<td>13.1%</td>
<td>8.7%</td>
</tr>
</tbody>
</table>

Table 4 – List of symbols.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_p</td>
<td>Impact velocity</td>
</tr>
<tr>
<td>M</td>
<td>Weight of the unit area of the flyer metal</td>
</tr>
<tr>
<td>k_0</td>
<td>Conversion coefficient</td>
</tr>
<tr>
<td>C</td>
<td>Specific heat of the melting zone</td>
</tr>
<tr>
<td>M_0</td>
<td>Weight of the unit area of the melting zone</td>
</tr>
<tr>
<td>δT</td>
<td>Temperature rise</td>
</tr>
<tr>
<td>V_w</td>
<td>Collision point velocity</td>
</tr>
<tr>
<td>β</td>
<td>Dynamic angle of collision</td>
</tr>
<tr>
<td>V_d</td>
<td>Explosive detonation velocity</td>
</tr>
<tr>
<td>S</td>
<td>Stand-off distance</td>
</tr>
<tr>
<td>P(t)</td>
<td>Pressure on the flyer metal</td>
</tr>
<tr>
<td>V_0</td>
<td>The initial velocity of the flyer metal</td>
</tr>
<tr>
<td>ρ_0</td>
<td>Density of explosive</td>
</tr>
<tr>
<td>R</td>
<td>Load ratio</td>
</tr>
<tr>
<td>γ</td>
<td>Polytropic exponent</td>
</tr>
<tr>
<td>δ_f</td>
<td>Thickness of explosive</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>δ_k</td>
<td>Thickness of flyer metal</td>
</tr>
<tr>
<td>δ_c</td>
<td>Critical value of the dynamic angle of collision</td>
</tr>
<tr>
<td>k_1</td>
<td>Constant</td>
</tr>
<tr>
<td>HV</td>
<td>Vickers hardness</td>
</tr>
<tr>
<td>P_0</td>
<td>Average pressure</td>
</tr>
<tr>
<td>δ_m</td>
<td>Thickness of the melting zone</td>
</tr>
<tr>
<td>ρ</td>
<td>Density of the melting zone</td>
</tr>
<tr>
<td>k_2</td>
<td>Constant</td>
</tr>
<tr>
<td>M_1</td>
<td>Volume fraction of the titanium</td>
</tr>
<tr>
<td>M_2</td>
<td>Volume fraction of the nickel</td>
</tr>
<tr>
<td>M_3</td>
<td>Volume fraction of the chromium</td>
</tr>
<tr>
<td>C_1</td>
<td>Specific heat of the titanium</td>
</tr>
<tr>
<td>C_2</td>
<td>Specific heat of the nickel</td>
</tr>
<tr>
<td>C_3</td>
<td>Specific heat of the chromium</td>
</tr>
<tr>
<td>ρ_1</td>
<td>Density of the flyer metal (pure titanium)</td>
</tr>
<tr>
<td>ρ_2</td>
<td>Density of the nickel</td>
</tr>
<tr>
<td>ρ_3</td>
<td>Density of the chromium</td>
</tr>
</tbody>
</table>

3.3. Effects of the cladding parameters

The melting zone formed in the cross-section of the Ti/NiCr explosive cladding bar is composed of 32 at% titanium (M_1), 51 at% nickel (M_2) and 17 at% chromium (M_3) [15]. The specific heat (C) and the density (ρ) of the melting zone can be estimated from the specific heat and the density of the pure metals weighted by the volume fraction of each element, as follows.

\[
C = \frac{C_1M_1 + C_2M_2 + C_3M_3}{M_1 + M_2 + M_3} \quad (18)
\]

\[
ρ = 0.25ρ_1 + 0.55ρ_2 + 0.2ρ_3 \quad (19)
\]

where C_1, C_2 and C_3 are specific heat capacity of pure titanium, nickel and chromium, respectively; ρ_1, ρ_2 and ρ_3 are the density of pure titanium, nickel and chromium, respectively. C_1 = 527.4 J/kg°C, C_2 = 460 J/kg°C, C_3 = 450 J/kg°C, ρ_1 = 4510 kg/m³, ρ_2 = 8902 kg/m³, and ρ_3 = 7190 kg/m³. Besides, δT = 3507 K [16] and β = 8°. Substituting the above parameters into Eqs. (14)-(19), the thickness of the melting zone can be obtained as follows.

\[
δ_m = 0.2114k_0S + 0.8182k_0δ^2_f \quad (20)
\]

The cladding parameters and the corresponding average thickness of the melting zones are given in Table 2. We employed the six specimens (Nos. 1–6) for fitting the parameters of Eq. (14). The value of k_0 = 0.206. Thus,

\[
δ_m = 0.0436S + 0.169δ^2_f \quad (21)
\]
For sample No. 7, the measured thickness of the melting zone is 35.6 microns, and the predicted thickness calculated by Eq. (21) is about 38.7 microns. The relative error $\Delta = (|t_{m,exp} - t_{m,pred}| / t_{m,exp} \times 100\%)$ is 8.7%. We compared the measured thickness with the calculated thickness of the melting zones, as illustrated in Table 3. Therefore, the physical model of the melting zone can be used to predict the thickness of the melting zone in the interface of Ti/NiCr explosive cladding bar (Table 4).

The values of the thickness of the melting zone for Ti/NiCr explosive cladding bar can be obtained by integrating the parameters into Eq. (21) as shown in Fig. 6. In Fig. 6a, the stand-off distance is varied from 0.5 mm to 2 mm. In Fig. 6b, the thickness of explosive (δ_2) is varied from 10 mm to 20 mm. The result indicates that values of thickness of the melting zones (t_{m}) increase with increasing of the stand-off distance (S) and the thickness of explosive (δ_f), as shown in Fig. 6a and b, respectively.

4. Conclusions

The distribution of the local melting zone in the interface of the Ti/NiCr explosive cladding bar is uniform and axisymmetric, and boundaries of the melting zone are circular arcs, whose center points to the center of the NiCr bar. The bamboo-shaped cracks generate in the melting zone. The thickness of the melting zone decreases regularly with reducing of the stand-off distance and the thickness of explosive. The thickness of the melting zone in the interface of the explosive cladding bar can be described as a function of the stand-off distance and the thickness of explosive.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgments

This work was financial supported by Hunan Provincial Natural Science Foundation of China (No. 12JJ2028), and by a scholarship from the China Scholarship Council (No. 201308430093), and by the Freedom Explore Program of Central South University (No. 2015ztzt175), and by State Key Laboratory of Powder Metallurgy, Central South University.

REFERENCES