
NORTH- HOLLAND

D E T E C T I O N A N D O P T I M I Z A T I O N

O F S U S P E N S I O N - F R E E L O G I C P R O G R A M S *

SAUMYA DEBRAY, DAVID GUDEMAN, AND PETER BIGOT

i> In recent years, language mechanisms to suspend, or delay, the execution of
goals until certain variables become bound have become increasingly pop-
ular in logic programming languages. While convenient, such mechanisms
can make control flow within a program difficult to predict at compile
time, and therefore render many traditional compiler optimizations inap-
plicable. Unfortunately, this performance cost is also incurred by pro-
grams tha t do not use any delay primitives. In this paper, we describe
a simple dataflow analysis for detecting computations where suspension
effects can be ignored, and discuss several low-level optimizations tha t
rely on this information. Our algorithm has been implemented in the j c
system. Optimizations based on information it produces result in signif-
icant performance improvements, demonstrat ing speed comparable to or
exceeding that of optimized C programs. <3

1. I N T R O D U C T I O N

In recent years, mechanisms to suspend the execution of a goal until certain variables
in the goal become bound have become increasingly popular in logic program-
ming languages. They are available in many modern implementations of Pro-
log, e.g., NU-Prolog, Sicstns Prolog, Prolog-III, and Sepia. Such mechanisms also
form the basis for synchronization in many concurrent logic programming lan-
guages such as FGHC, Janus, and Strand. Delay mechanisms allow clear and

*A preliminary version of this paper appeared in Proc. 1994 International Symposium on
Logic Programming. This work was supported in part by the National Science Foundation under
Grant CCR-9123520.

Address correspondence to Saumya K. Debray, Department of Computer Science, University
of Arizona, Tucson, AZ 85721. E-mail: debray@cs.arizona.edu.

Received March 1995; accepted March 1996.

THE JOURNA L OF LOGIC P R O G R A M M I N G

(D Elsevier Science, Inc., 1996 0743-1066/96/$15.00
655 Avenue of the Americas, New York, NY 10010 PII S0743-I066(96)00052-0

172 S. DEBRAY ET AL.

concise expression of sophisticated control strategies, and can simplify programming
significantly.

Despite the programming convenience provided by such features, they have
the drawback that implementations are forced to contend with the possibility of
suspension. This can greatly affect the performance of such systems. A significant
problem is that the possibility of suspension, and the general unpredictability of
when a suspended computation will be reactivated and eventually actually exe-
cuted, complicates dataflow analysis and can render many traditional compile-time
optimizations inapplicable; in particular, effective utilization of machine-level re-
sources such as hardware registers becomes difficult. Also, additional testing may
be necessary at runtime to determine whether or not suspension is necessary. This
situation is especially undesirable because many compiler optimizations are pre-
cluded even for programs (or program fragments) that do not exhibit any suspen-
sion, effectively penalizing good programmers and carefully crafted programs. For
example, it has been shown that significant improvements in performance can be
obtained by returning output values of procedures in registers instead of in mem-
ory [1, 21], or with knowledge of lengths of dereference chains [17]. However, in
a language with delay mechanisms, there is always the possibility that "normal"
execution may be preempted by a newly awakened goal that may overwrite a regis-
ter containing an output value or change the length of a dereference chain, thereby
making these optimizations inapplicable.

In this paper, we discuss simple analyses that can be used to detect situa-
tions where suspension effects can be ignored. The utility of this information is
demonstrated by discussing a number of low-level compiler optimizations that rely
on this information. We have implemented the analysis, and compiler optimiza-
tions based on it, in the j c system [13]: we present performance results to show
that information about nonsuspension is fundamental to a variety of low-level com-
piler optimizations that turn out to be very effective in producing significant per-
formance improvements. As a result, the performance of our system very often
approaches or beats that of C code written in a "natural" C style and optimized
extensively. It should be emphasized that an important aspect of this work was
to develop practical analysis methods to identify and optimize the common case
of procedures and programs that do not make use of delay mechanisms. Simplic-
ity, ease of implementation, and reasonable precision for commonly encountered
programs were therefore our primary concerns.

2. D E F I N I T I O N S A N D N O T A T I O N

We assume that the reader is acquainted with the basic concepts and terminology of
logic programming. The set of variables occurring in a syntactic object (i.e., term,
atom, clause, etc.) t is denoted by vats(t). A logic program consists of a finite set
of predicate definitions; in addition, we suppose that we have (descriptions of) a
set of queries of interest, from which analysis may be initiated. The set of all atoms
of the language will be denoted by Atom. The set of (all alphabetic variants of)
clauses defining a procedure p in the program under consideration will be denoted
by clauses(p). The identity substitution over a set of variables V is denoted by idv;
when the set of variables under consideration is obvious from the context, we omit
the subscript. The most general unifier of a pair of terms t l and t2, which is unique
up to variable renaming, is denoted by mgu(tl,t2). The set of all (idempotent)

SUSPENSION-FREE LOGIC PROGRAMS 173

substitutions is denoted by Subst. The empty sequence is denoted by ~. We denote
the Kleene closure of a set S, i.e., the set of all finite sequences of its elements, by
S*, and the reflexive transitive closure of a relation R by R*.

Delay primitives in Prolog-like logic programming languages usually have the
behavior tha t the execution of a goal suspends if certain variables, or arguments
in a procedure call, are unbound. Different languages use different mechanisms
to indicate which variables or argument positions are to be tested when determin-
ing whether a computat ion should suspend. Suspension of computat ions is also
supported in concurrent logic programming languages, where a test in the guard of
a clause suspends if the variables involved are not sufficiently instantiated. In order
to abstract away from syntactic idiosyncracies of particular languages, we follow
Marriott et al. [18] in assuming two (system-dependent) functions tha t specify the
suspension/resumption behavior of goals: delay(A, C, O) is true for a goal A, clause
C, and substitution t~ if and only if the execution of the goal 0(A) using clause
C should be delayed1; and, given a sequence of (suspended) goals G, the function
woken(G,O) yields a sequence of goals in G that are awakened by the substitu-
tion ~. Axioms specifying relationships between these functions are discussed in
[18]. We assume tha t programs are moded, i.e., for each predicate p in a program
its arguments are known to be "input" (if p uses the value of that argument) or
"output" (if p defines that argument, i.e., binds it to a value).

The order in which awakened goals are executed, relative to each other and to
the goals that are currently ready to execute, may differ in many ways depending
on the language. For example, Sicstus Prolog usually schedules goals as soon as
they are awakened, ahead of other ready goals, although the relative order of goals
tha t are awakened at the same time is unspecified [3]; the default policy in j c is to
schedule awakened goals after all previously ready goals have finished executing (the
more common "schedule awakened goals immediately" behavior can be obtained via
a compiler option). KL-1 provides a system of priorities that must be respected
when awakened goals are executed [5]. To this end, we assume tha t there is a third
system-dependent function

insert : Atom* x Atom*) Atom*

such that , given a sequence of ready goals G and a sequence of awakened goals G' ,
insert(G, G') is the sequence of goals obtained by "inserting" the awakened goals
G' into the appropriate positions within the ready goal sequence G.

3. O P E R A T I O N A L S E M A N T I C S

To simplify the discussion that follows, we assume a language tha t uses nondeter-
ministic clause selection. Goals within a clause are assumed to be executed in their
left-to-right order. The operational behavior of a program can be characterized by
the transition rules given below. A state consists of a sequence of "active" goals, a
substitution, and a sequence of suspended goals:

State = Atom* x Subst x Atom*.

1The delay function we consider is actually slightly different from that of Marriott et al. [18]
in that theirs does not take a clause as a parameter.

174 S. D E B R A Y E T AL.

For no t a t i ona l s implici ty, we say t h a t a clause C is variable-disjoint from a s t a t e S =
(Ready, O, Susp) if vats(C) N (vars(Ready) U vars(Susp) U vars(O)) = O. T h e follow-
ing t r ans i t i on rules specify the ope ra t iona l behavior of p rog rams wi th suspension.

1. G o a l R e d u c t i o n : Given a s t a t e S - (p(~) :: Ready,~, Susp), and a c lause
C - p(~) : - B E c[auses(p) t h a t is var iab le -d is jo in t from S, if i t is the case
tha t . delay(p(~z), C, O) = false and ¢ = mgu(~(~), ~) ~ fail, then the goal p(fi)
is r educed to the clause b o d y B:

S ~ (B :: Ready,~bo O, Susp)

where "::" denotes conca tena t ion of sequences. The a nno t a t i on "r" in the
t r ans i t i on r is in tended as a mnemonic for "reduces."

2. V a r i a b l e B i n d i n g : Given a s t a t e S - (" t l = t2" :: Ready, O, Susp) such t h a t
¢ = mgu(O(tl),O(t2)) ~ fail, let ¢ = ¢ o 0, and A = woken(Susp, ¢) ; t hen

S b (insert(Ready, A), ¢, delete(Susp, A)).

The a n n o t a t i o n "b" in the t r ans i t ion b is in tended as a mnemonic for"b inds ."
3. S u s p e n s i o n : Given a s t a t e S -- (p (t) :: Ready, O, Susp), if t he re is no c lause

in clauses(p) t h a t can reduce according to rule (1) above, bu t t he re is some
clause C C clauses(p) such t h a t C is var iab le -d is jo in t from S and for which
delay(p(t), C, ~) is t rue, then the goal p (t) suspends~:

S ~ (Ready, O,p(E) :: Susp).

The anno t a t i on "s" in the t r ans i t i on ~ is in tended as a mnemonic for
"suspends."

4. F a i l u r e : Given a s t a t e S -- (p(t-) :: Ready, ~, Susp), if t he re is no c lause t h a t
can proceed v ia rules (1) or (2), or suspend according to rule (3) above, then
execut ion fails. The ac t ion taken on failure depends on the language: in a
Prolog- l ike language, it m a y t r igger backt racking , while in a commi t t ed -cho ice
language, i t m a y cause the ent i re execut ion to abor t . For our purposes , it
suffices to pos tu l a t e a funct ion

fail_action : State ~ State

t h a t specifies wha t happens on failure. The de ta i l s of th is funct ion are not
re levant for the purposes of th is paper , and are not d iscussed fur ther . We

deno te failure t r ans i t ions by f .

For no t a t i ona l convenience in the discussion t h a t follows, we will c o n c a t e n a t e
the mnemonic anno ta t ions on t rans i t ions to denote the union of the co r re spond ing

t r ans i t i on rela t ions. Thus, ~ denotes the re la t ion ~ U b U f , i.e., t he set of
t r ans i t i ons not involving any suspension. F ina l ly ~,~ denotes all poss ible t r ans i t ions ,

rbsf i .e., ---.~ .

2primitive operations, e.g., involving arithmetic operations, in clause bodies may also suspend
if their arguments are underinstantiated. This can be modeled either by rewriting the program
to introduce auxiliary procedures with the appropriate delay conditions, or by additional rules
similar to this one. The extensions involved are straightforward, and for simplicity of exposition,
we do not consider them explicitly.

SUSPENSION-FREE LOGIC PROGRAMS 175

4. D A T A F L O W A N A L Y S I S F O R N O N S U S P E N S I O N

4.1. Preliminaries

Given the "concrete" transition semantics described in the previous section, a
collecting semantics associates a set of states with each program point. The ob-
vious approach to defining a dataflow analysis would be to abstract sets of states
to "abstract states" and define "abstract operations" over these objects to mimic
the corresponding operations over the concrete domain. Correctness could then
be inferred from the relationships between these objects and operations, using
results of abstract interpretation [8]. However, the details can get quite compli-
cated: for example, abstracting a sequence of goals into a sequence of abstract
goals need not produce a Noetherian abstract domain, and an additional level
of abstraction may be necessary to ensure termination. For example, the "star
abstraction" of Codish et al. [6] allows at most one "abstract atom" with a par-
ticular predicate symbol, while Marriott et al. require bounds on the sizes of the
multisets describing delayed goals [18]. Since our analysis algorithms are really
quite straightforward, we felt that trying to formalize them as full-blown abstract
interpretations would serve mainly to introduce a plethora of notation and to ob-
scure, rather than illuminate, the essential underlying intuitions. For this reason,
we have chosen to give direct proofs of correctness instead of formalizing them
as abstract interpretations (although it will be obvious that we use ideas, such
as "abstract substitutions" and "concretizations," that are derived from abstract
interpretation).

Just as the concrete computation propagates substitutions, the analysis
propagates descriptions of (sets of) substitutions that we refer to as "abstract sub-
stitutions." The set of abstract substitutions is denoted by ASub. We assume that
there is a partial ordering U_ over ASub, and that (ASub, U_) forms a complete lattice
with meet and join operations [7 and U, respectively. We also assume that there is
a function

c o n c : A S u b ---~ go(Subst)

that specifies the set of substitutions described by an abstract substitution. This
function is assumed to be monotone, so that given al, a2 E ASub, al ~ a2 implies
cone(a1) C_ cone(a2). Thus, the higher an abstract substitution is in the lattice
(ASub, _), the larger a set of concrete substitutions it denotes, and therefore the
lesser the information it conveys.

The basic idea behind our approach is very simple and quite general. Suppose we
are given a (top-down) dataflow analysis for an "ordinary" logic programming lan-
guage without any delay primitives, i.e., one whose operational semantics is defined
by omitting the suspension rule from the transition rules defined in Section 3-- in

other words, by the transition relation ~ .3 Such an analysis, which we refer
to as the underlying analysis in the discussion that follows, can be extended in a
simple way to deal with programs containing delay primitives, and the information

3Strictly speaking, since there is no suspension, the operational semantics of such a language
could be somewhat simpler than this: there is no need for a list of suspended goals in a state, and
the variable binding rule could be simplified. For the development of this paper, however, it is
convenient to work with states whose structure is as in Section 3, but where the list of suspended
goals is always empty, and have delay(A, C, 9) be false for all A, C, and 0.

176 S. DEBRAY ET AL.

gathered used to detect nonsuspending procedures and calls. Broadly speaking,
such an analysis typically iterates over the predicates in a program, analyzing each
of the clauses for each predicate in turn, maintaining "abstract environments" at
each program point tha t describe the possible bindings for variables at tha t point.
Analysis usually starts with these abstract environments initialized to be empty,
and information is propagated iteratively until there is no change to any of the
information gathered: termination is ensured using additional mechanisms such as
memo tables. Assume that the analysis provides two operations: analyze_call :
Atom x ASub ~ ASub, which describes the effects of a procedure call; and
extend_abs_env : ASub × ASub - - ~ ASub, which describes how to extend an abstract
environment to take into account the effects of a procedure call or unification. The
analysis of a clause "p(f i) : -q l (f i l) , . - - ,qn(£ tn) , ' ' given an abstract substitution c~
for a call, proceeds as follows:

1. Abstract the effects of head unification with the formal parameters 2, given
the abstract substitution c~ describing the actual parameters, so as to obtain
an initial abstract environment A1.

2. Let the abstract environment at the program point immediately before the
literal qi(~2i) be denoted by A~, 1 < i < n.

For i := 1 to n do:

A~ := analyze_call(qi, Ai);

A~+I := extend_abs_env(Ai, A~);

3. Compute and return the abstract environment A~+I projected on the argu-
ments in the head of the clause.

A call to a procedure is analyzed by processing each clause for that procedure,
in turn, as described above. For each clause, the analysis yields an abstract
environment, and these can be "summarized"-- for example, using the join op-
erator kJ on ASub-- to yield an abstract environment describing the substitutions
that may be obtained when that call returns.

In the following sections, we describe how the underlying analysis described
above can be extended to detect situations where suspension effects can safely be
ignored. The underlying intuition is that , as long as we can guarantee tha t the "nor-
mal" left-to-right control flow of a clause will not be disrupted due to suspension
effects, we can use (approximations to) the underlying analysis and be guaranteed
soundness. There are two ways in which normal left-to-right execution can be dis-
rupted: (i) a goal may suspend, and (ii) a suspended goal may be awakened and
executed ahead of other ready goals. Section 4.2 discusses how to deal with the
first of these situations. We handle the second situation by analyzing the program
to identify situations where no suspended goal will be awakened: this is discussed
in Section 4.3.

4.2. Weak Nonsuspension

Define the parent relation on pairs of goals as follows: if a computat ion has a
reduce-transition (L ::Ready, O, Susp) r (B1 :: "'" :: Bn :: Ready, 8 ~, Susp) via a
clause " H : - B 1 , . . . , Bn," then the goal L is said to be the parent of the goals
B1, . . . , Bn. The descendant relation on pairs of goals is simply the reflexive tran-
sitive closure of the parent relation. A goal L is said to be weakly nonsuspending

SUSPENSION-FREE LOGIC PROGRAMS 177

if none of the descendants of L (which includes L itself) will suspend, i.e., take
a ~L-transit ion.

A key notion in our approach to the analysis of weak nonsuspension is tha t
of the "demand" of a procedure. Intuitively, this is a description of the circum-
stances under which none of the clauses defining that procedure will suspend. More
formally, we have the following definition:

Definition 4.1. Given a procedure p defined by clauses C1,..., Cn in a program P,
the demand of p, denoted by demand(p), is given by

demand(p) = ~ {~ • ASub I V0 • conc(c~) VC • clauses(p): -,delay(p(~), C, 0)}.

where 5: is a tuple of distinct variables.

Example 4.1. Consider the following procedure to compute the factorial function:
the language is our current incarnation of Janus, where guard tests suspend until
the values of the operands are available:

fact(N, A, F) :-N=O IF=A.
fact(N, A, F) :-N>O I fact(N-i,N*A,F).

Suppose abstract substitutions map variables to the values ground and any,
denoting, respectively, the set of ground terms and the set of all terms of the
language. I t is easy to see that neither guard will suspend if the first argument is
bound to a (any) ground term. Thus, the demand of f a c t / 3 is {N H ground, A
any, F F-. any}.

The analysis to identify weak nonsuspension is a conceptually straightforward
extension to the underlying analysis described in the previous section. With each
literal L in a clause body (respectively, predicate p in the program) is associated a
flag L. nosusp (respectively, p. nosusp), indicating whether tha t literal (predicate) is
weakly nonsuspending. Initially, all of these flags have the value t r u e , indicating
that our initial assumption is that no procedure or call will suspend. The program
is first processed to compute demand(p) for each procedure p in the program (note
that this is a strictly local computation, and does not require any kind of global
fixpoint computation). After this, a global fixpoint computat ion is carried out to
identify weakly nonsuspending procedures and calls. The processing of a clause
"p(g) : - L 1 , . . . ,Ln" is shown in Figure 1. When processing a body literal Li -
q,(. . .) under an abstract environment A~, we first verify whether its activation
can be guaranteed to perform at least one goal reduction step without suspending
by checking whether Ai 7- demand(qi). 4 Then, as in the underlying analysis, we
determine the abstract environment A~' that would be obtained if L~ were to execute
without any suspension. The main change, compared to the underlying analysis, is
tha t at this point, we compute the resulting abstract environment Ai+l as A~ ' if Li
can be guaranteed to not suspend, and as Ad~A~ ~ otherwise: here, Ai LIA~ ~ expresses
what can happen whether L~ suspends or not. As before, a call to a procedure

4Winsborough has pointed out [22] that this check can be made more precise by also checking
whether it may be possible to guarantee that some clause for the called predicate will reduce, in
which case the possible suspension of other clauses is moot: this can be done, in the presence of
type information, using the notion of covering discussed in [9].

] 7 8 S. DEBRAY ET AL.

1.

2.

Given an abstract subetitution a describing the actual parameters in the
call, abstract the etfects of head unification with the formal parameters ~ to
obtain an initial abstract environment A1.

Let the abstract environment at the program point immediately before the
literal Li --- qi(fil) be denoted by Ai, 1 < i < n.

For i := 1 to n do:
Li.nosusp := q~.nosusp A (Ai C_ demand(qi));
A~ := analyze_call(qi, Ai);
A~' :-- extend_abs_env(Ai,A~);
Ai+l : -- if -~Li.nosusp then Ai H A~' else A~';

3. p.nosusp := p.nosusp A (A~=a Li.nosusp);

4. return the projection of the abstract environment An+t(£) on the arguments
in the head of the clause.

F I G U R E 1. Weak nonsuspension analysis: processing a clause "p(fi) : - L1, . . . , L,~."

is processed by analyzing each clause defining that procedure, and summarizing
the results. The analysis of a program involves iterating until there is no change
to either the calling and success patterns computed for each procedure, or the
suspension flags of any procedure or literal.

Define a suspending transition sequence to be any sequence in ?.~* ~ . The fol-
lowing theorem states that, as long as we do not have to contend with goals being
awakened, the algorithm of Figure 1 computes suspension bits correctly in the sense
that any literal or predicate that may suspend has its nosusp bit set to f a l s e .

Theorem 4.1. Let L = p(~z) be a literal in a program such that for some initial query

Q, it is the case that (Q, idvars(Q), g) ~.~* (p(•),/9, Susp); and (p(ft), 0, 6) ~b~/,~ S
for some state S and suspended goals Susp. Then, L.nosusp and p.nosusp are set
to f a l s e by the analysis algorithm.

PROOF. Suppose that L = p(fi) is a literal in a program such that for some initial
query Q, (Q, id,a~s(Q),¢)'-** (p(~),O, Susp). Consider transitions from the state
(p(fi),0, c). We show, by induction on the length n of suspending transition se-

quences that if (p(fi), 0, 6) ?~* ~,~ S, then the flags L. nosusp and p. nosusp are set of
f a l s e by the analysis algotithm.

In the base case, n= 1, and it must be the case that (p(~),0, e) ~ S. From the
rules defining the transition semantics, this can happen only if the goal p(0(fi))
is not able to reduce using any clause for p, and there is at least one clause C
such that delay(p(f~), C, 0). Since the underlying datafiow analysis is assumed to be
sound, it must be the case that 0 C conc(A) for the abstract environment A inferred
immediately before L. Now suppose that A [-- demand(p). From the definition of
demand(p), this means that

conc(A) C {¢ e Subst I VC • clauses(p): -~delay(p(fz), C, ¢)},

i.e., the goal p(0(~2)) does not suspend. This is a contradiction, whence we conclude
that it must be the case that A ~: demand(p). It is then straightforward to see, from
the definition of the analysis, that L.nosusp is set to f a l s e immediately. Because
of this, in step (3) of the algorithm, the flag p.nosusp also becomes set to f a l s e .

SUSPENSION-FREE LOGIC PROGRAMS 179

For the inductive case, assume that the theorem holds for all suspending tran-
sition sequences with length less than k, and consider a suspending transition
sequence from (p(~),O,~) to S with length k. Then, there must be a clause
C - "p(~) : - L 1 , . . . , Ln" in clauses(p) such that C is variable-disjoint from p(~),
~delay(p(~), C, 8), and ~b = mgu(~2, ~) ~ fail, so that

. r b f r b f (p(~) ,O,e)r (L1 : : ' " : : L n , ¢ O l i , e) (' z . . . ~.z ~, S.
k:l

Now consider the transition sequence (L1 :: --. :: L n , ¢ o O,e)rbf . . . ~ S with
length k - 1 : it must be the case that for some Li, 1 < i < n, there is a suspending
transition sequence from (Li, ¢, e) to S of length less than k, where ¢ is some
substitution. Suppose that the predicate symbol for Li is q; then from the induction
hypothesis, the flags Li.nosusp and q.nosusp will be set to f a l s e during analysis.
Suppose that this happens during the j t h iteration of the algorithm, j > 0: since
the values of some flags have changed during this iteration, the algorithm will iterate
one more time. In the next iteration, p.nosusp will be set to f a l s e because the
nosusp flag for the body literal Li in the clause C defining p has become f a l s e .
This change in the value of a flag will cause the algorithm to iterate once more,
and this time the flag L.nosusp will be set to false. The theorem follows.

Termination follows from the fact that there are only a finite number of flags
manipulated by the algorithm since each flag can change only from t r u e to
false.

The analysis described above is aimed at inferring, for any goal p(~), whether any
descendant of this goal can suspend. This information, while potentially interesting,
is in general not sufficient for our purposes: we are interested in datafiow analysis
for various low-level optimizations, such as register allocation and optimization of
unification code, that require a more precise identification of what may happen at
runtime. The problem that arises is the following: suppose that we have inferred
that none of the descendants of a goal p(fi) will suspend. However, if p(~) is
executed in a state where there are already some suspended goals, it may happen
that in the course of the resulting computation, a variable x gets a binding that
causes the awakening and execution of a suspended goal q(~). Without a great
deal of knowledge about the possible suspended goals that may be awakened at any
point, and about the scheduling policy for these awakened goals, it is very difficult
to predict the behavior of the system under these circumstances (Marriott et al.
show how a simple scheduling strategy, such as that used by Sicstus Prolog, can be
taken into account to some extent [18]; however, for more sophisticated strategies,
e.g., involving multiple priority levels as in KL-1, the task seems more difficult).
It is for this reason that the statement of Theorem 4.1 assumed that the set of
suspended goals is empty. In the next section, we describe an additional dataflow
analysis that can be used to identify situations where it can be guaranteed that no
suspended goal will be awakened in the course of a computation. []

4.3. Strong Nonsuspension

A goal is said to be strongly nonsuspending if it is weakly nonsuspending and can
additionally be guaranteed to not awaken any suspended goal. For strongly nonsus-
pending goals, unpredictabilities arising from dynamic suspension and resumption

180 S. DEBRAY ET AL.

of goals can be guaranteed to not arise, making their execution behavior much
simpler to predict and enabling a variety of low-level optimizations to be carried
out.

The intuition behind our analysis to detect strong nonsuspension is very simple.
Consider a clause " p (~) : - L 1 , . . . , L i , . . . ,Ln." Suppose tha t a variable z occurs
in an output position in Li, and assume that the analysis described in the pre-
vious section has identifed Li as weakly nonsuspending. Since the literals in the
body of ' this clause are assumed to be executed from left to right, it is not dif-
ficult to see tha t if all occurrences of z in input positions in the body occur to
the right of L~, i.e., in Lj where j > i, then none of the literals Lj that need
the value of z will be executed before Li. Moreover, since Li is weakly nonsus-
pending, neither it nor any of its descendants will suspend, so they will produce
a binding for z before any of the literals Lj that need the value of z are exe-
cuted. We can generalize this idea slightly, and require only that if z occurs in
any Lk to the left of Li, then Lk should be (weakly) nonsuspending as well-- in
other words, that Lk does not actually use the variable z (the commonest example
of this situation is where the Lk takes the variable z and simply puts it inside a
structure without actually examining its value, e.g., in programs using difference
lists).

Of course, this simple analysis is not quite adequate, for two reasons. First, all
possible aliasing has to be taken into account. More importantly, it may happen
that the variable z in question is also an output variable in the head of the clause,
in which case it is necessary to consider all call sites for p to determine whether
there may be any activation suspended on the corresponding actual parameter . At
each such call site, the reasoning proceeds as before, and may involve looking at
the call sites for the clause containing the call site, and so on. Overall, this gives
rise to an iterative analysis algorithm that proceeds as follows:

1. initialize all strong nonsuspension bits to t rue ;
2. for every literal L (procedure p) that is not weakly nonsuspending, set

L.s_nsusp (p.s_nsusp) to f a l s e ;
3. iterate over the Clauses in the program, and for each clause C, execute the

procedure analyze_clause(C) (shown in Figure 2), until there is no change to
any strong nonsuspension bit.

To reason about the soundness of this algorithm, we need the notion of the rank
of a goal in a sequence of states obtained during a computat ion start ing from an
initial query. This notion is defined as follows:

1. Each a tom in the initial query has rank 0.
2. If a s tate (p(~) :: Ready, 8, Susp) reduces to a state (L1 :: ".. :: L , :: Ready, ~',

Susp) via a clause C --- "p(~) : - L 1 , . . . , L,~" 6 clauses(p), and the reduced goal
p(fi) has rank k, then each of L 1 , . . . , Ln has rank k + 1.

3. The rank of a goal does not change if it suspends or is awakened.

The following establishes the correctness of this algorithm.

Theorem ~.2. If a literal L (respectively, procedure p) in a program is not strongly
nonsuspending, then L.s_nsusp (respectively, p.s_nsusp) is set to f a l s e by the
algorithm of Figure 2.

SUSPENSION-FREE LOGIC PROGRAMS 181

p r o c e d u r e analyze_clause(C)
b e g i n

l e t C - p (~) : - Lz , . . . ,L , ;
for each body literal Lj -- q(~) do

i f q.s_nsusp = f a l H then Lj.s..nsuap := f a l l e ;
e l se for each variable z in an output position in Lj do

i f (3y E aliases(z))(3Li to the left of L$) : y occurs in an input position
of Li and Li is not weakly non-suspending t h e n

L~.s_nsusp := fa l se ;
fi
i f (3u E aliases(z)) : u is an output argument in the head of C and

there is a call site M for p such that M.s_nsusp = f a l n t h e n
Lj.s_nsusp := f a l s e ;

f i
o d / * for */

fi
o d
p.s_nsusp := p.s_nsusp A (A '~=z Li .s_nsusp) ;

e n d / * analyze_clause */

F I G U R E 2. The function analyze_clause for strong nonsuspension analysis.

PROOF. (sketch) A literal or procedure may fail to be strongly nonsuspending for
either of two reasons: (i) it may not be weakly nonsuspending; or (ii) its execution
may result in a variable binding that causes an awakened goal to execute.

In the first case, Theorem 4.1 implies that it is inferred to be weakly nonsus-
pending. In this case, its strong nonsuspension bit is set to f a l s e at the beginning,
before the analysis proper begins. Since the algorithm only changes strong nonsus-
pension bits from t r u e to f a l s e , the value of this bit remains f a l s e at the end of
the analysis.

In the second case, consider a goal L1 that is weakly nonsuspending, but that fails
to be strongly nonsuspending because there is some initial query Q during whose
execution the goal L1 is executed and causes a suspended goal L2 to awaken. This
implies that there is a clause C in the program that is a "common ancestor" of
both L1 and L2, i.e., whose body B contains literals B1 and B2 such that L1 is a
descendant of B1 and L2 is a descendant of B25; moreover, since L1 awakened L2,
it must be the case that L2 suspended before the execution of L1, so B2 must be
to the left of B1. Let the rank of L1 be m, and that of B1 be m ~. Since L1 is a
descendant of B1, it must be the case that rn ~ <_ m. We proceed by induction on
m -- TrJ.

In the base case, m - m ~ = 0. In this case, B1 is the same as L1. Since B2 has a
descendant that suspends, B2 is not weakly nonsuspending. Since B2 is to the left
of B1 (i.e., L1) in the clause C, it can be seen from Figure 2 that L . s _ n s u s p is set
to f a l s e by the algorithm.

In the inductive case, assume that the theorem holds for m - m I < k, and
consider a situation where m - m ' = k + 1. In this case, suppose that L1 occurs
in the body of a clause for a procedure p; then there must be a goal L " with rank

5It may help the reader's intuition to think of (the body of) C as a common ancestor of Lz and
L2 in a proof tree for the query Q, although the presence of delays complicates the connections
between the proof trees for queries and their operational behavior.

182 S. DEBRAY ET AL.

m" that reduced using this clause. By the definition of rank, m = m" + 1, which
means m" - m' = k. From the induction hypothesis, L".s_nsusp is set to f a l s e
by the algorithm. This means that at the next iteration of the algorithm, the fact
that L".s_nsusp = f a l s e for the call site L" will be detected, and L.s_nsusp will
be set to f a l s e .

As with the algorithm for weak nonsuspension, termination follows from the fact
that there are only a finite number of flags manipulated by the algorithm, and each
flag can change only from t r u e to f a l s e . []

5. I M P L E M E N T A T I O N

5.1. Background

Janus is a committed-choice logic programming language that, in its present in-
carnation, closely resembles Strand [10]. The j c system is a sequential imple-
mentation where clause bodies are executed from left to right as in Prolog. The
j c compiler translates Janus programs to C and then uses a C compiler (the
performance numbers in this paper correspond to gcc 2.6.3 invoked with -02
-fomit-frame-pointer) to compile the resulting program to executable code. An
early version of the system is described in [13], and a prototype of the system,
including the dataflow analyses and the optimizations based on this analysis that are
discussed in Section 6, is available by anonymous F T P from f t p . cs . a r i z o n a , edu.
As with many other committed-choice languages, Janus uses dataflow synchroniza-
tion. Thus, a procedure call will suspend if the input arguments are sufficiently
underinstantiated that none of the clause guards for that clause can commit and
they do not all fail; and even if a procedure call commits to a clause, primitive
operations in the body of the clause will suspend if their operands are not suffi-
ciently instantiated. Because of this, nonsuspension analysis is crucial for any kind
of low-level compiler optimization.

We have implemented weak nonsuspension analysis in our system, based on a
very simple groundness analysis. The underlying abstract domain for our analy-
sis consists of only two points: ground and any, denoting, respectively, the set of
all ground terms and the set of all terms of the first-order language defined by
the program under consideration. The ordering on this domain is ground E any.
We use reexecution of primitive operations (see [16]) to improve the precision of
the analysis. We have not yet implemented strong nonsuspension analysis. The
reason weak nonsuspension has been sufficient so far is that by default, goals
awakened after suspension are scheduled in "batch mode" in jc , i.e., executed
at the end after all nonsuspended goals have been executed. In this case, there
is no possibility that binding a variable will cause an awakened goal to be ex-
ecuted ahead of a ready goal. The more familiar scheme for scheduling awak-
ened goals, where a goal is executed as soon as possible after it is awakened, is
available via a compiler option, but optimizations based on nonsuspension anal-
ysis, such as returning output values in registers instead of in memory, are cur-
rently turned off in this case: we expect to relax this restriction in the future
when strong nonsuspension analysis is implemented and incorporated into our
compiler. The algorithm for strong nonsuspension analysis is sufficiently similar
structurally to that for weak nonsuspension analysis that we do not anticipate any
significant loss in precision of analysis when strong nonsuspension is taken into
account.

SUSPENSION-FREE LOGIC PROGRAMS 183

We have not separately measured the time taken to analyze programs because
dataflow analysis and optimization accounts for a very small part of the overall
compilation time. Because Janus programs are compiled to C code which is then
processed by a C compiler, most of the overall time for translation to the object
code is spent in I /O operations and in the C compiler (other systems that compile
to C, e.g., KLIC [5], report similar experiences). As a result, there is no perceptible
decrease in the overall compile time when dataflow analysis and optimizations are
switched off.

5.2. Precision

Since our analysis is not tied to any particular abstract domain, the question of
precision is, in some sense, moot: the overall precision of a nonsuspension analysis
could, in principle, be improved where necessary simply by using a more precise
underlying analysis with a more elaborate abstract domain. Our experience has
been that in practice, the simple groundness analysis that we use, with a lim-
ited amount of reexecution, turns out to pro~tuce results that are quite reasonable.
This is illustrated in Table 1. The benchmarks used include the following pro-
grams: aquad performs a trapezoidal numerical integration f~ eXdx using adaptive
quadrature and an epsilon of 10-8; bessel computes the Bessel function J75(3), and
involves both integer (for factorial) and floating-point (for exponentiation) compu-
tations; binomial computes the binomial expansion ~__° 0 xiy 3°-~ at x = 2.0, y = 1.0;
chebyshev computes the Chebyshev polynomial of degree 10,000 at 1.0; e computes
the value of e = 2.71828... by iteratively summing the first 2000 terms of the series
1 + 1/1! + 1/2] + 1/3! + - . . ; fib computes the Fibonacci value F(16); log computes
1og¢(1.999) using the expansion log~(1 + x) = ~.i>o(-1)i+lx~/i, to an accuracy of
10-6; mandelbrot computes the Mandelbrot set o n a 17 x 17 grid on an area of the
complex plane from (-1 .5 , -1 .5) to (1.5, 1.5); muldiv exercises integer multiplica-
tion and division, doing 5000 of each; nrev is the usual naive reverse program on
an input list of length 100; pascal is a benchmark, by Tick, to compute Pascal's

TABLE 1. Weak nonsuspension analysis: precision.

Procedures Cal l s i tes

P r o g r a m Total Nonsusp. Tota l Nonsusp,

aquad 8 7 26 26

bessel II I0 35 35

binomial 7 7 24 24

chebyshev 3 2 9 9

e 2 2 6 6
f i b 1 1 6 6

l o g 6 5 27 27
mande lb ro t 10 2 27 19

muldiv 1 1 7 7

nrev 3 3 i0 I0

pascal 15 14 49 49

p i 3 3 9 9
sun 2 2 4 4
taX 1 1 8 8

Total: 73 60 247 239

184 S. DEBRAY ET AL.

triangle; pi computes the value of ~r to a precision of 10 - 3 using the expansion
~r -- 4 ~--]~>0((-1)~/2i + 1); sum adds the integers from 1 to 10,000--it is essentially
similar to a tail-recursive factorial computation, except that it can perform a much
greater number of iterations before incurring an arithmetic overflow; and tak, from
the Gabriel benchmarks, is a heavily recursive program involving integer addition
and subtraction. Of these programs, aquad, bessel, binomial, chebyshev, e, log,
mandelbrot, and pi are floating-point intensive computations. These were chosen
in part to focus on numerical computations, which--according to folklore--are not
considered to be especially efficiently executable in logic programming languages.

The j c compiler works by first duplicating the code (i.e., the abstract syntax
tree) for each procedure in the module being compiled: the intent is that one copy
is for invocations that could potentially suspend, the other for invocations that
can be guaranteed to be nonsuspending. This is followed by weak nonsuspension
analysis, after which the program is transformed to take nonsuspension informa-
tion into account. Two things happen during this transformation phase: non-
suspending procedure calls are modified to call the nonsuspending version of the
called procedure; and possibly suspending primitive operations in clause bodies,
e.g., arithmetic, are transformed into out-of-line procedure calls to ensure correct
behavior on suspension and resumption. Finally, the call graph of the resulting pro-
gram is examined starting at the roots, which correspond to the possibly-suspending
versions of exported procedures, and any version of a procedure that is found to be
unreachable is deleted.

Because of the initial duplication of code and the subsequent deletion of un-
reachable versions, the number of procedures and call sites in the program that is
actually compiled can be quite different from that in the original source program.
To reduce confusion, therefore, the numbers in Table 1 are given relative to the
original source program. Since the language semantics specifies that each opera-
tion in a clause body, regardless of whether it is a primitive operation or a call
to a user-defined procedure, can potentially suspend, each body literal is counted
as a "call site" that can, in principle, suspend. A procedure is then counted as
nonsuspending if a nonsuspending version of that procedure is retained in the final
program, while a call site, i.e., body literal, is counted as nonsuspending if the
final program contains a nonsuspending instance of that literal. Columns 2 and 3
of Table 2 give, respectively, the total number of procedures in the program and
the number inferred to be nonsuspending, while columns 4 and 5 give the same
information for individual call sites. Note that some programs, such as aquad and
b e s s e l , have suspending versions of procedures but no suspending call sites: this
is because it is possible for the user to invoke the top level goal in a manner that
causes it to suspend; our analysis infers, however, that once the top level exported
goal commits, there will be no further suspension. For these programs, the program
contains a suspending version of the exported procedure, but there are no suspend-
ing call sites in the program. Other programs, such as b inomia l and pi , have top
level goals that do not take any user input (this can happen, for example, if the only
exported procedure is main/0), and therefore cannot suspend: for these programs,
the generated code contains neither suspending versions of any procedures nor any
suspending call sites.

It can be seen that for most of the programs tested, most of the procedures
and call sites were inferred to be nonsuspending. The mandelbro t benchmark is
an exception to this, primarily because the underlying analysis is not sophisticated

SUSPENSION-FREE LOGIC PROGRAMS 18b

TABLE 2. Output value placement in registers: performance (j c on a
Sparcstation IPC).

Execution t ime (~s)

Benchmark M RT RU R T / M R U / M

aquad 45600 33242 20569 0.729 0.451
b e s s e l 12516 12467 12364 0.996 0.988
binomial 4362 3924 5720 0.900 1.311
chebyshev 23689 23689 8500 1.000 0.359
e 12495 12372 9832 0.990 0.787
f i b 12330 4774 4711 0.387 0.382
log 35025 35432 17198 1.011 0.491
mandelbrot 64888 71464 23942 1.101 0.369
muldiv 13285 13303 12705 1.001 0.956
nrev 7842 8006 8018 1.021 1.022
p i 25031 27860 12144 1.113 0.485
sum 1691 1691 1694 1.000 1.002
talc 13505 4732 5340 0.350 0.395

Geometric Mean: 0.844 0.623

Key: M: memory returns only. RT: register and memory returns (tagged registers only). RU: register
and memory returns (tagged and untagged registers).

enough to carry out the kind of inductive reasoning necessary to infer groundness
of arrays that are being defined an element at a time. However, as Tables 2 and 3
show, enough information is available to allow the inner loops of this program to be
optimized, resulting in significant performance improvements despite the apparently
poor precision of analysis.

In general, our experience has been that the precision of our nonsuspension analy-
sis is intimately tied to the precision of the underlying analysis. The simple abstract
domain used in our implementation is adequate for programs that do not have much
in the way of dependencies between variables, e.g., that do not use techniques such
as difference lists and where there is little aliasing. The precision of our analysis
degrades if the underlying analysis is not precise enough to allow us to determine
whether or not the procedure demands are being satisfied. The situation can some-
times become fairly subtle. As an example, consider the following procedure:

p([]).
p([msg(In, Out)] Msgs]):-Out is In+ i00, p(Msgs) .

In order to allow us infer that p/1 is weakly nonsuspending, the underlying analysis
must be able to provide information about the structure of terms with considerable
precision. While such (underlying) analyses have been studied in the literature
(see, for example, [14, 20]), whether or not it is reasonable to expect this degree of
precision from the underlying analysis depends on the kinds of programs one expects
to encounter, and perhaps also on the speed with which the compiler is expected
to work (although our experience has been that the time taken for I /O operations
can, in many cases, dominate the overall compilation time, suggesting that within
reasonable limits, efficiency of analysis is not as critical as one might imagine).
Nevertheless, it is important to note that imprecision in nonsuspension analysis
is due fundamentally to shortcomings in the underlying analysis: that is, the lost
precision in suspension analysis can be recovered simply by improving the under-
lying analysis, with no changes necessary to the suspension analysis algorithms.

186 S. DEBRAY ET AL.

T A B L E 3. P e r f o r m a n c e i m p r o v e m e n t s d u e to u n t a g g e d a n d u n b o x e d o b j e c t s .

M emory r e tu rns Reg + mem. r e tu rns

P r o g r a m T U U / T T U U / T

(a) Execut ion t ime (Hs)

aquad 45600 27300 0.599 33242 20569 0.619
bessel 12516 11013 0.880 12467 12364 0.992
b i n o m i a l 4362 5919 1.357 3924 5720 1.458
chebyshev 23689 8500 0.359 23689 8500 0.359
e 12495 9641 0.772 12372 9832 0.795
fib 12330 12260 0.994 4774 4711 0.987
l og 35025 16174 0.462 35432 17198 0.485
mande lb ro t 64888 24875 0.383 71464 23942 0.335
mu ld iv 13285 12708 0.957 13303 12705 0.955
n r e v 7842 7851 1.001 8006 8018 1.001
pi 25031 11944 0.477 27860 12144 0.436
sum 1691 1694 1.002 1691 1694 1.002
t a k 13505 13462 0.997 4732 5340 1.128

Geomet r ic Mean: 0.727 0.738

(b) Heap usage (words)

aquad 30884 10255 0.3320 23332 544 0.0233
bessel 689 418 0.6067 689 452 0.6560
b i n o m i a l 1208 249 0.2061 1026 6 0.0058
chebyshev 30002 6 0.0002 30002 6 0.0002
e 6005 6 0.0010 6005 6 0.0010
f i b 6389 6389 1.O000 5 5 1.0000
l og 28870 12 0.0004 28866 6 0.0002
m a n d e l b r o t 69533 654 0.0094 69533 654 0.0094
muld iv 5 5 1.0000 5 5 1.0000
n r e v 7842 7851 1.001 8006 8018 1.001
p i 20007 9 0.0004 20007 6 0.0003
sum 5 5 1.0000 5 5 1.0000
t a k 7121 7121 1.0000 5 5 1.0000

Key: T: tagged values. U: untagged values.

. A P P L I C A T I O N S

6.1. Returning Output Values in Registers

Most implementations of logic programming languages treat input and output ar-
guments to procedures in a fundamentally asymmetric way: input values are passed
in registers, but output values are returned in memory. For programs where predi-
cate modes are known, output arguments can be returned in registers instead. This
avoids unnecessary work arising from memory reads and writes due to initialization
and dereferencing, and can cause significant performance improvements. For lan-
guages that support suspension of activations, however, the problem is complicated
by the fact that if a call to a procedure can suspend, the output registers will con-
tain garbage when control returns to the caller (since the suspended computation
will not have computed values into them) unless additional work is done---both
at suspension time and when the suspended activation is resumed--to ensure that
values are propagated correctly. This can become fairly complicated and incur per-
formance penalties. A much simpler solution that works well in practice (see [1])
is to consider returning output values in registers only for procedures that can be

SUSPENSION-FREE LOGIC PROGRAMS 187

guaranteed to be nonsuspending. It turns out, however, that weak nonsuspension is
inadequate for this optimization. The reason is that if an output value is returned
in a register, that register must not be overwritten until that value has been used
or stored into memory. However, if a procedure p that returns some outputs in
registers can only be guaranteed to be weakly nonsuspending, it may happen that
some awakened goal is executed as soon as p has finished executing, but before
the goal that would have used the value returned in a register by p. This would
either overwrite the register containing p's output value and thereby produce in-
correct results, or would require complex and expensive runtime schemes to save
and restore output value registers where necessary. This problem can be avoided if
output values are returned in registers only for procedures that can be inferred to
be strongly nonsuspending.

This optimization (returning output values in registers) has been implemented
in jc : the interested reader is referred to [1]. Performance results for a number of
benchmark programs on a Sparcstation-IPC (with garbage collection turned off)
are shown in Table 2.

6.2. Maintaining Unboxed Values

In languages with delay operations, the low-level representation of a data object at
a particular program point cannot always be predicted in a precise way at compile
time since this depends on whether the value of an expression has been computed
or not, which in turn depends on the suspension behavior of the program. The
code generated for programs in such languages must, therefore, be able to deal with
different kinds of representations that may arise at runtime. There are two different
but related issues that arise here. First, it is necessary to be able to determine how
a bit pattern, encountered at runtime, is to be interpreted--e.g., as an unbound
variable or as a value of a particular type. Second, different data objects may have
different sizes: for example, the size of an integer value may not be the same as
that of a double precision floating-point value. The usual way to address the first
problem is to attach a descriptor to each value, to specify how its bit pattern is
to be interpreted: such descriptors are usually referred to as tags [12, 19]. The
second problem is usually handled by making values of different sizes "look the
same" by manipulating pointers to them rather than the values themselves: such
an indirect representation is often referred to as a boxed representation. In general,
therefore, operations have to contend with the manipulation of tags and/or a level
of indirection, and as a result incur a performance penalty.

This performance overhead is especially serious in numerical computations be-
cause implementations of logic programming languages very often represent floating-
point numbers as boxed values (see, for example, [4]). This incurs a significant
performance penalty for a number of reasons. First of all, since floating-point
values are heap-allocated, numerical computations involving boxed floating-point
values fail to exploit hardware registers effectively, and generate a lot more memory
traffic. The allocation of fresh heap cells may also result in additional checks for
heap overflow. Finally, the high rate of memory usage also results in increased
garbage collection and adversely affects cache and paging behavior. However, if
enough information is available at compile time about a value at a particular pro-
gram point, it is possible to (generate code to) maintain the value in its native
machine representation, i.e., without any tagging or boxing, and thereby avoid

188 S. DEBRAY ET AL.

these overheads. For example, in general, it is not enough to know that a value will
be a number--we need to know whether it will be an integer or a floating-point
value. Such information can be obtained in various ways, e.g., via type analyses
or from programmer annotations: the details are orthogonal to the topic of this
paper, and are not discussed further.

The problem of optimizing the low-level representations of objects by maintain-
ing them in untagged and unboxed form becomes more complicated in languages
with delay operations because, in this case, it is no longer enough to have precise
type information about an object: it is necessary to guarantee also that for all
executions of the program (for the inputs of interest), the value of that object will
have been computed by the time control reaches the program point of interest. The
reason for this is not difficult to see: since a value in native machine format does not
have a descriptor that can be used to identify its type, it may not be possible, in gen-
eral, to distinguish an unbound variable from an untagged integer or floating-point
value. We therefore need (weak) nonsuspension analysis to identify variables whose
values can be guaranteed to have been computed at a particular program point.

This optimization has been implemented in j c [2]. At this time, only numeric val-
ues, i.e., integers and floating-point values, are considered for untagged and unboxed
representation. The use of untagged values is not restricted to intra-procedural com-
putations: untagged values may be stored on the stack, passed to other procedures
as arguments, and returned from procedures as outputs. Since untagged values
may be stored on the stack, the garbage collector must be modified so that it can
correctly identify objects in stack frames: this is done by adding a word to each
stack frame that can be used by the garbage collector to index into a symbol table
that identifies the procedure that frame belongs to and specifies the structure of its
stack frames. Currently, untagged values on the heap are not supported because
the structure of the heap is a lot less predictable than that of the stack, making
the identification of untagged objects during garbage collection more difficult. This
has to do primarily with the tagging scheme used by an implementation: if the
tagging scheme used by an implementation is rich enough to support descriptors
that encode the structure of (some types of) heap-allocated objects, in particular,
information about elements that are untagged, then the problem with identification
of untagged values on the heap goes away. In this case, our approach can be readily
extended to handle untagged values on the heap. We are currently considering
extensions to our tagging scheme to allow untagged objects on the heap. However,
these details are largely orthogonal to the topic of this paper.

Table 3 shows the improvements in speed and memory usage resulting from the
use of untagged and unboxed values (garbage collection was turned off for these
timings, so the speed improvements do not take into account reductions in garbage
collection time due to reduced heap usage). Programs that involve mostly integer
arithmetic may not benefit much from this optimization since integers do not need
to be boxed, and operations on tagged integers are not much more expensive than
on untagged ones: this is illustrated by f ib . However, for programs that involve
a lot of floating-point computation, the use of untagged values generally leads to
significant improvements in speed and memory usage (the binomial program is an
exception: its slowdown using untagged values is due to the use of C as the back-
end compiler for jc , and the concomitant lack of control over hardware register
allocation). Overall, this optimization produces a speed improvement of about
30% for the programs tested.

SUSPENSION-FREE LOGIC PROGRAMS 189

6.3. Inlining

Inlining refers to the replacement of a procedure call by (the appropriate instance
of) the body of the called procedure. One reason inlining is potentially important
for logic-based languages is that such languages lack nestable iterative constructs,
but instead implement iteration using tail recursive procedures. This can incur
significant performance penalties, relative to traditional imperative languages, due
to additional procedure calls. As an example, the multiplication of two n × n
matrices requires three different tail-recursive procedures in a logic-based language,
one of which is called n times and the other n 2 times. Thus, the multiplication of
two 100 × 100 matrices--which requires no procedure calls in a nested-loops Fortran
implementation--can incur the cost of 10,100 procedure calls in a straightforward
implementation of a logic-based language.

Inlining is conceptually straightforward in languages that do not support delay
primitives. The situation is more complicated for languages that allow suspen-
sion because of the need to save state information when an activation suspends
and restore it when it is resumed. An implementation that allows suspension at
arbitrary program points has to deal with sa~ing and restoring arbitrary amounts
of local state, leading to implementation complications and runtime performance
overheads. An alternative approach--taken, for example, by Sicstus Prolog [3]
and j c [13]--is to allow suspension to occur only at specific predetermined pro-
gram points. Such schemes require the manipulation of only a limited amount
of state during suspension and resumption and are much simpler to implement
than the previous scheme, but they essentially rule out inlining since inlining a
procedure that may suspend can cause suspension to occur at arbitrary program
points. Thus, inlining presents implementation problems in languages that support
delay primitives no matter how we deal with suspension and resumption. How-
ever, these problems disappear if we restrict inlining to procedures that can be
guaranteed to not suspend. In particular, note that in traditional algorithms de-
signed for imperative languages--for example, the matrix multiplication routine
mentioned above, or any other scientific program--computat ions necessarily do
not suspend. This implies that in logic programs implementing such algorithms,
procedures can be inlined in order to avoid the overheads of additional procedure
calls associated with the lack of nestable iterative constructs in logic programming
languages.

With regards to the implementation of inlining, it is not difficult to see that in
order to inline a goal L, it suffices to Check whether L is weakly nonsuspending.
However, depending on the language semantics for the scheduling of awakened goals,
it may also be necessary to determine whether L is strongly nonsuspending. This is
because, otherwise, inlining L may change the behavior of the program if there are
awakened goals that are required to be executed as soon as they are awakened: if L
is not inlined, such awakened goals would be executed before L, but if L is inlined,
this is not possible (otherwise, we are faced with the earlier problem of saving and
restoring an arbitrary amount of state so that L can be correctly executed later).

Currently, the j c system implements a special case of this optimization: in
general, numerical operations such as "X = Y+Z" occurring in clause bodies are
compiled as out-of-line procedure calls where the called procedure checks whether
the operands are available, and suspends if they are not. However, numerical op-
erations that can be guaranteed to not suspend are compiled into inline code. This

190 S. DEBRAY ET AL.

is significantly faster and more compact than the general case. We have not imple-
mented general procedure inlining at this time, but intend to do so soon.

6.4. Reducing Suspension Tests

Obviously, a procedure p that has been inferred to be nonsuspending will not
suspend, and therefore need not test its arguments to check whether it should
suspend. For this, it suffices to verify that at each call site L for p, we have
AL Z demand(p), where AL is the abstract environment obtained at the end of
weak nonsuspension analysis at the program point immediately before L. The
pragmatic benefits of this optimization depend greatly on the details of how sus-
pension is implemented. For example, in j c we have optimized the system for
nonsuspending code, and suspension testing is done at the end after all other tests,
so the main benefit of deleting suspension tests would be a reduction in code size.
However, Marriott et al., using Sicstus Prolog 2.1, report significant performance
improvements from the removal of suspension tests [18].

6.5. General Prolog Optimizations

In recent years, there has been a great deal of work on optimization of
(nonsuspending) Prolog. For example, M/irien et al. show that significant perfor-
mance improvements are possible for Prolog programs if the lengths of dereference
chains can be statically predicted [17], while Van Roy shows that execution speed
can be improved significantly if the initialization of variables can be avoided [21].
All of these optimizations become applicable for (strongly) nonsuspending programs
in logic programming languages with delay mechanisms.

7. D I S C U S S I O N

While delay mechanisms can be very convenient for programming purposes, they
make control flow difficult to predict, and thereby render many low-level compiler
optimizations difficult or impossible. We have described simple compiler analyses to
identify program fragments whose control flow can be guaranteed to not be affected
by suspension and resumption of activations, and several low-level optimizations
that rely on this information. We have implemented weak nonsuspension analysis
in the j c system: this turns out to be of fundamental importance to the compiler
optimizations we perform. In this section, we discuss some of the performance
improvements accruing from these optimizations. The numbers shown are for a Sun
Sparcstation IPC with 36 MB of main memory, running Solaris 2.3, with garbage
collection turned off.

The optimization of returning output values in registers is discussed in Section
6.1. Performance numbers are given in Table 2. The average speed improvement
is about 15% even without the use of unboxed values, which is quite significant
for this kind of low-level optimization. For many programs, the improvements are
much greater: for example, the speed of the tak benchmark almost triples. When
unboxed values are maintained, and the passing of arguments and return values
via unboxed registers are allowed, the gains are even greater, averaging about 37%.
Furthermore, while for most programs the improvements are primarily in speed and,
in some cases, in the amount of stack space used (which can decrease because fewer
variables may have to be stored on the stack when outputs are returned in registers),

SUSPENSION-FREE LOGIC PROGRAMS 191

TABLE 4. The speed of jc compared to optimized C (Sparcstation IPC).
Execution t ime (its)

P rogram J gcc:2 cc:2 cc:4 J /gcc :2 J /cc :2 J / cc :4

aquad 20569 16604 28883 26433 1.238 0.712 1.119
b e s s e l 12364 12644 20635 20123 0.978 0.599 0.614
b inomia l 5720 5075 8894 6098 1.127 0.643 0.938
chebyshev 8500 7207 18067 18065 1.179 0.470 0.470
e 9832 9392 10148 10154 1.047 0.969 0.968
f i b 4711 4727 4598 4584 0.997 1.025 1.028
log 17198 17487 35029 35029 0.984 0.491 0.491
mandelbrot 23942 19403 78423 46195 1.234 0.305 0.518
muldiv 12705 10605 11688 11669 1.193 1.087 1.089
nrev 8018 4904 4900 4272 1.635 1.636 1.877
p i 12144 11998 22528 22520 1.012 0.529 0.529
sum 1694 1606 1606 406 1.055 1.055 4.172
tak 5340 4384 4085 4070 1.218 1.298 1.303

Geometric Mean: 1.134 0.752 0.940

K e y : J : j c -0 . gcc:2 : gcc -02. cc:2 : cc -02. cc:4 : cc -g4

a few programs, such as aquad and f i b , exhibit significant reductions in the amount
of heap space used as well because fewer "unsafe" variables are necessary.

The optimization of maintaining unboxed values is discussed in Section 6.2, with
performance numbers given in Table 3. Again, the speed improvements of about
26% on the average are quite significant. Heap usage also improves dramatically, in
many cases to the point where giving an "improvement ratio" seems meaningless.
Interestingly, it can be seen that on a few programs, there is actually a small loss
in performance when the two optimizations discussed so far are combined, and
output values are allowed to be returned in unboxed registers. This is due par t ly
to suboptimal placements of format conversion operations in some cases, leading
to additional conversions from tagged to untagged form and back, and part ly to
the use of C as the target language, and the concomitant lack of control over the
register allocation decisions made by the underlying C compiler. However, it can be
argued that these numbers provide a conservative lower bound on the performance
level achievable using such low level optimizations.

Table 4 shows the absolute performance of j c compared to heavily optimized
C code writ ten in a style one would expect of a competent C programmer, i.e.,
using iteration rather than recursion wherever possible, using macros and avoiding
function calls where this is reasonable, and relying heavily on destructive assign-
ment. For the simple programs we tested, j c is only about 13% slower than C
code compiled under gcc and optimized at the highest level possible. For the
Sun C compiler cc, the results are even better: j c is ahnost 25% faster than
cc -02 and 6% faster than cc -04. 6 Moreover, j c outperforms cc on precisely

6Since jc uses gcc as its back-end translator, one might wonder whether this comparison with
cc -04 is "fair" or question what it proves. We claim that j c ' s use of gcc is purely a mat te r of
convenience: we could, in principle, have achieved the same results by writing our own back ends
and using all of gcc 's technology in it. The point of this comparison, therefore, is merely to show
tha t simple dataflow analyses and careful at tention to low-level concerns can allow implementa-
tions of declarative languages to at tain performance tha t is competit ive with the performance of
imperative programs wri t ten in an imperative style. We acknowledge, of course, tha t performance
comparisons between different languages are fundamentally dubious and very often have a strongly
religious flavor, and we caution the reader against reading too much into these results.

192 s. DEBRAY ET AL.

those programs--namely, floating-point intensive computat ions--where one would
expect a dynamically typed declarative language to do considerably worse than a
statically typed imperative language. The superior performance of j c compared
to cc is due partly to the fact that cc does not generate especially good code for
floating-point computations; however, as Tables 2 and 3 illustrate, this would not
have been possible without extensive low-level optimization. One program where
cc performs significantly better than j c is sum: this is due greatly to the fact
that at optimization level -04, cc inlines a user-defined function, while j c has not
yet implemented this kind of inlining. On small recursion-intensive benchmarks,
the presence of register windows on the SPARC architecture removes the need to
save and restore registers at recursive calls; because of this, and parameter pass-
ing in hardware registers, procedure calls at the C level are not as expensive as in
older architectures, and so the performance of the C code on recursion-intensive
programs such as aquad, f i b , and tak are not as bad as one might expect them to
be. Overall, our numbers illustrates the fact that it is possible for logic programs
to outperform imperative programs that are written in a natural imperative style.
This illustrates the fundamental importance of the sorts of low-level optimizations
we have described in attaining good performance. Since all of our optimizations
depend fundamentally on information about nonsuspension, the analyses described
here are crucial for attaining this level of performance.

8. R E L A T E D W O R K

The work most closely related to this is that of Marriott et al. [18], who also
consider the analysis of sequential logic programs with delay primitives, and of
Hanus, who considers the analysis of functional logic programs using residuation
[15]. The main difference between their work and that reported here is that of
focus. While our work is aimed at identifying program fragments that will not
suspend and dataflow behavior for such fragments, the work of both Marriott et
al. and Hanus is aimed at accurately approximating the suspension behavior of
literals and predicates, including when a particular atom is delayed, when it is
awakened, and which atoms are delayed at some program point. Because of this,
both Marriott et al. and Hanus make more assumptions about the scheduling policy
for reawakened goals than we do---specifically, they assume that goals are executed
as soon as they are awakened--and use this to obtain a more precise description
of the behavior of suspending programs. This additional precision comes at a
price, however: experiences with a prototype implementation of the analysis of
Marriott et al. indicate that large amounts of time and space may be needed to
analyze programs of even modest size if there are many goals that can suspend
[11]. Moreover, the details of such an approach become somewhat complicated
under more elaborate scheduling policies, e.g., the priority-based system of KL-1
[5]. Our approach, by contrast, makes no assumptions about how suspended goals
might be scheduled after they are awakened. This results in a less precise analysis for
computations that may suspend; on the other hand, the fact that our approach does
not t ry to keep track of the set of suspended goals and predict which goals might
be awakened at various program points simplifies the implementation significantly
and improves its efficiency considerably.

Also related is work on analysis of concurrent logic languages, e.g., the deadlock
analyses described in [6, 7]. The primary difference between the work of these

SUSPENSION-FREE LOGIC PROGRAMS 193

authors and tha t described here is that they make no assumptions regarding the
scheduler (we assume tha t goals in a clause body are executed from left to right),
and as a result, are faced with the formidable problem of accounting for all possible
interleavings of primitive actions during the execution of a program. Moreover,
it seems difficult to reason about the kind of suspension behavior tha t we are
interested in without making any assumptions at all about the order in which the
body goals of a clause are executed, so in general the properties considered by these
authors are very different from those we consider.

9. C O N C L U S I O N S

While language mechanisms that allow the execution of a goal to suspend until
certain variables have become bound have become increasingly popular in logic
programming languages, they can make the execution behavior of programs difficult
to predict, and thereby make many traditional compiler optimizations inapplicable.
This paper discusses two different notions of nonsuspension in sequential logic pro-
grams with delay mechanisms, describes simple dataflow analyses to identify non-
suspending programs, and discusses various low-level optimizations based on this
information. Experimental results from the j c system are presented to show that
such analyses can improve the performance of programs significantly.

Thanks are due to Will Winsborough for many interesting discussions, and to the anonymous
referees for their thoughfu| comments, which helped improve both the contents and the presenta-
tion of the paper.

R E F E R E N C E S
1. Bigot, P., Gudeman, D., and Debray, S. K., Output Value Placement in Moded Logic

Programs, in: Proc. 11th Int. Conf. on Logic Programming, MIT Press, June 1994,
pp. 175-189.

2. Bigot, P. A. and Debray, S. K., A Simple Approach to Supporting Untagged Objects
in Dynamically Typed Languages, in: Proc. 1995 Int. Syrup. on Logic Programming,
MIT Press, Dec. 1995.

3. Carlsson, M. and Widen, J., SICStus Prolog User's Manual, Swedish Institute of
Computer Science, Oct. 1988.

4. Carlsson, M., The SICStus Prolog Emulator, Technical Report T91:15, Swedish Insti-
tute of Computer Science, Sept. 1991.

5. Chikayama, T., Fujise, T., and Sekita, D., A Portable and Efficient Implementation
of KL1, in: Proc. Int. Syrup. on Programming Language Implementation and Logic
Programming, Sept. 1994, pp. 25-39.

6. Codish, M., Falaschi, M., and Marriott, K., Suspension Analysis for Concurrent Logic
Programs, in: Proc. 8th Int. Conf. on Logic Programming, MIT Press, June 1991, pp.
331-345.

7. Codognet, C., Codognet, P., and Corsini, M., Abstract Interpretation of Concurrent
Logic Languages, in: Proc. 1990 North American Conf. on Logic Programming, MIT
Press, Nov. 1990, pp. 215-232.

8. Cousot, P. and Cousot, R., Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Apporoximation of Fixpoints, in:
Proc. 4th ACM Syrup. on Principles of Programming Languages, 1977, pp. 238-
252.

194 S. DEBRAY ET AL.

9. Debray, S. K., L6pez Garcia, P., Hermenegildo, M., and Lin, N.-W., Lower Bound
Cost Estimation for Logic Programs, manuscript, Apr. 1994.

10. Foster, I. and Taylor, S., Strand: A Practical Parallel Programming Tool, in: Proe.
1989 North American Conference on Logic Programming, MIT Press, Cleveland, OH,
Oct. 1989, pp. 497-512.

11. Garcia de la Banda, M., personal communication, Oct. 1994.
12. Gudeman, D., Representing Type Information in Dynamically Typed Languages,

Technical Report TR 93-27, Dept. of Computer Science, University of Arizona, Oct.
1993.

13. Gudeman, D., De Bosschere, K., and Debray, S. K., jc: An Efficient and Portable
Sequential Implementation of Janus, in: Proc. Joint Int. Conf. and Syrup. on Logic
Programming, MIT Press, Nov. 1992, pp. 399-413.

14. Janssens, G., Deriving Run-Time Properties of Logic Programs by Means of Abstract
Interpretation, Ph.D. thesis, Katholieke Universiteit Leuven, Belgium, Mar. 1990.

15. Hanus, M., On the Completeness of Residuation, in: Proc. Joint Int. Conf. and Symp.
on Logic Programming, MIT Press, Nov. 1992, pp. 192-206.

16. Le Charlier, B. and Van Hentenryck, P., Reexecution in Abstract Interpretation of
Prolog, in: Proc. Joint Int. Conf. and Syrup. on Logic Programming, MIT Press, Nov.
1992, pp. 750-764.

17. Mariiin, A., Janssens, G., Mulkers, A., and Bruynooghe, M., The Impact of Abstract
Interpretation: An Experiment in Code Generation, in: Proc. 6th Int. Conf. on Logic
Programming, June 1989, pp. 33-47.

18. Marriott, K., Garcia de la Banda, M., and Hermenegildo, M., Analyzing Logic
Programs with Dynamic Scheduling, in: Proc. 21st. ACM Symp. on Principles of
Programming Languages, Jan. 1994, pp. 240-252.

19. Steenkiste, P. A., The Implementation of Tags and Run-Time Type Checking, in: P.
Lee (ed.), Topics in Advanced Language Implementation, MIT Press, 1991, pp. 3-24.

20. Van Hentenryck, P., Cortesi, A., and Le Charlier, B., Type Analysis of Prolog Using
Type Graphs, J. Logic Programming 22(3):179-209 (Mar. 1995).

21. Van Roy, P., Can Logic Programming Execute as Fast as Imperative Programming?,
Ph.D. thesis, University of California, Berkeley, 1990.

22. Winsborough, W., personal communication, May 1994.

