
lable at ScienceDirect

Polymer 54 (2013) 6501e6509

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists avai
Polymer

journal homepage: www.elsevier .com/locate/polymer
Feature article
Low band gap polymers for photovoltaic device with photocurrent
response wavelengths over 1000 nm

Erjun Zhou a, Kazuhito Hashimoto b,**, Keisuke Tajima a,c,*

aRIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako 351-0198, Japan
bDepartment of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
c Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi,
Saitama 332-0012, Japan
a r t i c l e i n f o

Article history:
Received 25 July 2013
Received in revised form
20 September 2013
Accepted 28 September 2013
Available online 5 October 2013

Keywords:
Bulk-heterojunction
Conjugated polymers
Low band gap
Photovoltaic
Polymer solar cells
* Corresponding author. RIKEN Center for Emergen
Hirosawa, Wako 351-0198, Japan.
** Corresponding author.

E-mail addresses: hashimoto@light.t.u-toky
keisuke.tajima@riken.jp (K. Tajima).

0032-3861/$ e see front matter � 2013 Elsevier Ltd.
http://dx.doi.org/10.1016/j.polymer.2013.09.058
a b s t r a c t

To pursue high power conversion efficiency (PCE) of polymer solar cells (PSCs), many new semi-
conducting polymers with low band gaps have been developed in the past several years. In this
perspective paper, we focused on super low band gap photovoltaic polymers with photocurrent response
extending over 1000 nm. This kind of micrometer-response polymers (mmR-polymer) could increase the
short circuit current (JSC) due to better match of absorption spectra of the polymers with the solar
irradiation and show tremendous potential for application in tandem solar cells and transparent solar
cells. The necessary conditions for the design of this kind of mmR-polymers are discussed. Furthermore,
the remaining problems and challenges, and the key research direction in near future are discussed.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past two decades, polymer solar cells (PSCs) have
received a great deal of attention as a potential alternative to
silicon-based solar cells because of PSCs having the unique ad-
vantages of low cost, light weight, energy-saving fabrication pro-
cesses, and applicability in flexible large-area devices [1e8]. Bulk-
heterojunction (BHJ) devices were first reported in 1995 [9] and
consist of a conjugated polymer (electron donor) and fullerene
derivative (electron acceptor); the development of BHJ devices has
greatly enhanced the power conversion efficiency (PCE) of PSCs
under sunlight.

Generally, the energy conversion from light energy to electrical
energy in BHJ PSCs comprised of five fundamental steps: 1) har-
vesting of photons by chromophores (donor or acceptor) to
generate excitons, 2) diffusion of the excitons to the interface of
donor and acceptor, 3) dissociation of the excitons into free charge
t Matter Science (CEMS), 2-1
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carriers, 4) transportation of the free charge carriers toward the
corresponding electrodes, and 5) charge collection at electrodes.
Thus, the overall performance of PSCs could be improved through
research focused on two different approaches: optimization of
device fabrication and development of new materials to facilitate
the above five steps. The former approach includes optimization of
the solvent, molecular additives, solution concentration, donor/
acceptor ratio, spin-coating rate during deposition, drying tem-
perature, and annealing conditions. On the other hand, the choice
of the photovoltaic polymers also has a crucial effect on photovol-
taic performance. Among the large variety of photovoltaic poly-
mers, regioregular poly(3-hexylthiophene) (P3HT) has been
studied as a “benchmark” electron donormaterial. BHJ photovoltaic
devices with a mixture of P3HT and [6,6]-phenyl C61 butyric acid
methyl ester (PCBM) have been reported to have PCEs as high as 5%
[10,11]. Structural modification of polythiophene derivatives has
also been extensively investigated [12e18]. However, for devices
utilizing such polythiophene derivatives, it appears that the upper
limit on PCE has been reached because the largemismatch between
the relatively large band gap (w2.0 eV) and solar spectrum leads to
insufficient light absorption, limiting further improvement of the
photocurrent. Hence, it is essential to lower the band gap of
photovoltaic polymers such that the absorption band is shifted
toward longer wavelengths.
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There are two successful and flexible strategies to design low
band gap conjugated polymers, one is converting aromatic moieties
to quinoid structures along the polymer backbone [19], another is
to incorporate an electron-rich unit (donor) and electron-deficient
unit (acceptor) into repeating units, forming internal donore
acceptor (DeA) structures [20,21]. The alternating DeA copolymer
approach enables tuning of the optical and electronic properties of
the resulting copolymer through intramolecular charge transfer
(ICT) from the donor to the acceptor. Clearly, the rational selection
of building blocks is critical to the realization of the well-defined
control of the photophysical properties and frontier molecular
orbital energy levels of the resulting copolymers to meet the re-
quirements for BHJ-PSC applications. Therefore, various aromatic
heterocycles were exploited to develop highly efficient donor
polymers for BHJ-PSC applications.

For electron-donating building blocks, thiophene and benzene
aromatic rings are the most important structural ingredients to
construct these segments. Among them, tricyclic aromatic struc-
tures based on biphenyl or bithiophene with a bridging atom (C, S,
Ge or N) have been extensively studied. Scheme 1 shows eight
examples of donor segments, with their abbreviations: fluorene (F)
[22e24], dibenzosilole (DBS) [25,26], dibenzogermole (DBG) [27],
carbazole (C) [28e30], cyclopenta[2,1-b:3,4-b]dithiophene (CPDT)
[31e34], dithienosilole (DTS) [35e37], dithienogermole (DTG) [38e
41] and dithieno[3,2-b:20,30-d]pyrrole (DTP) [42e45].

On the other hand, the acceptor segment is often based on a
pyrazine or thiadiazole unit with electron-deficient C]N bonds.
Scheme 2 shows seven typical examples of acceptor segments with
their abbreviations: 2,1,3-benzothiadiazole (BT), quinoxaline (Qx)
[46e50], thieno[3,4-b]pyrazine (TP) [51e56], thieno[3,4-c][1,2,5]
thiadiazole (TT) [57,58], pyrazino[2,3-g]quinoxaline (PQ) [59e61],
[1,2,5]thiadiazolo[3,4-g]quinoxaline (TQ) [62e67], and benzo[1,2-
c;3,4-c]bis[1,2,5]thiadiazole (BBT) [68e71].

A necessary requirement for a DeA type polymer to have
promising photovoltaic performance is a proper combination of
donor and acceptor segments such that the absorption spectrum of
the polymer is matched to the solar spectrum. If we assume that a
transparent electrode has a transmittance of 85%, from the standard
spectrum of solar irradiation (AM 1.5G), the theoretical maximum
of the short circuit current density (JSC) of a PSC device is
Scheme 1. Eight typical donor segments based on fused biphenyl or bithiophene units.
approximately 14.3 mA cm�2, with a response range from 300 to
650 nm (when using the standard material P3HT). If the photo-
current response is extended to 800 nm, the theoretical maximum
of JSC can be increased to w23.0 mA cm�2; furthermore, if the
response is extended to 1000 nm, the theoretical maximum of JSC
can be increased to w31.9 mA cm�2. These simple calculations
clearly show that the absorption spectrum strongly affects photo-
voltaic performance, especially JSC.

In reality, it is not practical to absorb the whole range of the
spectrum with a single polymer material due to the limited ab-
sorption bandwidth. Since the solar spectrum have the maximum
of the photon flux at around 700 nm, the semiconducting polymers
with an absorption maximum at around 700 nm would have the
highest matching of the spectra with single absorption band. This
approach also enables a relatively high open-circuit voltage (VOC),
since a large difference between the HOMO and lowest unoccupied
molecular orbital (LUMO) energies can be maintained for the
acceptor material (PCBM). Recently, this strategy, along with
rigorous device optimization, has been used to achieve consider-
able improvements in the performance of DeA copolymers. Certain
polymers based on the building blocks described above, such as
PDBS-DTBT[25], PC-DTBT[30], PCPDT-BT[32] and PDTS-BT[35],
show relatively large JSC (9.5e16.2 mA cm�2) under sunlight, and
the onset of the photocurrent response reaches 660e800 nm.
These are only moderately red-shifted, by 10e150 nm, when
compared with the adsorption onset of P3HT (w650 nm).
Furthermore, VOC can be kept at a high value, owing to the deep
HOMO levels of the donor polymers. The delicate balance between
these two factors results in high PCEs of 5e6%. There are a number
of review articles that discuss DeA type photovoltaic polymerswith
absorption onsets up to 800 nm.

Up to now, this “balanced” strategy has given the best result, in
terms of PCE, for single-layer BHJ PSCs. However, in consideration
of the simple photocurrent calculation above, an alternative
approach to achieving high performance may exist: aim for the
highest JSC by collecting as much of the photon flux as possible. In
this manuscript, we focus on photovoltaic polymers with low band
gaps whose optical absorption and photocurrent response extend
to 1 mm. We call this type of polymer a “micrometer-response
polymer” (mmR-polymer). mmR-polymers can utilize a larger pro-
portion of the sunlight and have the possibility to obtain JSC of over
30 mA cm�2. They also have great promise for application in tan-
dem photovoltaic cells in combinationwith polymers having larger
band gaps and transparent solar cells that can be used for windows.

A tandem structure is equivalent to two cells connected in se-
ries, which offers a number of advantages: VOC for a tandem cell is
increased to the sum of VOC for the two individual cells and the use
of two semiconductors with different band gaps enables absorption
over a broad range of photon energies within the solar emission
spectrum. However, the current is limited bywhichever cell has the
lowest value. In addition, the overlap between the absorption
spectra of the two cells decreases the efficiency of the tandem cells
[72,73].

Thus, development of mmR-polymers with strong absorption in
the range over 700 nm is very important to achieve promising
tandem photovoltaic cells with higher PCE, after combining with
effective moderate band gap polymers. In recent years, several
research groups [74e79] focused on tandem devices and highest
PCE over 10% have been achieved [80].

Furthermore, mmR-polymers should also be useful in polymer
photodetector devices with high sensitivity in the near-infrared
(NIR) region [81]. Additionally, the synthesis of mmR-polymers is
a challenge and is a field that has been relatively less explored. We
will firstly discuss the principles for designing polymers used in
photovoltaic devices, and then review examples of photovoltaic



Scheme 2. Seven typical acceptor segments containing C]N bonds.
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devices with these polymers. We summarize the current state of
the art in mmR-polymers and conclude by discussing the prospects
for this research field.

2. Design of mmR-polymers for PSCs

The fundamental requirements for promising photovoltaic
polymers include (1) a broad absorption bandwidth, which enables
more sunlight to be absorbed; (2) a low-lying HOMO to keep VOC as
high as possible, together with a suitable LUMO energy level to
enable effective photoinduced charge transfer from the polymers to
the acceptor in the BHJ device; (3) high carrier mobility to ensure
that effective charge carrier transport to the electrodes suppresses
photocurrent loss; and (4) good solubility, and appropriate
compatibility with fullerene derivatives, in order to form high-
quality films by solution processing.

For mmR-polymers, requirement (1) is well fulfilled due to the
super low band gap (less than 1.24 eV). However, in regard to the
energy level, it is a big challenge to fulfill both low-lying HOMO and
suitable LUMO energy level simultaneously with one polymer,
which might be one main reason for the lack of successful mmR-
polymers.

For the DeA type copolymer approach, strong ICT from the
donor segment to the acceptor unit is necessary to realize a mmR-
polymer. Here, we classify the polymers according to their strong
acceptor building blocks, which include TQ, TP, PQ, TT, diketo-
pyrrolopyrrole (DPP), perylene diimide (PDI) and naphthalene
diimide (NDI) (Table 1).

2.1. TQ-based mmR-polymers

As a strongly electron-deficient building block, TQ was intro-
duced into photovoltaic polymers by Wang et al. in 2004, and the
resulting material, P1, was the first example of a mmR-polymer [62].
P1 shows optical absorption peaks in twowavelength ranges, 300e
500 nm and 650e1000 nm. PSCs were fabricated in a traditional
BHJ type sandwich structure of ITO/PEDOT:PSS/active layer/LiF/Al.
When using PCBM as the acceptor, the PSCs exhibited VOC of 0.69 V,
JSC of 0.53 mA cm�2, and PCE of 0.17%. The low-lying LUMO energy
level of P1 (e4.0 eV) might have inhibited efficient photoinduced
charge transfer. Thus, the PCBM was replaced with another
fullerene derivative, 30-(3,5-bis-trifluoromethylphenyl)-10-(4-
nitrophenyl)pyrazolino[60]fullerene (BTPF), which has a lower-
lying LUMO (e4.1 eV). This P1:BTPF combination resulted in an
increase in the PCE of the PSCs to 0.3%. In addition to the more
effective photoinduced charge transfer, the improved morphology
of the PSC network structure could also contribute to effective
charge separation and transport. Atomic force microscopy studies
of morphology showed that there was no obvious phase separation
in the P1:BTPF films, whereas the P1:PCBM films had large phase
separation, with domains sizes up to 10e20 mmwhen deposited by
spin coating from solution. Furthermore, use of 30-(3,5-bis-tri-
fluoromethylphenyl)-10-(4-nitrophenyl)pyrazolino[70]fullerene
(BTPF70) as the accepter in combination with P1 increased the PCE
of the device to 0.7%. The external quantum efficiency (EQE) was as
high as 28% at 400 nm and 7% at 900 nm, indicating that there was
a significant photocurrent contribution from BTPF70 in addition to
the P1 absorption [63].

To increase the solubility, branched alkyl side chains were
introduced to the TQ segment or phenylene unit in TQ by the same
group [64]. However, the band gaps of resulting polymers increase
to 1.3 eV and 1.5 eV respectively, and the photovoltaic performance
was inferior. The reason for this is still not clear, but it could be that
the poor morphology of the blend films, or the large steric hin-
drance between the polymers, reduces the charge transfer ability.

Compared with 9-dialkylfluorene, a 2,5-dialkoxyphenylene unit
is a stronger electron donor, owing to the electron-donating
properties of the alkoxyl group. As a result, P2 has a lower band gap
(w1.0 eV) than P1. A BHJ type PSC, based on a P2:PCBM mixture,
exhibited VOC of 0.34 V, JSC of 3.26 mA cm�2, fill factor (FF) of 0.34,
and PCE of 0.38%, with monochromatic photoresponse up to 1.2 mm
[65]. For further optimizing the electron-rich group, P3 was
designed and synthesized, in which the carbazole contains a tri-
arylamine unit [66]. The LUMO and HOMO energy levels of P3were
e3.7 and e4.8 eV, respectively, and the high-lying LUMO energy
level ensured effective photoinduced charge transfer to PCBM. The
fluorescence of P3 was almost fully quenched when 6% w/w of
PCBM was mixed into films of the polymer. PSCs using 1:1 w/w
blends of P3 and PCBM as the active layers exhibited PCE of 0.61%
and a photoresponse up to 1.2 mm.

P4, a polymer of the TQ unit with only bithiophene segment as
spacer, was reported by Janssen and coworkers in 2009 [67]. Four
2-ethylhexyl side chains were introduced to the phenyl group to
increase the solubility of the resulting polymer. P4 exhibits a very
small band gap of only 0.94 eV. A BHJ type PSC, based on P4 and a
higher fullerene derivative (PC84BM), provides a photoresponse up
to 1.3 mm with EQE of <1% in the region of 600e1300 nm.

All of these TQ-based mmR-polymers in Scheme 3 showed rather
poor photovoltaic performance, having PCEs of less than 1%. This is
mainly due to the low EQE values in the NIR region. By changing the
donor segment (e.g., to DBS, CPDT, DTS, or DTP mentioned above),
the absorption spectra should be extended to the micrometer
range, owing to the strong electron-accepting ability of TQ.
Therefore, new TQ-based mmR-polymers should still be possible.
However, other criteria must be satisfied, such as a suitable LUMO
energy level to ensure effective photoinduced charge transfer to
PCBM, good solubility and miscibility with PCBM to obtain a uni-
form blend film, and a high absorption coefficient in the NIR region.

2.2. TP-based and PQ-based mmR-polymers

Scheme 4 shows four mmR-polymers based on TP or PQ units.
Polymers P5 was synthesized by Janssen and coworkers in 2006
from corresponding dibrominated monomer via a Yamamoto
condensation polymerization using bis(1,5-cyclooctadiene)
nickel(0) (Ni(COD)2) as the catalyst [53]. The UVevis spectra of P5



Table 1
Device characteristics of PSCs based on mmR-polymers.

Polymer Onset of absorption in film LUMO/HOMO (eV/eV) Donor/acceptor ratio (wt/wt) VOC (V) JSC (mA cm�2) FF PCE Ref.

P1 1000 nm �3.9/�5.1 PCBM (1:4) 0.69 0.53 0.47 0.17% [62]
BTPF (1:4) 0.54 1.76 0.32 0.3%
BTPF70 (1:4) 0.58 3.4 0.35 0.7% [63]

P2 1200 nm PCBM (1:4) 0.34 3.26 0.34 0.38% [65]
P3 1200 nm �3.7/�4.8 PCBM 0.41 5.16 0.29 0.61% [66]
P4 1300 nm �3.74/�4.71 PCBM (1:4) 0.37 0.45 0.46 0.08% [67]

PC84BM (1:4) 0.10 0.28 0.35 0.01%
P5 1034 nm PCBM 0.56 3.1 0.58 1.1% [53]
P6 1200 nm �4.1/�5.0 PCBM w0.2 [82]
P7 1030 nm �3.96/�5.73 PC70BM (1:3) 0.66 1.5 0.50 0.5% [59]
P8 1130 nm �3.90/�5.64 PC70BM (1:3) 0.52 7.3 0.54 2.1%
P9 1220 nm �3.59/�4.71 PCBM (1:1) 0.35 0.83 0.39 0.11% [57]
P10 1030 nm �3.5/�5.1 PC70BM (1:2) 0.41 2.33 0.36 0.35% [58]
P11 1130 nm �3.4/�5.0 PC70BM (1:2) 0.19 1.04 0.28 0.05%
P12 1380 nm �3.6/�4.9 PC70BM (1:2) 0.22 1.45 0.31 0.09%
P13 1100 nm �3.64/�5.02 PCBM (1:1) 0.44 4.47 0.57 1.12% [43]
P14 1100 nm �3.63/�4.90 PC70BM (1:2) 0.38 14.87 0.48 2.71% [44]

PC70BM (1:1.5) 0.40 17.55 0.50 3.48% [45]
P15 1100 nm �3.56/�4.86 PC70BM (1:1.5) 0.42 22.65 0.52 4.99%
P16 1000 nm �3.76/�5.04 PC70BM (1:2) 0.57 8.9 0.59 3.0% [83]
P17 1055 nm �3.63/�4.90 PC70BM (1:2) 0.66 13.7 0.66 6.05% [84]
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in solid state revealed that optical absorption extended into the NIR
region with onsets of 1034 nm.

The P5:PCBM photovoltaic devices exhibited VOC of 0.56 V, JSC of
3.1 mA cm�2, FF of 0.58, and PCE of 1.1% under white light illumi-
nation (75 mWcm�2). The higher VOC value for P5:PCBM arises
from the lower-lying HOMO energy level, and the higher JSC can be
attributed to themore uniform filmmorphology andmore intimate
mixing of P5:PCBM. Interestingly, photovoltaic devices with active
layers prepared by depositing an additional quantity of mixed
P5:PCBM solution on top of the drying layer during spin coating
exhibited a much higher EQE in the NIR region. The EQE of these
“doubled layer” devices exceeds 15% in the 700e900 nm region.
The reason for this enhancement is not clear, but this result reveals
a unique possibility to optimize PSC devices.
Scheme 3. Reported TQ-b
A simple homopolymer of TP, poly(thieno[3,4-b]pyrazine) (P6),
also showed strong absorption properties in the NIR region [82].
The EQE response of devices based on P6:PCBM exhibited maxima
at 450 and 925 nm, with an absorption onset up to 1200 nm for
post-annealed devices. However, the value of the EQE was low (3e
6%) and the overall performance was consequently low, probably
because the low-lying LUMO energy level prevented efficient
photoinduced charge transfer.

Two high molecular weight PQ-based copolymers, P7 and P8
(Scheme 4), were synthesized by the Stille coupling reaction
(Mn¼ 75,000 and 100,000 for P7 and P8, respectively) [59]. The
optical band gaps, determined by the onset of the absorption
spectra of the films, were 1.2 eV for P7 and 1.1 eV for P8. For the
films, the maximum absorption peak at the long wavelength of P8
ased mmR-polymers.



Scheme 5. Four TT-based mmR-polymers.

Scheme 4. Two TP-based (P5, P6) and two PQ-based (P7, P8) mmR-polymers.
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showed a large redshift, approximately 90 nm, and an increase in
intensity. Both of these properties indicate good intermolecular
ordering in the solid state, probably due to the longer oligothio-
phene units. Photovoltaic devices created with P8:PC70BM exhibi-
ted VOC of 0.52 V, JSC of 7.3 mA cm�2, FF of 0.54, and PCE of 2.1%. The
JSC value was enhanced compared with that of a similar P7:PCBM
device (3.5 mA cm�2), indicating that the charge transfer between
P8 and PC70BM is effective and thus that the energy offset between
the LUMO levels of P8 and PC70BM (0.22 eV) was sufficient. The
increase in JSC could be also attributed to the smaller domain size of
P8:PC70BM blend films.

2.3. TT-based mmR-polymers

Scheme 5 shows four kinds of TT-based copolymers. P9 was
synthesized by Cao and coworkers [57], which had good solution
processability, and the film of the polymer absorbed light in the
330e1220 nm region. The LUMO and HOMO energy levels of P9
were e3.59 eV and e4.71 eV, respectively, with an electrochemical
band gap of 1.12 eV. The PSCs based on a P9:PCBM blend had VOC of
0.35 V, JSC of 0.83 mA cm�2, and FF of 38.6% under AM 1.5 irradia-
tion (100 mWcm�2), with the photocurrent response wavelengths
extending to about 1100 nm. Although the photovoltaic perfor-
mance was not high, P9 was used in polymer photodetectors with
high sensitivity in their wide spectral response from 300 to
1450 nm [81].

In 2012, Jenekhe and coworkers synthesized a series of TT-based
mmR-polymers with optical band gap of 1.2 eV (P10), 1.1 eV (P11)
and 0.9 eV (P12) [58]. Although these three polymers showed high
FET mobility in the range of 6.1�10�4e4.6�10�3 cm2 V�1 s�1, the
PCEs were relatively low (<0.35%). The high-lying HOMO energy
levels of these polymers resulted in small VOC of 0.19e0.36 V, and
the poor quality of the spin-coated polymer/fullerene blend films
could explain the low fill factor and PCE of the solar cells.
2.4. DPP-based mmR-polymers

The above-mentioned mmR-polymers exhibit low JSC and poor
photovoltaic performance, mainly due to the weak absorption co-
efficient in near-infrared region and low-lying LUMO energy levels.
From 2009, with a new electron-deficient building block, diketo-
pyrrolopyrrole (DPP) was introduced to mmR-polymers design, and
large improvements in terms of JSC and PCEs were achieved.

DPP derivatives were first obtained as by-products by Farnum
et al. in 1974 [85] and commercialized as high-performance pig-
ments with exceptional light, weather and heat stability. The first
DPP-based photovoltaic polymer was reported by Janssen et al. in
2008 [86]. Since then, extensive device engineering has resulted in
a number of DeA type, DPP-containing copolymers that have been
used in PSCs to achieve PCEs above 5% [87e90]. On the other hand,
dithieno[3,2-b:20,30-d]pyrrole (DTP), as a planar building block with
strong electron-donating ability, has been first studied for use in
DeA type photovoltaic polymers in 2008 [42]. The design of low
band gap polymers that combine DTP and electron-deficient
acceptor segments has attracted much attention, owing to their
tunable optical and electronic properties. In 2009, our group
copolymerized DTP with DPP to obtain copolymer P13 (Scheme 6).
P13 has an absorption band in the long wavelength region, two
absorption peaks at 780 nm and 847 nm, and an onset absorption of
1.1 mm [43]. The absorption coefficient of P13 in CHCl3 solutions is
6.28� 104 Lmol�1 cm�1 at the absorption maxima. Photovoltaic
devices based on P13:PCBM exhibit VOC of 0.44 V, JSC of
4.47 mA cm�2, FF of 0.57, and PCE of 1.12%.

Numerous researchers have shown that side chains in conju-
gated polymers can affect their photovoltaic performance. Thus, we
synthesized P14 (Scheme 6) by changing the alkyl chain in the
diketopyrrolopyrrole segment of P13 from 2-ethylhexyl to n-butyl.
P14 also has a broad absorption band in the range of 500e1100 nm
with a tail extending to 1.3 mm. The full width at half-maximum of
P14 film is 324 nm, nearly double that of P3HT film (158 nm). Since
the same energy bandwidth would produce a larger width in the
wavelength scale, a lower band gap polymer can collect a broader
photon flux range. BHJ type PSCs with device configuration of ITO/
PEDOT:PSS/P14:PC70BM(1:2 w/w)/LiF/Al, have a broad photocur-
rent response wavelength range from 300 nm to 1.1 mm, and high
JSC of 14.87 mA cm�2, and PCE of 2.71% were achieved. Compared
with the PSC with P14:PCBM units, those based on P14:PC70BM
have higher EQE values, 30e40% in the 450e850 nm range, which
contributed to the improvement of JSC from 11.31 mA cm�2 to
14.87 mA cm�2 [44].



Fig. 1. AFM height images (4 mm� 4 mm) of polymer:PC70BM blend films, spin-coated fro

Scheme 6. Five DPP-based mmR-polymers.
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The above-mentioned polymers were based on common DeA
type polymer design strategies, which include (1) synthesizing
novel building blocks or combinations of building blocks, (2)
introducing p-spacers for DepeA polymers, (3) optimizing the
alkyl side chains to balance the crystallinity and solubility, and (4)
introducing substituents, for example fluorine, to tune the energy
levels. However, designing new materials by these methods is
rapidly reaching its limits. Therefore, we adopt an alternative
approach to designing DeA polymers by introducing a conjugated
tris(thienylenevinylene) (TTV) side chain. We utilized this method
to modify P14 and got new polymer of P15 [45]. The TTV side chain
show negligible effect on the absorption spectra and energy levels,
but largely improve the photovoltaic performance. By using blend
solvents of chloroform and dichlorobenzene, the film morphology
can be improved, compared with that from pristine chloroform
(Fig. 1). A 43% improvement in the PCE was observed for the
P15:PC70BM device (4.99%) compared with the P15:PC70BM device
(3.48%). In particular, JSC increased from 17.55 mA cm�2 to
22.65 mA cm�2 after the TTV side chains were introduced, which is
the highest JSC reported for a PSC to date. The improvement in EQE
over thewhole absorption regionwas observed for the P15:PC70BM
system compared with the P14:PC70BM system, with high value
(>0.5) from 400e900 nm (Fig. 2). Because this method of intro-
ducing conjugated side chain is also effective for other DeA type
polymer, we believe this approach could provide a new general
method for designing high-performance DeA photovoltaic
polymers.

It is worth noting that introduction of the TTV side chain was
also effective to improve the performance of other DeA polymers
such as copolymer of benzo[1,2-b;3,4-b0]dithiophene (BDT) and
thieno[3,4-c]pyrrole-4,6-dione (TPD). We speculate that the intro-
duction of the TTV side chain improves the charge separation ef-
ficiency at the polymer/PC70BM interface. The presence of the
m CHCl3 solution and from CHCl3 solution with o-dichlorobenzene (DCB) additives.
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conjugated p-system may enhance the coupling between the
photoexcited state of the polymer and the charge separated state,
assuming that the TTV side chains exist at the polymer-fullerene
interface (Fig. 3). Of course, the complexity of the BHJ structures
in PSCs and the difficulty in analyzing the polymer/fullerene
interface mean that the role of the conjugated side chain requires
further investigation.

Although the P15 showed the highest JSC, the VOC was as low as
0.42 V, which is due to the high HOMO energy levels (4.86 eV). In
order to get DPP-based mmR-polymers with higher VOC, P16 and
P17 were designed and synthesized. P16 is a thieno[3,2-b]thio-
phene-DPP based copolymer with relatively low HOMO energy
level of 5.04 eV. Photovoltaic devices created with P16:PC70BM
exhibits VOC of 0.57 V, JSC of 8.9 mA cm�2, FF of 0.59, and PCE of 3.0%.
Further changing the donor building block to dithieno[3,2-b:20,30-
d]thiophene (DTT), the resulting polymer, P17 shows maximum
absorption at 802 nm and the absorption onset at 1015 nm in CF
solution, while the thin film spectrum exhibits slightly extended
onset at 1055 nm. P17 shows an outstanding hole mobility of
0.60 cm2 V�1 s�1 and low-lying HOMO energy levels (5.19 eV). A
PCE of 6.05% with JSC of 13.7 mA cm�2, VOC of 0.66 V, and FF of 66.1%
Fig. 3. Schematic diagram of the BHJ structure solar cell. Conjugated side chains plac
were achieved by using P17:PC70BM as active layer. These results
demonstrate large potential of DPP building block for the design of
mmR-polymers.

The success of DPP-based mmR-polymers should attribute to
several factors, including the strong absorption in near-infrared
region with high absorption coefficient, higher hole mobility, the
suitable LUMO energy levels for efficient photoinduced charge
transfer to fullerene and goodmiscibility with fullerene derivatives.

2.5. n-Type mmR-polymers

All the above mmR-polymers are p-type polymers, which are
blended with fullerene derivatives for photovoltaic applications.
Despite this remarkable success of polymer:fulerene blend solar
cells, the need for high purity fullerene derivatives, low light ab-
sorption in the long wavelength region and the metastable
morphology of the fullerene-based BHJs mean that new n-type
materials are required.

After almost two decades investigation, four types of n-type
polymers containing the electron-deficient groups cyano (CN) [91e
93], 2,1,3-benzothiadiazole (BT) [94e96], perylene diimide (PDI)
[97e99], and naphthalene diimide (NDI) [100e103] have been
recognized as important photovoltaic materials and the highest
PCEs for devices based on these four types of polymers are 2.0%
[93], 2.7% [96], 2.2% [99], and 1.6% [103], respectively, after inten-
sive device optimization.

A promising advantage of all-polymer solar cells is that the
absorption spectra can be modulated individually, thus develop-
ment of n-type mmR-polymers is vital to utilize most portion of the
sunlight. By copolymerization PDI with DTP and introduction of a
thiophene unit as a spacer, we synthesized an n-type mmR-polymer
P18 (Scheme 7) [98]. The absorption of P18 in film extended to over
1 mm, and the LUMO and HOMO energy levels weree4.00 eV ande

5.27 eV, respectively. However, owing to the poor solubility of P18,
the photovoltaic performance was poor in comparison with other
n-type polymers. Another n-type mmR-polymer, P19, is based on
NDI and CPDT building blocks with thiophene as spacer. The LUMO
and HOMO energy levels weree4.15 eV and e5.35 eV, respectively.
A PCE of 1.1% with JSC of 2.43 mA cm�2, VOC of 0.63 V, and FF of 70%
were achieved by using P3HT as the donor material and optimi-
zation of the processing solvent. It was found that by suppressing
ed at the interface are hypothesized to improve the charge separation efficiency.



Scheme 7. PDI and NDI-based n-type mmR-polymers.
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the aggregation of P19 at the early stage of film formation, the
intermixing of the donor and acceptor component is improved,
thereby allowing efficient harvesting of photogenerated excitons at
the donoreacceptor heterojunction. Furthermore, correlations be-
tween the macroscopic absorption and solar cell performance were
also investigated.
3. Conclusion and outlook

In this review, we have summarized the recent works on
photovoltaic polymers with photocurrent response extending over
1 mm. The band gap can be tuned by using strong ICT from an
electron-rich segment to an electron-deficient segment in the
polymer backbone. Fine-tuning of the LUMO and HOMO energy
levels of mmR-polymers by structural modification is critical, as
doing so can improve VOC and simultaneously enable effective
photoinduced charge transfer from the polymer to the acceptor.
The absorption coefficient is another important parameter, which
ensures that the thin active layer in PSCs can absorb a large pro-
portion of the solar spectrum. Moreover, the morphology of the
active layer (polymer:PCBM blend film) is critical for the perfor-
mance of BHJ cells. If there are large domains and significant phase
separation in the active layer, the number of interfaces for efficient
charge separation will be reduced. As has been shown, the highest
PCE, JSC and EQE for the PSCs based on the presented mmR-polymers
reached 6%, 22 mA cm�2 and 60% respectively. We can expect to
find mmR-polymers that achieve even higher JSC values and better
performance in PSCs after material design and device optimization.

A promising application of mmR-polymers is tandem photovol-
taic devices. Considering VOC for a tandem cell is equal to the sum of
VOC for the two individual cells and the current is limited by
whichever cell has the lowest value. Therefore, although there has
been great success in producing PSCs with photocurrent responses
below 700 nm, there will be an increasing need for highly efficient
mmR-polymers materials to utilize sunlight above 700 nm as the
manufacturing technology for tandem cells matures. Moreover,
because some mmR-polymers show little absorption in the visible
region, theymay have the potential to create semitransparent PSCs,
which are attractive for application in solar cell windows.
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