A Note on Words in Braid Monoids

Jean Michel

Département de Mathématiques, Université Paris 7, Case 7012, 2 Place Jussieu, 75251 Paris Cedex 05, France

Communicated by Michel Broué

Received May 1998

The purpose of this note is to give a self-contained (apart from simple facts about Coxeter groups) and we hope a bit shorter and more understandable account of some results of [C1, C2] on normal forms of braids which are themselves based on the papers [D1, T]. In particular a motivation was to give a proof of Proposition 5.1 that we use in B-M. Some proofs and results from Section 2 onwards seem to be new. I thank several people for improvements from earlier versions of the manuscript: M. Geck for pointing out some errors, F. Digne for pointing out that some results don’t need the braid group to be of finite type, and J.-Y. Hée for suggesting (and providing) further improvements in that direction. © 1999 Academic Press

Let W be a Coxeter group with presentation

$$\left\langle s \in S | s^2 = 1 (\text{quadratic relations}), \prod_{s,t} m_{s,t} \text{ factors} \right\rangle,$$

where S is a finite set and $M = (m_{s,t})_{s,t \in S}$ is a symmetric matrix of positive integers with $m_{s,s} = 1$ and $m_{s,t} > 1$ if $s \neq t$; it is allowed that $m_{s,t} = \infty$, in which case we impose no braid relation linking s and t. The Artin–Tits braid group B associated to W is the group defined by the presentation

$$\left\langle s \in S | \prod_{s,t} m_{s,t} \text{ factors} \right\rangle,$$

where s, $t \in S$, $s \neq t$.

We say that B is of finite type if M is chosen so that W is a finite group. We denote by B^+ the monoid defined by presentation (\ast); if B is of finite type, we shall see in Corollary 3.2 that B^+ can be identified to the submonoid of B generated by S.

0021-8693/99 30.00

Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.
1. THE SECTION \(B_{\text{red}}^+\)

The relations defining \(B^+\) being homogeneous (i.e., both sides have the same length), for \(b \in B^+\) there is a natural length function \(l(b)\) defined as the length of any expression of \(b\) as a product of the elements of \(S\). There is also a natural length function on \(W\), which we denote again by \(l\), defined by the length of a minimal expression as a product of elements of \(S\). It is known (cf., e.g., B. Sect. 1 Ex. 13(b)) that two minimal expressions for an element of \(W\) are equivalent by using only the braid relations. This implies that the natural quotient map \(p: B^+ \to W\) has a canonical section as a map of sets whose image \(B^+_{\text{red}}\) consists of those elements of \(B^+\) which have the same length as their image in \(W\). It also implies:

1.1 Proposition. \(B^+\) has the following presentation:

(i) As a set of generators we take \(B^+_{\text{red}}\) (considered as an abstract set of generators endowed with a bijection \(p: B^+_{\text{red}} \to W\)).

(ii) For relations we take \(ab = c\) whenever \(a, b, c \in B^+_{\text{red}}\) are such that the relation \(p(a)p(b) = p(c)\) holds in \(W\), with \(l(p(a)) + l(p(b)) = l(p(c))\).

More convenient for us will be the following equivalent construction of \(B^+\):

1.2 Proposition. \(B^+\) can be identified with the set of sequences of elements of \(B^+_{\text{red}}\), quotiented by the equivalence relation which is the transitive closure of the following: the sequences \((g_1, \ldots, g_{i-1}, g_i, g_{i+1}, \ldots, g_n)\) and \((g_1, \ldots, g_{j-1}, a, b, g_{j+1}, \ldots, g_n)\) are equivalent whenever \(ab = g\) is a relation in Proposition 1.1(ii).

The identification above is by the product \((g_1, \ldots, g_n) \mapsto g_1 \cdots g_n \in B^+\).
We will call \((g_2, \ldots, g_n)\) a decomposition of length \(n\) of the braid element \(g_1 \cdots g_n\). For \(g \in B^+\), we define \(\nu(g)\) as being the minimal \(n\) such that \(g\) has a decomposition of length \(n\) (thus \(\nu(g) = 0\) if and only if \(g = 1\) and \(\nu(g) = 1\) if and only if \(g \in B^+_{\text{red}}\)).

In what follows, properties of \(B^+\) will be proved by first establishing them on \(B^+_{\text{red}}\), where they will in a further step be reduced to properties of \(W\) via the bijection \(p: B^+_{\text{red}} \to W\).

We denote by \(<\) divisibility on the left in \(B^+\) (that is, for \(a, b \in B^+\), we have \(a < b\) if and only if there exists \(c \in B^+\) such that \(b = ac\)), and we denote similarly by \(>\) divisibility on the right. From the inequality \(l(a) + l(b) \geq l(ab)\) which holds in \(W\), it follows that if \(a < b, b \in B^+_{\text{red}}\) then also \(a \in B^+_{\text{red}}\). We also note

1.3 Remark. Elements of \(B^+_{\text{red}}\) are cancellable, that is, if \(a \in B^+, b, c \in B^+_{\text{red}},\) and \(ab = ac \in B^+_{\text{red}}\) or \(ba = ca \in B^+_{\text{red}}\) then \(b = c\).
Proof. This is obvious, since then \(b \) and \(c \) have same image in \(W \).

For \(s, t \in S \) such that \(m_{s,t} < \infty \) we denote by \(\Delta_{\{s,t\}} \) the element of \(B^+ \) which appears on both sides of the braid relation involving \(s \) and \(t \).

The following lemma is adapted from [D1, 1.14].

1.4 Lemma. Let \(M \) be a finite set of elements of \(B^+ \) such that:

(i) If \(b \in M, a \in B^+, a < b \) then \(a \in M \).

(ii) If \(a \in B^+, s, t \in S, as, at \in M \) then \(m_{s,t} < \infty \) and \(a \Delta_{\{s,t\}} \in M \).

Then there exists \(g \in M \) such that \(M = \{ a \in B^+ | a < g \} \).

Proof. Let \(g \) be an element of maximal length in \(M \). We will prove by contradiction that every element of \(M \) divides \(g \). If it were not the case, we can find some \(a < g, s \in S \) such that \(as \in M, as \not< g \) (take an element \(x \in M, x \not< g \), and take for \(a \) any maximal (for \(< \)) divisor of \(x \) which divides \(g \)). We consider such an \(a \) of maximal length and derive a contradiction by constructing a longer one. Since \(a < g \) and \(l(a) < l(g) \) (since \(l(a) < l(as) \leq l(g) \) by maximality of \(l(g) \)), there exists \(t \in S \) such that \(at < g \) (and \(t \neq s \)). Thus \(at \in M \) and by (ii) we have \(a \Delta_{\{s,t\}} \in M \). Since \(as < a \Delta_{\{s,t\}} \), we cannot have \(a \Delta_{\{s,t\}} < g \). So there exists some \(v < \Delta_{\{s,t\}} \) such that \(at < av, av < g \), and there exists \(r \in S \) equal to either \(s \) or \(t \) such that \(avr < a \Delta_{\{s,t\}}, avr \not< g \), whence the contradiction.

For \(a \in B^+ \) we put \(\mathcal{L}(a) = \{ s \in S | s < a \} \) and \(\mathcal{R}(a) = \{ s \in S | a > s \} \). For \(w \in W \) we also define \(\mathcal{L}(w) = \{ s \in S | l(sw) < l(w) \} \) and \(\mathcal{R}(w) = \{ s \in S | l(ws) < l(w) \} \) (the definitions agree on \(B^+_{\text{red}} \)).

1.5 Proposition. Let \(a \in B^+_{\text{red}} \), and \(s, t \in \mathcal{L}(a) \). Then \(\Delta_{\{s,t\}} < a \).

Proof. We only have to check this property in \(W \) where it is well known: write \(p(a) = uv' \) where \(v \) is an element of the parabolic subgroup \(W_{\{s,t\}} \) of \(W \) generated by \(s \) and \(t \) and \(v' \) is \(\{ s, t \} \)-reduced—i.e., \(\mathcal{L}(v') \cap \{ s, t \} = \emptyset \). Then \(v \) is an element of \(W_{\{s,t\}} \) such that \(\mathcal{L}(v) = \{ s, t \} \); there exists such an element if and only if the group \(W_{\{s,t\}} \) is finite (equivalently \(m_{s,t} < \infty \)) and then the only element is \(p(\Delta_{\{s,t\}}) \), the longest element of \(W_{\{s,t\}} \).

1.6 Proposition. Let \(a, b \in B^+_{\text{red}} \). There exists a unique maximal (for the partial order \(< \)) \(c \in B^+_{\text{red}} \) such that \(c < a \) and \(c < b \) (we will call \(c \) the g.c.d. of \(a \) and \(b \) and denote \(c = \gcd(a, b) \)).

Proof. It is enough to show that the set \(c \subseteq B^+ \), \(c < a \), and \(c < b \) satisfies the hypotheses of Lemma 1.4: (i) is obvious; to see (ii), since \(B^+_{\text{red}} \) has the left cancellation property (1.3), it is enough to show that if \(a \in B^+_{\text{red}}, s, t \in S, s < a, t < a \) then \(\Delta_{\{s,t\}} < a \). But this is just the statement of Proposition 1.5.
Note that the above construction of \(a \wedge b \) shows that the operation \(\wedge \) is associative.

1.7 Proposition / Definition. Let \(a, b \in B_{\text{red}}^+ \). There exists a unique maximal \(c < b \) such that \(ac \in B_{\text{red}}^+ \). In this situation, we define two elements of \(B_{\text{red}}^+ \): we put \(\alpha_2(a, b) = ac \) and \(\omega_2(a, b) = \) the unique \(d \) such that \(b = cd \) (thus we have \(ab = \alpha_2(a, b) \omega_2(a, b) \)).

Proof. In order to check that the set of \(c \) such that \(c < b \) and \(ac \in B_{\text{red}}^+ \) satisfies the assumptions of Lemma 1.4, the only new thing we have to check is that if \(a \in B^+, s, t \in S \), as, at \(\in B_{\text{red}}^+ \), and \(m_{s,t} < \infty \) then \(a \Delta_{\{s,t\}} \in B_{\text{red}}^+ \) (we know that \(m_{s,t} < \infty \) since we are in a case where \(s \) and \(t \) divide some tail of \(c \)). Again this is a verification in \(W \): \(a \) must be \((s,t) \)-reduced, thus it adds to \(\Delta_{\{s,t\}} \).

Note also that it follows from Remark 1.3 that \(\omega_2(a, b) \) is unique.

Before extending them to the whole of \(B^+ \), we check some properties of \(\alpha_2 \) and \(\omega_2 \).

1.8 Proposition. Let \(a, b, c, ab \in B_{\text{red}}^+ \). Then \(\alpha_2(ab, c) = \alpha_2(a, \alpha_2(b, c)) \).

Proof. By definition \(\alpha_2(b, c) \) is of the form \(by \) with \(y < c \), so \(\alpha_2(a, \alpha_2(b, c)) \) is of the form \(aby' \in B_{\text{red}}^+ \) with \(y' < y < c \), so \(aby' < \alpha_2(ab, c) \). Let \(\alpha_2(ab, c) = abz \). We thus have \(y' < z < c \). But this implies \(y' = z \) since \(bz \in B_{\text{red}}^+ \), \(bz < bc \) so \(bz < by = \alpha_2(b, c) \) and since \(abz \in B_{\text{red}}^+ \), \(abz \) cannot be longer than \(aby' = \alpha_2(a, by) \).

1.9 Proposition. Let \(a, b, c, ab \in B_{\text{red}}^+ \). Then \(\omega_2(ab, c) = \omega_2(a, \alpha_2(b, c)) \omega_2(b, c) \).

Proof. We first notice that, using Propositions 1.8 and 1.7, both sides have the same value when multiplied on the left by \(\alpha_2(ab, c) \). This implies that the equality holds when projected to \(W \), and by Remark 1.3 it will hold in \(B^+ \) if we show that the right-hand side is in \(B_{\text{red}}^+ \). But this results from the fact that the equality holds in \(W \) and that (since it holds when multiplied by \(\alpha_2(ab, c) \)) we have \(l(\omega_2(ab, c)) = l(\omega_2(a, \alpha_2(b, c))) + l(\omega_2(b, c)) \).

2. Cancellability in \(B^+ \)

We first define a function \(\alpha \) on \(B^+ \), which extends \(\alpha_2 \), considered as a function defined on those \(g \in B^+ \) such that \(\nu(g) = 2 \). The following proof of the existence of \(\alpha \) is inspired by [T].
2.1 Proposition. There is a unique function \(\alpha: B^+ \to B_{\text{red}}^+ \) which induces the identity on \(B_{\text{red}}^+ \), satisfies \(\alpha(ab) = \alpha_2(a, b) \) for \(a, b \in B_{\text{red}}^+ \) and such that \(\alpha(g) = \alpha(g\alpha(h)) \) for all \(g, h \in B^+ \). Further, \(\alpha(g) \) is the unique maximal (for \(\prec \)) element in the set \(\{ c \in B_{\text{red}}^+ | c < g \} \).

Proof. We define recursively (by induction on \(n \)) a function \(\alpha \) on decompositions of length \(n \) of elements of \(B^+ \), considered just as sequences. We first define it on decompositions of length \(\leq 1 \) by \(\alpha(()) = 1 \), \(\alpha((a)) = a \), and for longer decompositions we set \(\alpha((g_1, \ldots, g_n)) = \alpha_2(g_1, \alpha((g_2, \ldots, g_n))) \). We claim that \(\alpha \) induces a well-defined function on \(B^+ \). Indeed, in view of the equivalence relation of Proposition 1.2 which we put on decompositions and the inductive definition of \(\alpha \), it is enough to check \(\alpha_2(ab, c) = \alpha_2(a, \alpha_2(b, c)) \), which is the statement of Proposition 1.8.

It is clear that the \(\alpha(g) \) we have thus defined for \(g \in B^+ \) is maximal among divisors in \(B_{\text{red}}^+ \) of \(g \): if \(a \prec g \), \(a \in B_{\text{red}}^+ \) then there exists a decomposition \(g = ag_2 \cdots g_n \) with \(g_j \in B_{\text{red}}^+ \), and \(\alpha(g) = \alpha((a, g_2, \ldots, g_n)) \) is by construction a multiple of \(a \).

Also, if \(g, h \in B^+ \) and \(\nu(g) = 1 \) there is a decomposition of \(gh \) which starts with \(g \) so by construction we have \(\alpha(gh) = \alpha(g\alpha(h)) \). We show by induction on \(\nu(g) \) that this equality remains true for all \(g \): if \(g = g'g'' \) with \(g' \in B_{\text{red}}^+ \), \(\nu(g'') = \nu(g) - 1 \) then \(\alpha(g'g''h) = \alpha(g'\alpha(g''h)) = \alpha(g'\alpha(g'\alpha(h))) \) where the first equality holds by the case \(\nu = 1 \) and the second case by induction, and on the other hand \(\alpha(g'g''h) = \alpha(g'\alpha(g''\alpha(h))) \) by using the case \(\nu = 1 \).

The unicity of \(\alpha \) is clear by construction.

We would like now to define \(\omega(g) \) as the unique \(h \) such that \(g = \alpha(g)h \), but until we know that \(B^+ \) has the left cancellation property we will not know the unicity of \(h \), so we proceed differently.

2.2 Proposition. There is a unique function \(\omega: B^+ \to B^+ \) which maps \(B_{\text{red}}^+ \) to 1, such that \(\omega(ab) = \omega_2(a, b) \) for \(a, b \in B_{\text{red}}^+ \) and such that \(\omega(g) = \omega(g\alpha(h))\omega(h) \) for all \(g, h \in B^+ \).

Proof. As for \(\alpha \), we define \(\omega \) recursively on decompositions by setting \(\omega((g_1, \ldots, g_n)) = \omega_2(g_1, \alpha(g_2 \cdots g_n))\omega(g_2, \ldots, g_n) \). This time, to check that this definition is compatible with the equivalence relation we put on decompositions, we must check that \(\omega_2(ab, c) = \omega_2(a, \alpha(bc))\omega_2(b, c) \), which is the statement of Proposition 1.9.

Again we have by definition \(\omega(g) = \omega(g\alpha(h))\omega(h) \) when \(\nu(g) = 1 \) and again by an easy induction on \(\nu(g) \) this extends to all elements \(g \).
We can now prove:

2.3. Proposition. Let $g \in B^+$. Then there is a unique y such that $g = \alpha(g)y$, and this y equals $\omega(g)$.

Proof. We show by induction on the length of g that there is a unique y such that $g = \alpha(g)y$, and this y equals $\omega(g)$.

2.4. Proposition. The monoid B^+ has the left and right cancellation property.

Proof. By symmetry, it is enough to check, e.g., left cancellability. First by induction on n we notice that it is enough to prove cancellability for X^Y. By the case $n = 1$ we get $ab = ac$, from which we deduce by induction $b = c$. So assume now $a \in B^*$. Then there is $x \in B^*$, such that $\alpha(ab) = ax$: indeed, by the formula $\alpha(ab) = \alpha(axb)$ we have $\alpha(ab) = ax$ where $x < a(b) < b$. Similarly $x < c$. So there exists b', c' such that $ab = (ax)b' = (ax)c'$. We then have $b' = c' = \omega(ab)$ by Proposition 2.3 whence $b = xb' = xc' = c$.

We are now in a position to extend Propositions 1.5 and 1.6 to the whole of B^+.

2.5. Proposition. Let $a \in B^+$, and $s, t \in \mathcal{D}(a)$. Then $\Delta_{(s, t)} < a$.

Proof. If $s, t \in \mathcal{D}(a)$ then $s < \alpha(a)$ and $t < \alpha(a)$ so by Proposition 1.5 we have $\Delta_{(s, t)} < \alpha(a) < a$.

2.6. Proposition. Let $a, b \in B^+$. There exists a unique maximal (for the partial order \prec) $c \in B^+$ such that $c \prec a$ and $c \prec b$ (we still denote $c = a \wedge b$).

Proof. Since B^+ has the left cancellation property, we can just follow the proof of Proposition 1.6 using Proposition 2.5 instead of Proposition 1.5.

3. The Center and Monoids of Finite Type

If B is of finite type, W is finite and thus has a unique longest element. We define Δ as the element of B^* such that $p(\Delta)$ is the longest element of W. We can in this case redefine α on B^+ by $\alpha(g) = \Delta \wedge g$.
3.1. Proposition. Assume \(B \) is of finite type. There is an automorphism \(g \mapsto \bar{g} \) of order 2 of \(B^+ \) defined by \(\Delta g = \bar{g} \Delta \). This automorphism preserves \(S \).

Proof. It is sufficient to prove that there is an involution \(s \mapsto \bar{s} \) of \(S \) such that \(\Delta s = s \Delta \). It is well known (cf. e.g., [B1, Sect. 1 Ex. 22]) that the same property holds in \(B \), i.e., that for \(s \in S \) there exists \(\bar{s} \in S \) such that \(p(s)p(\Delta) = p(\Delta)p(\bar{s}) \) and \(\bar{s} = s \). But \(p(s) \) is of order 2, so if \(w' \in B_{\text{red}}^+ \) is defined by \(p(w') = p(s)p(\Delta) \), we have \(\Delta = sw' = w'\bar{s} \), thus \(s\Delta = sw'\bar{s} = \Delta \bar{s} \).

3.2. Corollary. Assume \(B \) is of finite type. The element \(\pi = \Delta^2 \) is central in \(B^+ \). The monoid \(B^+ \) injects in \(B \), and for any \(b \in B \), there exists \(i > 0 \) such that \(\pi^i b \in B^+ \). Any element \(g \in B \) can be written uniquely as \(x^{-1}y \), where \(x, y \in B^+ \) have no common divisor.

Proof. The first assertion is clear from Proposition 3.1. To see the second one, notice that any \(x \in B_{\text{red}}^+ \) divides \(\Delta \), thus in particular divides \(\pi \). It results by induction on \(n \) that if we write \(x \in B^+ \) as \(x_1 \cdots x_n \), with \(x_i \in B_{\text{red}}^+ \), then \(x < \pi^n \); indeed, \(x_2 \cdots x_n < \pi^{n-1} \) so \(x < x_1 \pi^{n-1} = \pi^{n-1}x_1 < \pi^{n-2}\pi = \pi^n \). It follows that every two elements of \(B^+ \) have a common multiple (some power of \(\pi \)), thus by Proposition 2.4, \(B^+ \) satisfies the Ore condition and thus injects in \(B \). The group \(B \) can be identified with the group of fractions of the monoid \(B^+ \); in particular every element of \(B \) is of the form \(x^{-1}y \) with \(x, y \in B^+ \). We have \(\pi^i x^{-1}y \in B^+ \) for large enough \(i \) (such that \(x < \pi^i \)); also the existence of the g.c.d. proves the unicity of such a decomposition with no common divisor.

Note that the existence of a g.c.d. implies that of an l.c.m.: given \(a, b \in B^+ \) they have some common multiple (e.g., some power of \(\pi \)), so the set of elements which are common multiples of \(a \) and \(b \) has a g.c.d., which is the l.c.m. of \(a \) and \(b \). We will denote \(a \vee b \) as the l.c.m.

The center of \(B^+ \) can be determined in general using the following

3.3. Lemma. If \(w \) is central in \(B^+ \) and \(s, t \in S \) are such that \(s < w \) and \(st \neq ts \) then \(t < w \).

Proof. Under the assumption of the lemma, \(s \) and \(t \) both divide \(wt = tw \). Thus if we define \(\delta \) by \(\Delta_{(s,t)} = t\delta \) then \(\delta < w \). Now \(st \neq ts \) implies \(st < \delta < w \), so there exists \(x \) such that \(w = stx \). Now \(sw = ws \) gives \(sstx = stxs \) and cancelling \(s \) we get \(w = stx = txs \) so \(t < w \).

This lemma implies that the center of \(B^+ \) is generated by the \(\Delta^2_i \) (or possibly \(\Delta_i \), when the automorphism of Proposition 3.1 is trivial on \(W_i \)) where \(I \) runs over the connected components of the Coxeter diagram of \(W \) such that the parabolic subgroup \(W_i \) is finite.
4. NORMAL FORMS

We say that a decomposition \((g_1, \ldots, g_n)\) is the normal form of \(g_1 \cdots g_n \in B^+\) if no \(g_j\) is equal to 1 and for any \(i\) we have \(g_i = \alpha(g_i \cdots g_n)\) (so \(g_{i+1} \cdots g_n = \omega(g_i \cdots g_n)\)).

4.1. Proposition (cf. [C1, 2.5]). The normality of a form can be seen locally: \((g_1, \ldots, g_k)\) is a normal form if and only if \((g_i, g_{i+1})\) is for all \(i\). This implies that any segment \((g_i, \ldots, g_j)\) of a normal form is normal.

Proof. Indeed, using the formula \(\alpha(gh) = \alpha(g\alpha(h))\) we have for all \(i\) that \(\alpha(g_i \cdots g_n) = \alpha(g_i g_{i+1})\).

4.2. Corollary. A form \((g_1, \ldots, g_k)\) is normal if and only if for any \(i\) we have \(\mathcal{H}(g_i) \supset \mathcal{L}(g_{i+1})\).

Thus we have a new, very convenient description of \(B^+\) (we don’t need to quotient by an equivalence relation):

4.3. Corollary. \(B^+\) can be identified to the set of sequences \(\{(g_1, \ldots, g_k), g_i \in W - \{1\}\} \mathcal{H}(g_i) \supset \mathcal{L}(g_{i+1})\) for any \(i\).

Let \(\Gamma\) be a group of diagram automorphisms of \(W\) (i.e., automorphisms of \(W\) which stabilize \(S\)). Then the set of fixed points \(W^\Gamma\) is still a Coxeter group, with the Coxeter generating set the set of longest elements in the parabolic subgroups \(W_\sigma\) where \(\sigma\) runs over the orbits \(S/\Gamma\) such that the group \(W_\sigma\) is finite (the idea of the proof is essentially due to Steinberg; see [H, M] for a proof in the general case). In this situation, \(\Gamma\) acts naturally on \(B\) (by acting on the generators), and from Corollary 4.3 we get:

4.4. Corollary. In the above situation, \((B^+)^\Gamma\) identifies to the Braid monoid of \(W^\Gamma\). If \(W\) is of finite type, \(B^\Gamma\) identifies to the Braid group of \(W^\Gamma\).

Proof. By the unicity of \(\alpha\), a normal form \((g_1, \ldots, g_k)\) represents an element of \((B^+)^\Gamma\) if and only if all \(g_i \in W^\Gamma\). The condition \(\mathcal{H}(g_i) \supset \mathcal{L}(g_{i+1})\) translates to the same condition in \(W^\Gamma\), whence the first part of the statement. For the second part, we just notice that if \(\Delta^{-n}b \in B^\Gamma\), with \(b \in B^+\), then since \(\Delta\) is \(\Gamma\)-fixed we must have \(b \in (B^+)\); and \(\Delta\) is also the lift to the braid monoid of \(W^\Gamma\) of the longest element of \(W^\Gamma\).

We note that at this stage we can show easily (following [D1, 4.24]):

4.5. Corollary. Assume that \(B\) is of finite type. Then \(x, y \in B^+\) are conjugate under \(B\) if and only if there exists \(a_1, \ldots, a_k \in B_{\text{red}}^+\) such that \(x_1 = x, x_{k+1} = y\) and \(x_i a_i = a_i x_{i+1}\). In particular the conjugacy problem in \(B\) is decidable.
Proof. Multiplying a conjugating element by a suitable power of π we may assume that x and y are conjugate by some $a \in B^+$, so that $xa = ay$.

So $\alpha(a) < xa$, which implies by the defining property of α that $\alpha(a) < x\alpha(a)$, so $x_1 = \alpha(a)^{-1} x a \alpha(a)$ is in B^+. We take $a_1 = \alpha(a)$, $x_2 = a_1^{-1} \in x_1 a_1$ and we go on in this way taking a_2, \ldots, a_k such that (a_1, \ldots, a_k) is the normal form of a.

4.6. Lemma (cf. [C1, 3.1]). Let $w \in B_{\text{red}}^+$ and (g_1, \ldots, g_k) be the normal form of $g \in B^+$. Then we can write $g_1 = g_1^{n_1} g_1^{s_1}, \ldots, g_k = g_k^{n_k} g_k^{s_k}$ such that the normal form of wg is $(wg_1^{n_1}, g_1^{s_1}, g_1^{n_1} g_1^{s_1} 1, \ldots, g_k^{n_k} g_k^{s_k} g_k^{n_k} 1 g_k^{s_k})$ if $g_k \neq 1$ and $(wg_1^{n_1}, g_1^{s_1}, g_1^{n_1} g_1^{s_1} 1, \ldots, g_k^{n_k} g_k^{s_k} g_k^{n_k} 1 g_k^{s_k})$ if $g_k = 1$.

Proof. We apply repeatedly $\alpha(gh) = \alpha(g \alpha(h))$: we start with $\alpha(wg) = \alpha(wg_1) = wg_1^{s_1}$ (this defines g_1 and $g_1^{s_1} = g_1^{-1} g_1$), then $\alpha(g_1^{s_1} g_2 \cdots g_k) = \alpha(g_1^{s_1} g_2) = \alpha(g_1^{s_1} g_2) = \alpha(g_1^{s_1} g_2)$ etc.

4.7. Proposition. Let $(g_1 \cdots g_n)$ be the normal form of g. Then $n = \nu(g)$.

Proof. We proceed by induction on $\nu(g)$. Let $n(g)$ be the number of terms in the normal form of g. Let $h_1 \cdots h_k$ be a decomposition of g of length $\nu(g)$ (so that w, h_1, \ldots, h_k are reduced and $k = \nu(g) - 1$). By induction we have $n(h_1 \cdots h_k) = k$. Let $g_1 \cdots g_k$ be the normal form of $h_1 \cdots h_k$. Then by Lemma 4.6 we have $n(g) \leq k + 1$. Since we cannot have $n(g) < \nu(g)$ we must have $n(g) = k + 1 = \nu(g)$.

Note that Lemma 4.6 can be rephrased: either $\nu(wg) = \nu(g)$ and $\omega^{\nu(wg)}(wg) > \omega^{\nu(g)}(g)$ (when $g_k = 1$) or $\nu(wg) = \nu(g) + 1$ and $\omega^{\nu(wg)}(wg) > \omega^{\nu(g)}(g)$.

4.8. Proposition. For $g, h \in B^+$ we have $\max(\nu(g), \nu(h)) \leq \nu(gh) \leq \nu(g) + \nu(h)$.

Proof. This is clear by induction on $\nu(g)$, applying repeatedly Lemma 4.6.

4.9. Lemma. If $g \in B^+$, $w \in B_{\text{red}}^+$, and $\nu(gw) > \nu(g)$ then $w > \omega^{\nu(g)}(gw)$.

Proof. This is by induction on $k = \nu(g)$. If (g_1, \ldots, g_k) is the normal form of g, then we must have $\nu(g_2 \cdots g_k w) > \nu(g_2 \cdots g_k)$, otherwise $\nu(gw)$ could not be greater than $\nu(g)$. So the normal form of $g_2 \cdots g_k w$ is by induction (x_1, \ldots, x_k) where $w > x_k$. By Lemma 4.6 the last term of the normal form of $g_1 x_1 \cdots x_k$ is a right divisor of x_k (so of w) — otherwise we would have $\nu(gw) = \nu(g_1 x_1 \cdots x_k) = k$, a contradiction.

4.10. Lemma. Let (g_1, \ldots, g_k) be the normal form of $g \in B^+$ and let $x \in B^+$, $x < g$. Then $\nu(x) \leq k$ and $x < g_1 \cdots g_{\nu(x)}$.
Proof. The fact that $\nu(x) \leq k$ comes from, e.g., Proposition 4.8. We prove the second part by induction on $h = \nu(x)$. We have $x = x'w$ with $\nu(x') = h - 1$ and $w \in B_{\text{red}}^+$. By induction, there exists $a \in B^+$ such that $x'a = g_1 \cdots g_{h-1}$, so $g = x'ag_{h} \cdots g_{k}$. Therefore $x = x'w < g$ implies $w < ag_{h} \cdots g_{k}$. Since $w \in B_{\text{red}}$ we get $w < \alpha(ah_{1} \cdots g_{k}) = \alpha(\alpha(gh_{1} \cdots g_{k})) = \alpha(\alpha(g_{h})), \ \text{so} \ \ w < \alpha(g_{h})$ thus $x = x'w < x'ag_{h} = g_{1} \cdots g_{h}$.

5. CHARNEY'S RESULT

I thank J.-Y. Hée for providing me with the proof of Proposition 5.1 given below (as well as Lemma 4.10 above, used along the way) which replaces my proof which needed to assume B of finite type.

5.1. Proposition. Let $g \in B^+$, $w \in B_{\text{red}}^+$; then $\nu(gw) = \nu(g)$ if and only if $\omega(\omega^{-1}(g)w) \in B_{\text{red}}^+$.

Proof. Let (g_{1}, \ldots, g_{k}) be the normal form of g. We first notice that the “if” part, which says that $g_{k}w \in B_{\text{red}}^+$ implies $\nu(gw) = \nu(g)$, results from Proposition 4.8 which gives $k = \nu(g) \leq \nu(gw) \leq \nu(g_{1} \cdots g_{k}) + \nu(g_{k}) = k$.

Conversely, assume $\nu(gw) = k$ and let (g_{1}, \ldots, g_{k}) be the normal form of gw. By Lemma 4.10, there exists $a \in B^+$ such that $g_{1} \cdots g_{k}a = h_{1} \cdots h_{k}$. From $g_{1} \cdots g_{k-1}g_{k}w = h_{1} \cdots h_{k-1}h_{k} = g_{1} \cdots g_{k-1}a$, we get $g_{k}w \in B_{\text{red}}^+$. Let α' be the left l.c.m. of h_{i} and w, so there exists g' such that $g_{k}w = g'\alpha'$ and $h' = h_{1} \cdots h_{k}$ such that $\alpha' = h'h_{k}$. Let $x = g_{1} \cdots g_{k-1}g'$. Then by construction $g' < g_{k}$, thus $x < g$; on the other hand $xh' = x\alpha' = gw = h_{1} \cdots h_{k}$, thus $xh' = h_{1} \cdots h_{k-1}$, so $\nu(x) \leq k - 1$ and by Lemma 4.10 we have $x < g_{1} \cdots g_{k-1}$, which implies $g' = 1$ and $g_{k}w = \alpha' \in B_{\text{red}}^+$.

Proposition 5.1 can be rephrased as follows:

5.2. Proposition. If there exists i such that $\nu(\omega^{i}(g)w) = \nu(\omega^{i}(g))$ then for any i we have $\nu(\omega^{i}(g)w) = \nu(\omega^{i}(g))$.

Proof. If (g_{1}, \ldots, g_{k}) is the normal form of g, we can rephrase Proposition 5.2 as: if there exists i such that $k - i = \nu(g_{i} \cdots g_{k})$ then for any i we have $k - i = \nu(g_{i} \cdots g_{k})$. By Proposition 5.1 applied to $g_{i} \cdots g_{k}$ and w, the hypothesis implies that $g_{k}w \in B_{\text{red}}^+$ which in turn implies for any i (applying Proposition 5.1 to $g_{i} \cdots g_{k}$) that $\nu(g_{i} \cdots g_{k}w) = k$.

The next proposition says a bit more than [C1, 3.3]. Note that it implies that the equality $\nu(\omega^{i}(g)w) = \nu(\omega^{i}(g))$ in Proposition 5.2 can be replaced by $\nu(\omega^{i}(gw)) = \nu(\omega^{i}(g))$.

5.3. Proposition. For any $i \in \mathbb{N}$, $g \in B^+$ and $w \in B^+_\text{red}$ then $\omega^{i+1}(gw) = \omega \omega (g) w$.

Proof. It is sufficient to check the proposition for $i = 1$. Indeed from the case $i = 1$, $\omega^2(gw) = \omega \omega (g) w$ and from the case $i = 1$, $\omega^i(gw) = \omega (\omega^{i-1}(gw))$ we get $\omega^{i+1}(gw) = \omega^2(\omega^{i-1}(gw)) = \omega (\omega(g) w)$ which is the case for i.

We proceed by induction on $k = \nu(g)$. The result is clear for $k \leq 1$. Assume $k \geq 2$ and let (g_1, \ldots, g_k) be the normal form of g. Assume first $\nu(gw) = k$. Then by Corollary 5.1, $g_kw \in B^+_\text{red}$ which implies

$$
\omega^2((g_1 \cdots g_{k-1})(g_kw)) = \omega(\omega(g_1 \cdots g_{k-1})g_kw)
= \omega(g_2 \cdots g_kw) = \omega (\omega(g) w),
$$

where the first equality is by the induction hypothesis. Otherwise let (η_0, \ldots, η_k) be the normal form of gw. Then by Lemma 4.9 we have $w \succ \eta_k$, say $w = \beta \eta_k$. Then $g_b \beta$ must be in B^+_red else by Proposition 5.1, $k = \nu(\eta_0 \cdots \eta_{k-1} = g_1 \cdots g_k \beta) > \nu(g_1 \cdots g_k) = k$, a contradiction. We thus get by induction $\eta_2 \cdots \eta_{k-1} = \omega^2(\eta_0 \cdots \eta_{k-1}) = w(w/g_1 \cdots g_{k-1} \beta)$ so there exists a such that the normal form of $g_2 \cdots g_k \beta$ is $(a, \eta_2, \ldots, \eta_{k-1})$. If $k > 2$ this implies that $(a, \eta_2, \ldots, \eta_{k-1}, \eta_k)$ is the normal form of $g_2 \cdots g_kw$, since it verifies the local criterion for normality. Thus $\omega(g_2 \cdots g_kw) = \eta_2 \cdots \eta_k$ as we had to prove. If $k = 2$ it remains to prove that (a, η_2) is normal. In this case, let (a_2, a_2) be the normal form of $a \eta_2$. By definition $\eta_2 > a_2$. We have $g_1 a_2 a_2 = g_1 a_2 = g_1 g_2 w = \eta_0 \eta_2 \eta_2$ so $\nu(g_2 a_2 a_2) > \nu(a_2 a_2)$ so by Lemma 4.6, $a_2 > \omega^2(g_1 a_2 a_2) = \eta_2$. So $a_2 = \eta_2$.

REFERENCES

