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i> In recent years, language mechanisms to suspend, or delay, the execution of 
goals until certain variables become bound have become increasingly pop- 
ular in logic programming languages. While convenient, such mechanisms 
can make control flow within a program difficult to predict at compile 
time, and therefore render many traditional compiler optimizations inap- 
plicable. Unfortunately, this performance cost is also incurred by pro- 
grams tha t  do not use any delay primitives. In this paper, we describe 
a simple dataflow analysis for detecting computations where suspension 
effects can be ignored, and discuss several low-level optimizations tha t  
rely on this information. Our algorithm has been implemented in the j c 
system. Optimizations based on information it produces result in signif- 
icant performance improvements, demonstrat ing speed comparable to or 
exceeding that  of optimized C programs. <3 

1. I N T R O D U C T I O N  

In recent years, mechanisms to suspend the execution of a goal until certain variables 
in the goal become bound have become increasingly popular in logic program- 
ming languages. They are available in many  modern implementations of Pro- 
log, e.g., NU-Prolog, Sicstns Prolog, Prolog-III,  and Sepia. Such mechanisms also 
form the basis for synchronization in many concurrent logic programming lan- 
guages such as FGHC,  Janus, and Strand. Delay mechanisms allow clear and 
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concise expression of sophisticated control strategies, and can simplify programming 
significantly. 

Despite the programming convenience provided by such features, they have 
the drawback that  implementations are forced to contend with the possibility of 
suspension. This can greatly affect the performance of such systems. A significant 
problem is that  the possibility of suspension, and the general unpredictability of 
when a suspended computation will be reactivated and eventually actually exe- 
cuted, complicates dataflow analysis and can render many traditional compile-time 
optimizations inapplicable; in particular, effective utilization of machine-level re- 
sources such as hardware registers becomes difficult. Also, additional testing may 
be necessary at runtime to determine whether or not suspension is necessary. This 
situation is especially undesirable because many compiler optimizations are pre- 
cluded even for programs (or program fragments) that  do not exhibit any suspen- 
sion, effectively penalizing good programmers and carefully crafted programs. For 
example, it has been shown that  significant improvements in performance can be 
obtained by returning output  values of procedures in registers instead of in mem- 
ory [1, 21], or with knowledge of lengths of dereference chains [17]. However, in 
a language with delay mechanisms, there is always the possibility that  "normal" 
execution may be preempted by a newly awakened goal that  may overwrite a regis- 
ter containing an output  value or change the length of a dereference chain, thereby 
making these optimizations inapplicable. 

In this paper, we discuss simple analyses that  can be used to detect situa- 
tions where suspension effects can be ignored. The utility of this information is 
demonstrated by discussing a number of low-level compiler optimizations that  rely 
on this information. We have implemented the analysis, and compiler optimiza- 
tions based on it, in the j c  system [13]: we present performance results to show 
that  information about nonsuspension is fundamental to a variety of low-level com- 
piler optimizations that  turn out to be very effective in producing significant per- 
formance improvements. As a result, the performance of our system very often 
approaches or beats that  of C code written in a "natural" C style and optimized 
extensively. It should be emphasized that  an important aspect of this work was 
to develop practical analysis methods to identify and optimize the common case 
of procedures and programs that  do not make use of delay mechanisms. Simplic- 
ity, ease of implementation, and reasonable precision for commonly encountered 
programs were therefore our primary concerns. 

2. D E F I N I T I O N S  A N D  N O T A T I O N  

We assume that  the reader is acquainted with the basic concepts and terminology of 
logic programming. The set of variables occurring in a syntactic object (i.e., term, 
atom, clause, etc.) t is denoted by vats(t). A logic program consists of a finite set 
of predicate definitions; in addition, we suppose that  we have (descriptions of) a 
set of queries of interest, from which analysis may be initiated. The set of all atoms 
of the language will be denoted by Atom. The set of (all alphabetic variants of) 
clauses defining a procedure p in the program under consideration will be denoted 
by clauses(p). The identity substitution over a set of variables V is denoted by idv; 
when the set of variables under consideration is obvious from the context, we omit 
the subscript. The most general unifier of a pair of terms t l  and t2, which is unique 
up to variable renaming, is denoted by mgu(tl,t2). The set of all (idempotent) 
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substitutions is denoted by Subst. The empty  sequence is denoted by ~. We denote 
the Kleene closure of a set S, i.e., the set of all finite sequences of its elements, by 
S*, and the reflexive transitive closure of a relation R by R*. 

Delay primitives in Prolog-like logic programming languages usually have the 
behavior tha t  the execution of a goal suspends if certain variables, or arguments 
in a procedure call, are unbound. Different languages use different mechanisms 
to indicate which variables or argument positions are to be tested when determin- 
ing whether a computat ion should suspend. Suspension of computat ions is also 
supported in concurrent logic programming languages, where a test in the guard of 
a clause suspends if the variables involved are not sufficiently instantiated. In order 
to abstract  away from syntactic idiosyncracies of particular languages, we follow 
Marriott  et al. [18] in assuming two (system-dependent) functions tha t  specify the 
suspension/resumption behavior of goals: delay(A, C, O) is true for a goal A, clause 
C, and substitution t~ if and only if the execution of the goal 0(A) using clause 
C should be delayed1; and, given a sequence of (suspended) goals G, the function 
woken(G,O) yields a sequence of goals in G that  are awakened by the substitu- 
tion ~. Axioms specifying relationships between these functions are discussed in 
[18]. We assume tha t  programs are moded, i.e., for each predicate p in a program 
its arguments are known to be "input" (if p uses the value of that  argument) or 
"output" (if p defines that  argument, i.e., binds it to a value). 

The order in which awakened goals are executed, relative to each other and to 
the goals that  are currently ready to execute, may differ in many ways depending 
on the language. For example, Sicstus Prolog usually schedules goals as soon as 
they are awakened, ahead of other ready goals, although the relative order of goals 
tha t  are awakened at the same time is unspecified [3]; the default policy in j c is to 
schedule awakened goals after all previously ready goals have finished executing (the 
more common "schedule awakened goals immediately" behavior can be obtained via 
a compiler option). KL-1 provides a system of priorities that  must be respected 
when awakened goals are executed [5]. To this end, we assume tha t  there is a third 
system-dependent function 

insert : Atom* x Atom* ) Atom* 

such that ,  given a sequence of ready goals G and a sequence of awakened goals G' ,  
insert(G, G') is the sequence of goals obtained by "inserting" the awakened goals 
G'  into the appropriate positions within the ready goal sequence G. 

3. O P E R A T I O N A L  S E M A N T I C S  

To simplify the discussion that  follows, we assume a language tha t  uses nondeter- 
ministic clause selection. Goals within a clause are assumed to be executed in their 
left-to-right order. The operational behavior of a program can be characterized by 
the transition rules given below. A state consists of a sequence of "active" goals, a 
substitution, and a sequence of suspended goals: 

State = Atom* x Subst x Atom*. 

1The delay function we consider is actually slightly different from that of Marriott et al. [18] 
in that theirs does not take a clause as a parameter. 
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For no t a t i ona l  s implici ty,  we say t h a t  a clause C is variable-disjoint from a s t a t e  S = 
(Ready, O, Susp ) if vats(C) N ( vars( Ready ) U vars( Susp ) U vars( O) ) = O. T h e  follow- 
ing t r ans i t i on  rules specify  the  ope ra t iona l  behavior  of p rog rams  wi th  suspension.  

1. G o a l  R e d u c t i o n :  Given a s t a t e  S - (p(~) :: Ready,~, Susp), and  a c lause 
C - p(~)  : -  B E c[auses(p) t h a t  is var iab le -d is jo in t  from S, if i t  is the  case 
tha t .  delay(p(~z), C, O) = false and  ¢ = mgu(~(~), ~) ~ fail, then  the  goal  p(fi) 
is r educed  to the  clause b o d y  B:  

S ~  (B :: Ready,~bo O, Susp) 

where  "::" denotes  conca tena t ion  of sequences.  The  a nno t a t i on  "r" in the  
t r ans i t i on  r is in tended  as a mnemonic  for "reduces." 

2. V a r i a b l e  B i n d i n g :  Given a s t a t e  S - ( " t l  = t2" :: Ready, O, Susp) such t h a t  
¢ = mgu(O(tl),O(t2)) ~ fail, let  ¢ = ¢ o  0, and  A = woken(Susp, ¢) ;  t hen  

S b (insert(Ready, A), ¢, delete(Susp, A)). 

The  a n n o t a t i o n  "b" in the  t r ans i t ion  b is in tended  as a mnemonic  for"b inds ."  
3. S u s p e n s i o n :  Given a s t a t e  S -- (p ( t )  :: Ready, O, Susp), if t he re  is no c lause  

in clauses(p) t h a t  can reduce according  to  rule (1) above,  bu t  t he re  is some 
clause C C clauses(p) such t h a t  C is var iab le -d is jo in t  from S and  for which 
delay(p(t), C, ~) is t rue,  then  the  goal  p ( t )  suspends~:  

S ~ (Ready, O,p(E) :: Susp). 

The  anno t a t i on  "s" in the  t r ans i t i on  ~ is in tended  as a mnemonic  for 
"suspends."  

4. F a i l u r e :  Given a s t a t e  S -- (p(t-) :: Ready, ~, Susp), if t he re  is no c lause  t h a t  
can proceed  v ia  rules (1) or (2), or suspend  according  to  rule  (3) above,  then  
execut ion  fails. The  ac t ion  taken  on failure depends  on the  language:  in a 
Prolog- l ike  language,  it  m a y  t r igger  backt racking ,  while in a commi t t ed -cho ice  
language,  i t  m a y  cause the  ent i re  execut ion  to  abor t .  For our  purposes ,  it  
suffices to  pos tu l a t e  a funct ion 

fail_action : State ~ State 

t h a t  specifies wha t  happens  on failure. The  de ta i l s  of th is  funct ion  are  not  
re levant  for the  purposes  of th is  paper ,  and  are  not  d iscussed fur ther .  We 

deno te  failure t r ans i t ions  by f . 

For  no t a t i ona l  convenience in the  discussion t h a t  follows, we will c o n c a t e n a t e  
the  mnemonic  anno ta t ions  on t rans i t ions  to  denote  the  union of the  co r re spond ing  

t r ans i t i on  rela t ions.  Thus,  ~ denotes  the  re la t ion  ~ U b U f , i.e., t he  set of  
t r ans i t i ons  not  involving any suspension.  F ina l ly  ~,~ denotes  all poss ible  t r ans i t ions ,  

rbsf i .e.,  ---.~ . 

2primitive operations, e.g., involving arithmetic operations, in clause bodies may also suspend 
if their arguments are underinstantiated. This can be modeled either by rewriting the program 
to introduce auxiliary procedures with the appropriate delay conditions, or by additional rules 
similar to this one. The extensions involved are straightforward, and for simplicity of exposition, 
we do not consider them explicitly. 
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4. D A T A F L O W  A N A L Y S I S  F O R  N O N S U S P E N S I O N  

4.1. Preliminaries 

Given the "concrete" transition semantics described in the previous section, a 
collecting semantics associates a set of states with each program point. The ob- 
vious approach to defining a dataflow analysis would be to abstract sets of states 
to "abstract states" and define "abstract operations" over these objects to mimic 
the corresponding operations over the concrete domain. Correctness could then 
be inferred from the relationships between these objects and operations, using 
results of abstract interpretation [8]. However, the details can get quite compli- 
cated: for example, abstracting a sequence of goals into a sequence of abstract 
goals need not produce a Noetherian abstract domain, and an additional level 
of abstraction may be necessary to ensure termination. For example, the "star 
abstraction" of Codish et al. [6] allows at most one "abstract atom" with a par- 
ticular predicate symbol, while Marriott et al. require bounds on the sizes of the 
multisets describing delayed goals [18]. Since our analysis algorithms are really 
quite straightforward, we felt that trying to formalize them as full-blown abstract 
interpretations would serve mainly to introduce a plethora of notation and to ob- 
scure, rather than illuminate, the essential underlying intuitions. For this reason, 
we have chosen to give direct proofs of correctness instead of formalizing them 
as abstract interpretations (although it will be obvious that  we use ideas, such 
as "abstract substitutions" and "concretizations," that  are derived from abstract 
interpretation). 

Just as the concrete computation propagates substitutions, the analysis 
propagates descriptions of (sets of) substitutions that  we refer to as "abstract sub- 
stitutions." The set of abstract substitutions is denoted by ASub. We assume that  
there is a partial ordering U_ over ASub, and that  (ASub, U_) forms a complete lattice 
with meet and join operations [7 and U, respectively. We also assume that  there is 
a function 

c o n c  : A S u b  ---~ go(Subst) 

that  specifies the set of substitutions described by an abstract substitution. This 
function is assumed to be monotone, so that given al, a2 E ASub, al ~ a2 implies 
cone(a1) C_ cone(a2). Thus, the higher an abstract substitution is in the lattice 
(ASub, _),  the larger a set of concrete substitutions it denotes, and therefore the 
lesser the information it conveys. 

The basic idea behind our approach is very simple and quite general. Suppose we 
are given a (top-down) dataflow analysis for an "ordinary" logic programming lan- 
guage without any delay primitives, i.e., one whose operational semantics is defined 
by omitting the suspension rule from the transition rules defined in Section 3-- in  

other words, by the transition relation ~ .3 Such an analysis, which we refer 
to as the underlying analysis in the discussion that follows, can be extended in a 
simple way to deal with programs containing delay primitives, and the information 

3Strictly speaking, since there is no suspension, the operational semantics of such a language 
could be somewhat simpler than this: there is no need for a list of suspended goals in a state, and 
the variable binding rule could be simplified. For the development of this paper, however, it is 
convenient to work with states whose structure is as in Section 3, but where the list of suspended 
goals is always empty, and have delay(A, C, 9) be false for all A, C, and 0. 
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gathered used to detect nonsuspending procedures and calls. Broadly speaking, 
such an analysis typically iterates over the predicates in a program, analyzing each 
of the clauses for each predicate in turn, maintaining "abstract  environments" at 
each program point tha t  describe the possible bindings for variables at tha t  point. 
Analysis usually starts with these abstract  environments initialized to be empty, 
and information is propagated iteratively until there is no change to any of the 
information gathered: termination is ensured using additional mechanisms such as 
memo tables. Assume that  the analysis provides two operations: analyze_call : 
Atom x ASub ~ ASub, which describes the effects of a procedure call; and 
extend_abs_env : ASub × ASub - - ~  ASub, which describes how to extend an abstract  
environment to take into account the effects of a procedure call or unification. The 
analysis of a clause "p( f i ) : -q l ( f i l ) , . - - ,qn(£ tn) ,  ' '  given an abstract  substitution c~ 
for a call, proceeds as follows: 

1. Abstract  the effects of head unification with the formal parameters  2, given 
the abstract  substitution c~ describing the actual parameters,  so as to obtain 
an initial abstract  environment A1. 

2. Let the abstract  environment at the program point immediately before the 
literal qi(~2i) be denoted by A~, 1 < i < n. 

For i := 1 to n do: 

A~ := analyze_call(qi, Ai); 

A~+I := extend_abs_env(Ai, A~); 

3. Compute  and return the abstract  environment A~+I projected on the argu- 
ments in the head of the clause. 

A call to a procedure is analyzed by processing each clause for that  procedure, 
in turn, as described above. For each clause, the analysis yields an abstract  
environment,  and these can be "summarized"-- for  example, using the join op- 
erator kJ on ASub-- to  yield an abstract  environment describing the substitutions 
that  may be obtained when that  call returns. 

In the following sections, we describe how the underlying analysis described 
above can be extended to detect situations where suspension effects can safely be 
ignored. The underlying intuition is that ,  as long as we can guarantee tha t  the "nor- 
mal" left-to-right control flow of a clause will not be disrupted due to suspension 
effects, we can use (approximations to) the underlying analysis and be guaranteed 
soundness. There are two ways in which normal left-to-right execution can be dis- 
rupted: (i) a goal may suspend, and (ii) a suspended goal may be awakened and 
executed ahead of other ready goals. Section 4.2 discusses how to deal with the 
first of these situations. We handle the second situation by analyzing the program 
to identify situations where no suspended goal will be awakened: this is discussed 
in Section 4.3. 

4.2. Weak Nonsuspension 

Define the parent relation on pairs of goals as follows: if a computat ion has a 
reduce-transition (L ::Ready, O, Susp) r (B1 :: "'" :: Bn :: Ready, 8 ~, Susp) via a 
clause " H : - B 1 , . . . ,  Bn," then the goal L is said to be the parent of the goals 
B1, . . . ,  Bn. The descendant relation on pairs of goals is simply the reflexive tran- 
sitive closure of the parent relation. A goal L is said to be weakly nonsuspending 
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if none of the descendants of L (which includes L itself) will suspend, i.e., take 
a ~L-transit ion. 

A key notion in our approach to the analysis of weak nonsuspension is tha t  
of the "demand" of a procedure. Intuitively, this is a description of the circum- 
stances under which none of the clauses defining that  procedure will suspend. More 
formally, we have the following definition: 

Definition 4.1. Given a procedure p defined by clauses C1,..., Cn in a program P,  
the demand of p, denoted by demand(p), is given by 

demand(p) = ~ {~ • ASub I V0 • conc(c~) VC • clauses(p): -,delay(p(~), C, 0)}. 

where 5: is a tuple of distinct variables. 

Example 4.1. Consider the following procedure to compute the factorial function: 
the language is our current incarnation of Janus, where guard tests suspend until 
the values of the operands are available: 

fact(N, A, F) :-N=O IF=A. 
fact(N, A, F) :-N>O I fact(N-i,N*A,F). 

Suppose abstract  substitutions map variables to the values ground and any, 
denoting, respectively, the set of ground terms and the set of all terms of the 
language. I t  is easy to see that  neither guard will suspend if the first argument  is 
bound to a (any) ground term. Thus, the demand of f a c t / 3  is {N H ground, A 
any, F F-. any}. 

The analysis to identify weak nonsuspension is a conceptually straightforward 
extension to the underlying analysis described in the previous section. With  each 
literal L in a clause body (respectively, predicate p in the program) is associated a 
flag L. nosusp (respectively, p. nosusp), indicating whether tha t  literal (predicate) is 
weakly nonsuspending. Initially, all of these flags have the value t r u e ,  indicating 
that  our initial assumption is that  no procedure or call will suspend. The program 
is first processed to compute demand(p) for each procedure p in the program (note 
that  this is a strictly local computation,  and does not require any kind of global 
fixpoint computation).  After this, a global fixpoint computat ion is carried out to 
identify weakly nonsuspending procedures and calls. The processing of a clause 
"p(g) : - L 1 , . . .  ,Ln" is shown in Figure 1. When processing a body literal Li - 
q,( . . . )  under an abstract  environment A~, we first verify whether its activation 
can be guaranteed to perform at least one goal reduction step without suspending 
by checking whether Ai 7- demand(qi). 4 Then, as in the underlying analysis, we 
determine the abstract  environment A~' that  would be obtained if L~ were to execute 
without any suspension. The main change, compared to the underlying analysis, is 
tha t  at this point, we compute the resulting abstract  environment Ai+l as A~ ' if Li 
can be guaranteed to not suspend, and as Ad~A~ ~ otherwise: here, Ai LIA~ ~ expresses 
what can happen whether L~ suspends or not. As before, a call to a procedure 

4Winsborough has pointed out [22] that this check can be made more precise by also checking 
whether it may be possible to guarantee that some clause for the called predicate will reduce, in 
which case the possible suspension of other clauses is moot: this can be done, in the presence of 
type information, using the notion of covering discussed in [9]. 
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1. 

2. 

Given an abstract subetitution a describing the actual parameters in the 
call, abstract the etfects of head unification with the formal parameters ~ to 
obtain an initial abstract environment A1. 

Let the abstract environment at the program point immediately before the 
literal Li --- qi(fil) be denoted by Ai, 1 < i < n. 

For i := 1 to n do: 
Li.nosusp := q~.nosusp A (Ai C_ demand(qi) ); 
A~ := analyze_call(qi, Ai); 
A~' :-- extend_abs_env(Ai,A~); 
Ai+l : --  if  -~Li.nosusp then Ai H A~' else A~'; 

3. p.nosusp := p.nosusp A ( A~=a Li.nosusp); 

4. return the projection of the abstract environment An+t(£) on the arguments 
in the head of the clause. 

F I G U R E  1. Weak nonsuspension analysis: processing a clause "p(fi) : -  L1, . . . ,  L,~." 

is processed by analyzing each clause defining that  procedure, and summarizing 
the results. The analysis of a program involves iterating until there is no change 
to either the calling and success patterns computed for each procedure, or the 
suspension flags of any procedure or literal. 

Define a suspending transition sequence to be any sequence in ?.~* ~ .  The fol- 
lowing theorem states that,  as long as we do not have to contend with goals being 
awakened, the algorithm of Figure 1 computes suspension bits correctly in the sense 
that  any literal or predicate that  may suspend has its nosusp bit set to f a l s e .  

Theorem 4.1. Let L = p(~z) be a literal in a program such that for some initial query 

Q, it is the case that (Q, idvars(Q), g) ~.~* (p(•),/9, Susp); and (p(ft), 0, 6) ~b~/,~ S 
for some state S and suspended goals Susp. Then, L.nosusp and p.nosusp are set 
to f a l s e  by the analysis algorithm. 

PROOF. Suppose that  L = p(fi) is a literal in a program such that  for some initial 
query Q, (Q, id,a~s(Q),¢)'-** (p(~),O, Susp). Consider transitions from the state 
(p(fi),0, c). We show, by induction on the length n of suspending transition se- 

quences that  if (p(fi), 0, 6) ?~* ~,~ S, then the flags L. nosusp and p. nosusp are set of 
f a l s e  by the analysis algotithm. 

In the base case, n= 1, and it must be the case that  (p(~),0, e) ~ S. From the 
rules defining the transition semantics, this can happen only if the goal p(0(fi)) 
is not able to reduce using any clause for p, and there is at least one clause C 
such that  delay(p(f~), C, 0). Since the underlying datafiow analysis is assumed to be 
sound, it must be the case that  0 C conc(A) for the abstract environment A inferred 
immediately before L. Now suppose that  A [-- demand(p). From the definition of 
demand(p), this means that  

conc(A) C {¢ e Subst I VC • clauses(p): -~delay(p(fz), C, ¢)}, 

i.e., the goal p(0(~2)) does not suspend. This is a contradiction, whence we conclude 
that  it must be the case that  A ~: demand(p). It is then straightforward to see, from 
the definition of the analysis, that  L.nosusp is set to f a l s e  immediately. Because 
of this, in step (3) of the algorithm, the flag p.nosusp also becomes set to f a l s e .  
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For the inductive case, assume that  the theorem holds for all suspending tran- 
sition sequences with length less than k, and consider a suspending transition 
sequence from (p(~),O,~) to S with length k. Then, there must be a clause 
C - "p(~) : -  L 1 , . . . ,  Ln" in clauses(p) such that  C is variable-disjoint from p(~), 
~delay(p(~), C, 8), and ~b = mgu(~2, ~) ~ fail, so that  

. r b f  r b f  (p(~) ,O,e)r  (L1 : : ' " : : L n , ¢ O l i ,  e ) ( ' z  . . .  ~.z ~, S. 
k:l 

Now consider the transition sequence (L1 :: --. :: L n , ¢ o  O,e)rbf . . .  ~ S with 
length k - 1 : it must be the case that  for some Li, 1 < i < n, there is a suspending 
transition sequence from (Li, ¢, e) to S of length less than k, where ¢ is some 
substitution. Suppose that  the predicate symbol for Li is q; then from the induction 
hypothesis, the flags Li.nosusp and q.nosusp will be set to f a l s e  during analysis. 
Suppose that  this happens during the j t h  iteration of the algorithm, j > 0: since 
the values of some flags have changed during this iteration, the algorithm will iterate 
one more time. In the next iteration, p.nosusp will be set to f a l s e  because the 
nosusp flag for the body literal Li in the clause C defining p has become f a l s e .  
This change in the value of a flag will cause the algorithm to iterate once more, 
and this time the flag L.nosusp will be set to false. The theorem follows. 

Termination follows from the fact that  there are only a finite number of flags 
manipulated by the algorithm since each flag can change only from t r u e  to 
false. 

The analysis described above is aimed at inferring, for any goal p(~), whether any 
descendant of this goal can suspend. This information, while potentially interesting, 
is in general not sufficient for our purposes: we are interested in datafiow analysis 
for various low-level optimizations, such as register allocation and optimization of 
unification code, that  require a more precise identification of what may happen at 
runtime. The problem that  arises is the following: suppose that  we have inferred 
that  none of the descendants of a goal p(fi) will suspend. However, if p(~) is 
executed in a state where there are already some suspended goals, it may happen 
that  in the course of the resulting computation, a variable x gets a binding that  
causes the awakening and execution of a suspended goal q(~). Without  a great 
deal of knowledge about the possible suspended goals that  may be awakened at any 
point, and about the scheduling policy for these awakened goals, it is very difficult 
to predict the behavior of the system under these circumstances (Marriott et al. 
show how a simple scheduling strategy, such as that  used by Sicstus Prolog, can be 
taken into account to some extent [18]; however, for more sophisticated strategies, 
e.g., involving multiple priority levels as in KL-1, the task seems more difficult). 
It is for this reason that  the statement of Theorem 4.1 assumed that  the set of 
suspended goals is empty. In the next section, we describe an additional dataflow 
analysis that  can be used to identify situations where it can be guaranteed that  no 
suspended goal will be awakened in the course of a computation. [] 

4.3. Strong Nonsuspension 

A goal is said to be strongly nonsuspending if it is weakly nonsuspending and can 
additionally be guaranteed to not awaken any suspended goal. For strongly nonsus- 
pending goals, unpredictabilities arising from dynamic suspension and resumption 
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of goals can be guaranteed to not arise, making their execution behavior much 
simpler to predict and enabling a variety of low-level optimizations to be carried 
out. 

The intuition behind our analysis to detect strong nonsuspension is very simple. 
Consider a clause " p ( ~ ) : - L 1 , . . .  , L i , . . .  ,Ln." Suppose tha t  a variable z occurs 
in an output  position in Li, and assume that  the analysis described in the pre- 
vious section has identifed Li as weakly nonsuspending. Since the literals in the 
body of ' this  clause are assumed to be executed from left to right, it is not dif- 
ficult to see tha t  if all occurrences of z in input positions in the body occur to 
the right of L~, i.e., in Lj where j > i, then none of the literals Lj  that  need 
the value of z will be executed before Li. Moreover, since Li is weakly nonsus- 
pending, neither it nor any of its descendants will suspend, so they will produce 
a binding for z before any of the literals Lj  that  need the value of z are exe- 
cuted. We can generalize this idea slightly, and require only that  if z occurs in 
any Lk to the left of Li, then Lk should be (weakly) nonsuspending as well-- in 
other words, that  Lk does not actually use the variable z (the commonest  example 
of this situation is where the Lk takes the variable z and simply puts it inside a 
structure without actually examining its value, e.g., in programs using difference 
lists). 

Of course, this simple analysis is not quite adequate, for two reasons. First, all 
possible aliasing has to be taken into account. More importantly, it may happen 
that  the variable z in question is also an output  variable in the head of the clause, 
in which case it is necessary to consider all call sites for p to determine whether 
there may be any activation suspended on the corresponding actual parameter .  At 
each such call site, the reasoning proceeds as before, and may involve looking at 
the call sites for the clause containing the call site, and so on. Overall, this gives 
rise to an iterative analysis algorithm that  proceeds as follows: 

1. initialize all strong nonsuspension bits to t rue ;  
2. for every literal L (procedure p) that  is not weakly nonsuspending, set 

L.s_nsusp (p.s_nsusp) to f a l s e ;  
3. iterate over the Clauses in the program, and for each clause C, execute the 

procedure analyze_clause(C) (shown in Figure 2), until there is no change to 
any strong nonsuspension bit. 

To reason about  the soundness of this algorithm, we need the notion of the rank 
of a goal in a sequence of states obtained during a computat ion start ing from an 
initial query. This notion is defined as follows: 

1. Each a tom in the initial query has rank 0. 
2. If  a s tate (p(~) :: Ready, 8, Susp) reduces to a state (L1 :: ".. :: L ,  :: Ready, ~', 

Susp) via a clause C --- "p(~) : -  L 1 , . . . ,  L,~" 6 clauses(p), and the reduced goal 
p(fi) has rank k, then each of L 1 , . . . ,  Ln has rank k + 1. 

3. The rank of a goal does not change if it suspends or is awakened. 

The following establishes the correctness of this algorithm. 

Theorem ~.2. If  a literal L (respectively, procedure p) in a program is not strongly 
nonsuspending, then L.s_nsusp (respectively, p.s_nsusp) is set to f a l s e  by the 
algorithm of Figure 2. 
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p r o c e d u r e  analyze_clause(C) 
b e g i n  

l e t C - p ( ~ )  : -  Lz , . . . ,L , ;  
for each body literal Lj -- q(~) do 

i f  q.s_nsusp = f a l H  then  Lj.s..nsuap := f a l l e ;  
e l se  for each variable z in an output position in Lj do 

i f  (3y E aliases(z))(3Li to the left of L$) : y occurs in an input position 
of Li and Li is not weakly non-suspending t h e n  

L~.s_nsusp := fa l se ;  
fi 
i f  (3u E aliases(z)) : u is an output argument in the head of C and 

there is a call site M for p such that M.s_nsusp = f a l n  t h e n  
Lj.s_nsusp :=  f a l s e ;  

f i  
o d / *  for */  

fi 
o d  
p.s_nsusp := p.s_nsusp A ( A '~=z Li .s_nsusp ) ; 

e n d / *  analyze_clause */ 

F I G U R E  2. The function analyze_clause for strong nonsuspension analysis. 

PROOF. (sketch) A literal or procedure may fail to be strongly nonsuspending for 
either of two reasons: (i) it may not be weakly nonsuspending; or (ii) its execution 
may result in a variable binding that  causes an awakened goal to execute. 

In the first case, Theorem 4.1 implies that it is inferred to be weakly nonsus- 
pending. In this case, its strong nonsuspension bit is set to f a l s e  at the beginning, 
before the analysis proper begins. Since the algorithm only changes strong nonsus- 
pension bits from t r u e  to f a l s e ,  the value of this bit remains f a l s e  at the end of 
the analysis. 

In the second case, consider a goal L1 that  is weakly nonsuspending, but that  fails 
to be strongly nonsuspending because there is some initial query Q during whose 
execution the goal L1 is executed and causes a suspended goal L2 to awaken. This 
implies that  there is a clause C in the program that  is a "common ancestor" of 
both L1 and L2, i.e., whose body B contains literals B1 and B2 such that  L1 is a 
descendant of B1 and L2 is a descendant of B25; moreover, since L1 awakened L2, 
it must be the case that L2 suspended before the execution of L1, so B2 must be 
to the left of B1. Let the rank of L1 be m, and that  of B1 be m ~. Since L1 is a 
descendant of B1, it must be the case that  rn ~ <_ m. We proceed by induction on 
m -- TrJ. 

In the base case, m - m ~ = 0. In this case, B1 is the same as L1. Since B2 has a 
descendant that  suspends, B2 is not weakly nonsuspending. Since B2 is to the left 
of B1 (i.e., L1) in the clause C, it can be seen from Figure 2 that  L . s _ n s u s p  is set 
to f a l s e  by the algorithm. 

In the inductive case, assume that the theorem holds for m - m I < k, and 
consider a situation where m - m '  = k + 1. In this case, suppose that  L1 occurs 
in the body of a clause for a procedure p; then there must be a goal L "  with rank 

5It may help the reader's intuition to think of (the body of) C as a common ancestor of Lz and 
L2 in a proof tree for the query Q, although the presence of delays complicates the connections 
between the proof trees for queries and their operational behavior. 
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m" that  reduced using this clause. By the definition of rank, m = m" + 1, which 
means m" - m' = k. From the induction hypothesis, L".s_nsusp is set to f a l s e  
by the algorithm. This means that  at the next iteration of the algorithm, the fact 
that  L".s_nsusp = f a l s e  for the call site L" will be detected, and L.s_nsusp will 
be set to f a l s e .  

As with the algorithm for weak nonsuspension, termination follows from the fact 
that  there are only a finite number of flags manipulated by the algorithm, and each 
flag can change only from t r u e  to f a l s e .  [] 

5. I M P L E M E N T A T I O N  

5.1. Background 

Janus is a committed-choice logic programming language that,  in its present in- 
carnation, closely resembles Strand [10]. The j c system is a sequential imple- 
mentation where clause bodies are executed from left to right as in Prolog. The 
j c compiler translates Janus programs to C and then uses a C compiler (the 
performance numbers in this paper correspond to gcc 2.6.3 invoked with -02 
-fomit-frame-pointer) to compile the resulting program to executable code. An 
early version of the system is described in [13], and a prototype of the system, 
including the dataflow analyses and the optimizations based on this analysis that  are 
discussed in Section 6, is available by anonymous F T P  from f t p .  cs .  a r i z o n a ,  edu. 
As with many other committed-choice languages, Janus uses dataflow synchroniza- 
tion. Thus, a procedure call will suspend if the input arguments are sufficiently 
underinstantiated that  none of the clause guards for that  clause can commit and 
they do not all fail; and even if a procedure call commits to a clause, primitive 
operations in the body of the clause will suspend if their operands are not suffi- 
ciently instantiated. Because of this, nonsuspension analysis is crucial for any kind 
of low-level compiler optimization. 

We have implemented weak nonsuspension analysis in our system, based on a 
very simple groundness analysis. The underlying abstract domain for our analy- 
sis consists of only two points: ground and any, denoting, respectively, the set of 
all ground terms and the set of all terms of the first-order language defined by 
the program under consideration. The ordering on this domain is ground E any. 
We use reexecution of primitive operations (see [16]) to improve the precision of 
the analysis. We have not yet implemented strong nonsuspension analysis. The 
reason weak nonsuspension has been sufficient so far is that  by default, goals 
awakened after suspension are scheduled in "batch mode" in jc ,  i.e., executed 
at the end after all nonsuspended goals have been executed. In this case, there 
is no possibility that  binding a variable will cause an awakened goal to be ex- 
ecuted ahead of a ready goal. The more familiar scheme for scheduling awak- 
ened goals, where a goal is executed as soon as possible after it is awakened, is 
available via a compiler option, but optimizations based on nonsuspension anal- 
ysis, such as returning output  values in registers instead of in memory, are cur- 
rently turned off in this case: we expect to relax this restriction in the future 
when strong nonsuspension analysis is implemented and incorporated into our 
compiler. The algorithm for strong nonsuspension analysis is sufficiently similar 
structurally to that  for weak nonsuspension analysis that  we do not anticipate any 
significant loss in precision of analysis when strong nonsuspension is taken into 
account. 
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We have not separately measured the time taken to analyze programs because 
dataflow analysis and optimization accounts for a very small part of the overall 
compilation time. Because Janus programs are compiled to C code which is then 
processed by a C compiler, most of the overall time for translation to the object 
code is spent in I /O operations and in the C compiler (other systems that  compile 
to C, e.g., KLIC [5], report similar experiences). As a result, there is no perceptible 
decrease in the overall compile time when dataflow analysis and optimizations are 
switched off. 

5.2. Precision 

Since our analysis is not tied to any particular abstract domain, the question of 
precision is, in some sense, moot: the overall precision of a nonsuspension analysis 
could, in principle, be improved where necessary simply by using a more precise 
underlying analysis with a more elaborate abstract domain. Our experience has 
been that  in practice, the simple groundness analysis that  we use, with a lim- 
ited amount of reexecution, turns out to pro~tuce results that  are quite reasonable. 
This is illustrated in Table 1. The benchmarks used include the following pro- 
grams: aquad performs a trapezoidal numerical integration f~ eXdx using adaptive 
quadrature and an epsilon of 10-8; bessel computes the Bessel function J75(3), and 
involves both integer (for factorial) and floating-point (for exponentiation) compu- 
tations; binomial computes the binomial expansion ~__° 0 xiy 3°-~ at x = 2.0, y = 1.0; 
chebyshev computes the Chebyshev polynomial of degree 10,000 at 1.0; e computes 
the value of e = 2.71828... by iteratively summing the first 2000 terms of the series 
1 + 1/1! + 1/2] + 1/3! + - . . ;  fib computes the Fibonacci value F(16); log computes 
1og¢(1.999) using the expansion log~(1 + x) = ~.i>o(-1)i+lx~/i, to an accuracy of 
10-6; mandelbrot computes the Mandelbrot set o n a  17 x 17 grid on an area of the 
complex plane from ( -1 .5 , -1 .5)  to (1.5, 1.5); muldiv exercises integer multiplica- 
tion and division, doing 5000 of each; nrev is the usual naive reverse program on 
an input list of length 100; pascal is a benchmark, by Tick, to compute Pascal's 

TABLE 1. Weak nonsuspension analysis: precision. 

Procedures  Cal l  s i tes  

P r o g r a m  Total  Nonsusp. Tota l  Nonsusp,  

aquad 8 7 26 26 

bessel II I0 35 35 

binomial 7 7 24 24 

chebyshev 3 2 9 9 

e 2 2 6 6 
f i b  1 1 6 6 

l o g  6 5 27 27 
mande lb ro t  10 2 27 19 

muldiv 1 1 7 7 

nrev 3 3 i0 I0 

pascal 15 14 49 49 

p i  3 3 9 9 
sun 2 2 4 4 
taX 1 1 8 8 

Total:  73 60 247 239 
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triangle; pi computes the value of ~r to a precision of 10 - 3  using the expansion 
~r -- 4 ~--]~>0((-1)~/2i + 1); sum adds the integers from 1 to 10,000--it is essentially 
similar to a tail-recursive factorial computation, except that  it can perform a much 
greater number of iterations before incurring an arithmetic overflow; and tak, from 
the Gabriel benchmarks, is a heavily recursive program involving integer addition 
and subtraction. Of these programs, aquad, bessel, binomial, chebyshev, e, log, 
mandelbrot, and pi are floating-point intensive computations. These were chosen 
in part to focus on numerical computations, which--according to folklore--are not 
considered to be especially efficiently executable in logic programming languages. 

The j c  compiler works by first duplicating the code (i.e., the abstract syntax 
tree) for each procedure in the module being compiled: the intent is that  one copy 
is for invocations that  could potentially suspend, the other for invocations that  
can be guaranteed to be nonsuspending. This is followed by weak nonsuspension 
analysis, after which the program is transformed to take nonsuspension informa- 
tion into account. Two things happen during this transformation phase: non- 
suspending procedure calls are modified to call the nonsuspending version of the 
called procedure; and possibly suspending primitive operations in clause bodies, 
e.g., arithmetic, are transformed into out-of-line procedure calls to ensure correct 
behavior on suspension and resumption. Finally, the call graph of the resulting pro- 
gram is examined starting at the roots, which correspond to the possibly-suspending 
versions of exported procedures, and any version of a procedure that  is found to be 
unreachable is deleted. 

Because of the initial duplication of code and the subsequent deletion of un- 
reachable versions, the number of procedures and call sites in the program that  is 
actually compiled can be quite different from that  in the original source program. 
To reduce confusion, therefore, the numbers in Table 1 are given relative to the 
original source program. Since the language semantics specifies that  each opera- 
tion in a clause body, regardless of whether it is a primitive operation or a call 
to a user-defined procedure, can potentially suspend, each body literal is counted 
as a "call site" that  can, in principle, suspend. A procedure is then counted as 
nonsuspending if a nonsuspending version of that  procedure is retained in the final 
program, while a call site, i.e., body literal, is counted as nonsuspending if the 
final program contains a nonsuspending instance of that  literal. Columns 2 and 3 
of Table 2 give, respectively, the total number of procedures in the program and 
the number inferred to be nonsuspending, while columns 4 and 5 give the same 
information for individual call sites. Note that  some programs, such as aquad and 
b e s s e l ,  have suspending versions of procedures but no suspending call sites: this 
is because it is possible for the user to invoke the top level goal in a manner that  
causes it to suspend; our analysis infers, however, that  once the top level exported 
goal commits, there will be no further suspension. For these programs, the program 
contains a suspending version of the exported procedure, but there are no suspend- 
ing call sites in the program. Other programs, such as b inomia l  and pi ,  have top 
level goals that  do not take any user input (this can happen, for example, if the only 
exported procedure is main/0), and therefore cannot suspend: for these programs, 
the generated code contains neither suspending versions of any procedures nor any 
suspending call sites. 

It can be seen that  for most of the programs tested, most of the procedures 
and call sites were inferred to be nonsuspending. The mandelbro t  benchmark is 
an exception to this, primarily because the underlying analysis is not sophisticated 
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TABLE 2. Output value placement in registers: performance (j c on a 
Sparcstation IPC). 

Execution t ime (~s) 

Benchmark M RT RU R T / M  R U / M  

aquad 45600 33242 20569 0.729 0.451 
b e s s e l  12516 12467 12364 0.996 0.988 
binomial 4362 3924 5720 0.900 1.311 
chebyshev 23689 23689 8500 1.000 0.359 
e 12495 12372 9832 0.990 0.787 
f i b  12330 4774 4711 0.387 0.382 
log  35025 35432 17198 1.011 0.491 
mandelbrot  64888 71464 23942 1.101 0.369 
muldiv 13285 13303 12705 1.001 0.956 
nrev  7842 8006 8018 1.021 1.022 
p i  25031 27860 12144 1.113 0.485 
sum 1691 1691 1694 1.000 1.002 
talc 13505 4732 5340 0.350 0.395 

Geometric Mean: 0.844 0.623 

Key: M: memory returns only. RT: register and memory returns (tagged registers only). RU: register 
and memory returns (tagged and untagged registers). 

enough to carry out the kind of inductive reasoning necessary to infer groundness 
of arrays that  are being defined an element at a time. However, as Tables 2 and 3 
show, enough information is available to allow the inner loops of this program to be 
optimized, resulting in significant performance improvements despite the apparently 
poor precision of analysis. 

In general, our experience has been that  the precision of our nonsuspension analy- 
sis is intimately tied to the precision of the underlying analysis. The simple abstract 
domain used in our implementation is adequate for programs that  do not have much 
in the way of dependencies between variables, e.g., that  do not use techniques such 
as difference lists and where there is little aliasing. The precision of our analysis 
degrades if the underlying analysis is not precise enough to allow us to determine 
whether or not the procedure demands are being satisfied. The situation can some- 
times become fairly subtle. As an example, consider the following procedure: 

p([]). 
p( [msg(In, Out) ] Msgs]):-Out is In+ i00, p(Msgs) . 

In order to allow us infer that  p/1 is weakly nonsuspending, the underlying analysis 
must be able to provide information about the structure of terms with considerable 
precision. While such (underlying) analyses have been studied in the literature 
(see, for example, [14, 20]), whether or not it is reasonable to expect this degree of 
precision from the underlying analysis depends on the kinds of programs one expects 
to encounter, and perhaps also on the speed with which the compiler is expected 
to work (although our experience has been that  the time taken for I /O operations 
can, in many cases, dominate the overall compilation time, suggesting that  within 
reasonable limits, efficiency of analysis is not as critical as one might imagine). 
Nevertheless, it is important to note that  imprecision in nonsuspension analysis 
is due fundamentally to shortcomings in the underlying analysis: that  is, the lost 
precision in suspension analysis can be recovered simply by improving the under- 
lying analysis, with no changes necessary to the suspension analysis algorithms. 
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T A B L E  3.  P e r f o r m a n c e  i m p r o v e m e n t s  d u e  to  u n t a g g e d  a n d  u n b o x e d  o b j e c t s .  

M emory  r e tu rns  Reg + mem.  r e tu rns  

P r o g r a m  T U U / T  T U U / T  

(a) Execut ion  t ime  (Hs) 

aquad 45600 27300 0.599 33242 20569 0.619 
bessel 12516 11013 0.880 12467 12364 0.992 
b i n o m i a l  4362 5919 1.357 3924 5720 1.458 
chebyshev  23689 8500 0.359 23689 8500 0.359 
e 12495 9641 0.772 12372 9832 0.795 
fib 12330 12260 0.994 4774 4711 0.987 
l og  35025 16174 0.462 35432 17198 0.485 
mande lb ro t  64888 24875 0.383 71464 23942 0.335 
mu ld iv  13285 12708 0.957 13303 12705 0.955 
n r e v  7842 7851 1.001 8006 8018 1.001 
pi 25031 11944 0.477 27860 12144 0.436 
sum 1691 1694 1.002 1691 1694 1.002 
t a k  13505 13462 0.997 4732 5340 1.128 

Geomet r ic  Mean:  0.727 0.738 

(b) Heap usage (words) 

aquad 30884 10255 0.3320 23332 544 0.0233 
bessel 689 418 0.6067 689 452 0.6560 
b i n o m i a l  1208 249 0.2061 1026 6 0.0058 
chebyshev  30002 6 0.0002 30002 6 0.0002 
e 6005 6 0.0010 6005 6 0.0010 
f i b  6389 6389 1.O000 5 5 1.0000 
l og  28870 12 0.0004 28866 6 0.0002 
m a n d e l b r o t  69533 654 0.0094 69533 654 0.0094 
muld iv  5 5 1.0000 5 5 1.0000 
n r e v  7842 7851 1.001 8006 8018 1.001 
p i  20007 9 0.0004 20007 6 0.0003 
sum 5 5 1.0000 5 5 1.0000 
t a k  7121 7121 1.0000 5 5 1.0000 

Key:  T: tagged values. U: untagged values. 

. A P P L I C A T I O N S  

6.1. Returning Output Values in Registers 

Most implementations of logic programming languages treat input and output ar- 
guments to procedures in a fundamentally asymmetric way: input values are passed 
in registers, but output values are returned in memory. For programs where predi- 
cate modes are known, output arguments can be returned in registers instead. This 
avoids unnecessary work arising from memory reads and writes due to initialization 
and dereferencing, and can cause significant performance improvements. For lan- 
guages that support suspension of activations, however, the problem is complicated 
by the fact that if a call to a procedure can suspend, the output registers will con- 
tain garbage when control returns to the caller (since the suspended computation 
will not have computed values into them) unless additional work is done---both 
at suspension time and when the suspended activation is resumed--to ensure that 
values are propagated correctly. This can become fairly complicated and incur per- 
formance penalties. A much simpler solution that works well in practice (see [1]) 
is to consider returning output values in registers only for procedures that can be 
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guaranteed to be nonsuspending. It turns out, however, that  weak nonsuspension is 
inadequate for this optimization. The reason is that  if an output  value is returned 
in a register, that  register must not be overwritten until that  value has been used 
or stored into memory. However, if a procedure p that  returns some outputs in 
registers can only be guaranteed to be weakly nonsuspending, it may happen that  
some awakened goal is executed as soon as p has finished executing, but before 
the goal that  would have used the value returned in a register by p. This would 
either overwrite the register containing p's output  value and thereby produce in- 
correct results, or would require complex and expensive runtime schemes to save 
and restore output  value registers where necessary. This problem can be avoided if 
output  values are returned in registers only for procedures that  can be inferred to 
be strongly nonsuspending. 

This optimization (returning output values in registers) has been implemented 
in jc :  the interested reader is referred to [1]. Performance results for a number of 
benchmark programs on a Sparcstation-IPC (with garbage collection turned off) 
are shown in Table 2. 

6.2. Maintaining Unboxed Values 

In languages with delay operations, the low-level representation of a data  object at 
a particular program point cannot always be predicted in a precise way at compile 
time since this depends on whether the value of an expression has been computed 
or not, which in turn depends on the suspension behavior of the program. The 
code generated for programs in such languages must, therefore, be able to deal with 
different kinds of representations that  may arise at runtime. There are two different 
but related issues that  arise here. First, it is necessary to be able to determine how 
a bit pattern, encountered at runtime, is to be interpreted--e.g.,  as an unbound 
variable or as a value of a particular type. Second, different data  objects may have 
different sizes: for example, the size of an integer value may not be the same as 
that  of a double precision floating-point value. The usual way to address the first 
problem is to attach a descriptor to each value, to specify how its bit pattern is 
to be interpreted: such descriptors are usually referred to as tags [12, 19]. The 
second problem is usually handled by making values of different sizes "look the 
same" by manipulating pointers to them rather than the values themselves: such 
an indirect representation is often referred to as a boxed representation. In general, 
therefore, operations have to contend with the manipulation of tags and/or  a level 
of indirection, and as a result incur a performance penalty. 

This performance overhead is especially serious in numerical computations be- 
cause implementations of logic programming languages very often represent floating- 
point numbers as boxed values (see, for example, [4]). This incurs a significant 
performance penalty for a number of reasons. First of all, since floating-point 
values are heap-allocated, numerical computations involving boxed floating-point 
values fail to exploit hardware registers effectively, and generate a lot more memory 
traffic. The allocation of fresh heap cells may also result in additional checks for 
heap overflow. Finally, the high rate of memory usage also results in increased 
garbage collection and adversely affects cache and paging behavior. However, if 
enough information is available at compile time about a value at a particular pro- 
gram point, it is possible to (generate code to) maintain the value in its native 
machine representation, i.e., without any tagging or boxing, and thereby avoid 
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these overheads. For example, in general, it is not enough to know that  a value will 
be a number--we need to know whether it will be an integer or a floating-point 
value. Such information can be obtained in various ways, e.g., via type analyses 
or from programmer annotations: the details are orthogonal to the topic of this 
paper, and are not discussed further. 

The problem of optimizing the low-level representations of objects by maintain- 
ing them in untagged and unboxed form becomes more complicated in languages 
with delay operations because, in this case, it is no longer enough to have precise 
type information about an object: it is necessary to guarantee also that  for all 
executions of the program (for the inputs of interest), the value of that  object will 
have been computed by the time control reaches the program point of interest. The 
reason for this is not difficult to see: since a value in native machine format does not 
have a descriptor that  can be used to identify its type, it may not be possible, in gen- 
eral, to distinguish an unbound variable from an untagged integer or floating-point 
value. We therefore need (weak) nonsuspension analysis to identify variables whose 
values can be guaranteed to have been computed at a particular program point. 

This optimization has been implemented in j c [2]. At this time, only numeric val- 
ues, i.e., integers and floating-point values, are considered for untagged and unboxed 
representation. The use of untagged values is not restricted to intra-procedural com- 
putations: untagged values may be stored on the stack, passed to other procedures 
as arguments, and returned from procedures as outputs. Since untagged values 
may be stored on the stack, the garbage collector must be modified so that  it can 
correctly identify objects in stack frames: this is done by adding a word to each 
stack frame that  can be used by the garbage collector to index into a symbol table 
that  identifies the procedure that  frame belongs to and specifies the structure of its 
stack frames. Currently, untagged values on the heap are not supported because 
the structure of the heap is a lot less predictable than that  of the stack, making 
the identification of untagged objects during garbage collection more difficult. This 
has to do primarily with the tagging scheme used by an implementation: if the 
tagging scheme used by an implementation is rich enough to support descriptors 
that  encode the structure of (some types of) heap-allocated objects, in particular, 
information about elements that  are untagged, then the problem with identification 
of untagged values on the heap goes away. In this case, our approach can be readily 
extended to handle untagged values on the heap. We are currently considering 
extensions to our tagging scheme to allow untagged objects on the heap. However, 
these details are largely orthogonal to the topic of this paper. 

Table 3 shows the improvements in speed and memory usage resulting from the 
use of untagged and unboxed values (garbage collection was turned off for these 
timings, so the speed improvements do not take into account reductions in garbage 
collection time due to reduced heap usage). Programs that  involve mostly integer 
arithmetic may not benefit much from this optimization since integers do not need 
to be boxed, and operations on tagged integers are not much more expensive than 
on untagged ones: this is illustrated by f ib .  However, for programs that  involve 
a lot of floating-point computation, the use of untagged values generally leads to 
significant improvements in speed and memory usage (the binomial program is an 
exception: its slowdown using untagged values is due to the use of C as the back- 
end compiler for jc ,  and the concomitant lack of control over hardware register 
allocation). Overall, this optimization produces a speed improvement of about 
30% for the programs tested. 
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6.3. Inlining 

Inlining refers to the replacement of a procedure call by (the appropriate instance 
of) the body of the called procedure. One reason inlining is potentially important  
for logic-based languages is that  such languages lack nestable iterative constructs, 
but instead implement iteration using tail recursive procedures. This can incur 
significant performance penalties, relative to traditional imperative languages, due 
to additional procedure calls. As an example, the multiplication of two n × n 
matrices requires three different tail-recursive procedures in a logic-based language, 
one of which is called n times and the other n 2 times. Thus, the multiplication of 
two 100 × 100 matrices--which requires no procedure calls in a nested-loops Fortran 
implementation--can incur the cost of 10,100 procedure calls in a straightforward 
implementation of a logic-based language. 

Inlining is conceptually straightforward in languages that  do not support delay 
primitives. The situation is more complicated for languages that  allow suspen- 
sion because of the need to save state information when an activation suspends 
and restore it when it is resumed. An implementation that  allows suspension at 
arbitrary program points has to deal with sa~ing and restoring arbitrary amounts 
of local state, leading to implementation complications and runtime performance 
overheads. An alternative approach--taken, for example, by Sicstus Prolog [3] 
and j c  [13]--is to allow suspension to occur only at specific predetermined pro- 
gram points. Such schemes require the manipulation of only a limited amount 
of state during suspension and resumption and are much simpler to implement 
than the previous scheme, but they essentially rule out inlining since inlining a 
procedure that  may suspend can cause suspension to occur at arbitrary program 
points. Thus, inlining presents implementation problems in languages that  support 
delay primitives no matter how we deal with suspension and resumption. How- 
ever, these problems disappear if we restrict inlining to procedures that  can be 
guaranteed to not suspend. In particular, note that in traditional algorithms de- 
signed for imperative languages--for example, the matrix multiplication routine 
mentioned above, or any other scientific program--computat ions necessarily do 
not suspend. This implies that  in logic programs implementing such algorithms, 
procedures can be inlined in order to avoid the overheads of additional procedure 
calls associated with the lack of nestable iterative constructs in logic programming 
languages. 

With regards to the implementation of inlining, it is not difficult to see that  in 
order to inline a goal L, it suffices to Check whether L is weakly nonsuspending. 
However, depending on the language semantics for the scheduling of awakened goals, 
it may also be necessary to determine whether L is strongly nonsuspending. This is 
because, otherwise, inlining L may change the behavior of the program if there are 
awakened goals that  are required to be executed as soon as they are awakened: if L 
is not inlined, such awakened goals would be executed before L, but if L is inlined, 
this is not possible (otherwise, we are faced with the earlier problem of saving and 
restoring an arbitrary amount of state so that  L can be correctly executed later). 

Currently, the j c  system implements a special case of this optimization: in 
general, numerical operations such as "X = Y+Z" occurring in clause bodies are 
compiled as out-of-line procedure calls where the called procedure checks whether 
the operands are available, and suspends if they are not. However, numerical op- 
erations that  can be guaranteed to not suspend are compiled into inline code. This 
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is significantly faster and more compact than the general case. We have not imple- 
mented general procedure inlining at this time, but intend to do so soon. 

6.4. Reducing Suspension Tests 

Obviously, a procedure p that  has been inferred to be nonsuspending will not 
suspend, and therefore need not test its arguments to check whether it should 
suspend. For this, it suffices to verify that  at each call site L for p, we have 
AL Z demand(p), where AL is the abstract environment obtained at the end of 
weak nonsuspension analysis at the program point immediately before L. The 
pragmatic benefits of this optimization depend greatly on the details of how sus- 
pension is implemented. For example, in j c we have optimized the system for 
nonsuspending code, and suspension testing is done at the end after all other tests, 
so the main benefit of deleting suspension tests would be a reduction in code size. 
However, Marriott et al., using Sicstus Prolog 2.1, report significant performance 
improvements from the removal of suspension tests [18]. 

6.5. General Prolog Optimizations 

In recent years, there has been a great deal of work on optimization of 
(nonsuspending) Prolog. For example, M/irien et al. show that  significant perfor- 
mance improvements are possible for Prolog programs if the lengths of dereference 
chains can be statically predicted [17], while Van Roy shows that  execution speed 
can be improved significantly if the initialization of variables can be avoided [21]. 
All of these optimizations become applicable for (strongly) nonsuspending programs 
in logic programming languages with delay mechanisms. 

7. D I S C U S S I O N  

While delay mechanisms can be very convenient for programming purposes, they 
make control flow difficult to predict, and thereby render many low-level compiler 
optimizations difficult or impossible. We have described simple compiler analyses to 
identify program fragments whose control flow can be guaranteed to not be affected 
by suspension and resumption of activations, and several low-level optimizations 
that  rely on this information. We have implemented weak nonsuspension analysis 
in the j c system: this turns out to be of fundamental importance to the compiler 
optimizations we perform. In this section, we discuss some of the performance 
improvements accruing from these optimizations. The numbers shown are for a Sun 
Sparcstation IPC with 36 MB of main memory, running Solaris 2.3, with garbage 
collection turned off. 

The optimization of returning output values in registers is discussed in Section 
6.1. Performance numbers are given in Table 2. The average speed improvement 
is about 15% even without the use of unboxed values, which is quite significant 
for this kind of low-level optimization. For many programs, the improvements are 
much greater: for example, the speed of the tak  benchmark almost triples. When 
unboxed values are maintained, and the passing of arguments and return values 
via unboxed registers are allowed, the gains are even greater, averaging about 37%. 
Furthermore, while for most programs the improvements are primarily in speed and, 
in some cases, in the amount of stack space used (which can decrease because fewer 
variables may have to be stored on the stack when outputs are returned in registers), 
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TABLE 4. The speed of jc compared to optimized C (Sparcstation IPC). 
Execution t ime (its) 

P rogram J gcc:2 cc:2 cc:4 J /gcc :2  J /cc :2  J / cc :4  

aquad 20569 16604 28883 26433 1.238 0.712 1.119 
b e s s e l  12364 12644 20635 20123 0.978 0.599 0.614 
b inomia l  5720 5075 8894 6098 1.127 0.643 0.938 
chebyshev 8500 7207 18067 18065 1.179 0.470 0.470 
e 9832 9392 10148 10154 1.047 0.969 0.968 
f i b  4711 4727 4598 4584 0.997 1.025 1.028 
log 17198 17487 35029 35029 0.984 0.491 0.491 
mandelbrot 23942 19403 78423 46195 1.234 0.305 0.518 
muldiv 12705 10605 11688 11669 1.193 1.087 1.089 
nrev 8018 4904 4900 4272 1.635 1.636 1.877 
p i  12144 11998 22528 22520 1.012 0.529 0.529 
sum 1694 1606 1606 406 1.055 1.055 4.172 
tak  5340 4384 4085 4070 1.218 1.298 1.303 

Geometric Mean: 1.134 0.752 0.940 

K e y :  J : j c  -0 .  gcc:2 : gcc -02.  cc:2 : cc -02.  cc:4 : cc -g4  

a few programs, such as aquad and f i b ,  exhibit significant reductions in the amount  
of heap space used as well because fewer "unsafe" variables are necessary. 

The optimization of maintaining unboxed values is discussed in Section 6.2, with 
performance numbers given in Table 3. Again, the speed improvements of about  
26% on the average are quite significant. Heap usage also improves dramatically, in 
many cases to the point where giving an "improvement ratio" seems meaningless. 
Interestingly, it can be seen that  on a few programs, there is actually a small loss 
in performance when the two optimizations discussed so far are combined, and 
output  values are allowed to be returned in unboxed registers. This is due par t ly  
to suboptimal placements of format conversion operations in some cases, leading 
to additional conversions from tagged to untagged form and back, and part ly  to 
the use of C as the target language, and the concomitant lack of control over the 
register allocation decisions made by the underlying C compiler. However, it can be 
argued that  these numbers provide a conservative lower bound on the performance 
level achievable using such low level optimizations. 

Table 4 shows the absolute performance of j c  compared to heavily optimized 
C code writ ten in a style one would expect of a competent  C programmer,  i.e., 
using iteration rather than recursion wherever possible, using macros and avoiding 
function calls where this is reasonable, and relying heavily on destructive assign- 
ment. For the simple programs we tested, j c  is only about  13% slower than C 
code compiled under gcc and optimized at the highest level possible. For the 
Sun C compiler cc, the results are even better: j c  is ahnost 25% faster than 
cc -02 and 6% faster than cc -04. 6 Moreover, j c  outperforms cc on precisely 

6Since jc  uses gcc as its back-end translator,  one might wonder whether  this comparison with 
cc -04 is "fair" or question what  it proves. We claim that  j c ' s  use of gcc is purely a mat te r  of 
convenience: we could, in principle, have achieved the same results by writing our own back ends 
and using all of gcc 's  technology in it. The point of this comparison, therefore, is merely to show 
tha t  simple dataflow analyses and careful at tention to low-level concerns can allow implementa-  
tions of declarative languages to at tain performance tha t  is competit ive with the performance of 
imperative programs wri t ten in an imperative style. We acknowledge, of course, tha t  performance 
comparisons between different languages are fundamentally dubious and very often have a strongly 
religious flavor, and we caution the reader against reading too much into these results. 
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those programs--namely, floating-point intensive computat ions--where one would 
expect a dynamically typed declarative language to do considerably worse than a 
statically typed imperative language. The superior performance of j c compared 
to cc is due partly to the fact that  cc does not generate especially good code for 
floating-point computations; however, as Tables 2 and 3 illustrate, this would not 
have been possible without extensive low-level optimization. One program where 
cc performs significantly better than j c  is sum: this is due greatly to the fact 
that  at optimization level -04, cc inlines a user-defined function, while j c  has not 
yet implemented this kind of inlining. On small recursion-intensive benchmarks, 
the presence of register windows on the SPARC architecture removes the need to 
save and restore registers at recursive calls; because of this, and parameter pass- 
ing in hardware registers, procedure calls at the C level are not as expensive as in 
older architectures, and so the performance of the C code on recursion-intensive 
programs such as aquad, f i b ,  and tak  are not as bad as one might expect them to 
be. Overall, our numbers illustrates the fact that  it is possible for logic programs 
to outperform imperative programs that  are written in a natural imperative style. 
This illustrates the fundamental importance of the sorts of low-level optimizations 
we have described in attaining good performance. Since all of our optimizations 
depend fundamentally on information about nonsuspension, the analyses described 
here are crucial for attaining this level of performance. 

8. R E L A T E D  W O R K  

The work most closely related to this is that  of Marriott et al. [18], who also 
consider the analysis of sequential logic programs with delay primitives, and of 
Hanus, who considers the analysis of functional logic programs using residuation 
[15]. The main difference between their work and that  reported here is that  of 
focus. While our work is aimed at identifying program fragments that  will not 
suspend and dataflow behavior for such fragments, the work of both Marriott et 
al. and Hanus is aimed at accurately approximating the suspension behavior of 
literals and predicates, including when a particular atom is delayed, when it is 
awakened, and which atoms are delayed at some program point. Because of this, 
both Marriott et al. and Hanus make more assumptions about the scheduling policy 
for reawakened goals than we do---specifically, they assume that  goals are executed 
as soon as they are awakened--and use this to obtain a more precise description 
of the behavior of suspending programs. This additional precision comes at a 
price, however: experiences with a prototype implementation of the analysis of 
Marriott et al. indicate that  large amounts of time and space may be needed to 
analyze programs of even modest size if there are many goals that  can suspend 
[11]. Moreover, the details of such an approach become somewhat complicated 
under more elaborate scheduling policies, e.g., the priority-based system of KL-1 
[5]. Our approach, by contrast, makes no assumptions about how suspended goals 
might be scheduled after they are awakened. This results in a less precise analysis for 
computations that  may suspend; on the other hand, the fact that  our approach does 
not t ry  to keep track of the set of suspended goals and predict which goals might 
be awakened at various program points simplifies the implementation significantly 
and improves its efficiency considerably. 

Also related is work on analysis of concurrent logic languages, e.g., the deadlock 
analyses described in [6, 7]. The primary difference between the work of these 
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authors and tha t  described here is that  they make no assumptions regarding the 
scheduler (we assume tha t  goals in a clause body are executed from left to right), 
and as a result, are faced with the formidable problem of accounting for all possible 
interleavings of primitive actions during the execution of a program. Moreover, 
it seems difficult to reason about the kind of suspension behavior tha t  we are 
interested in without making any assumptions at all about the order in which the 
body goals of a clause are executed, so in general the properties considered by these 
authors are very different from those we consider. 

9. C O N C L U S I O N S  

While language mechanisms that  allow the execution of a goal to suspend until 
certain variables have become bound have become increasingly popular in logic 
programming languages, they can make the execution behavior of programs difficult 
to predict, and thereby make many traditional compiler optimizations inapplicable. 
This paper  discusses two different notions of nonsuspension in sequential logic pro- 
grams with delay mechanisms, describes simple dataflow analyses to identify non- 
suspending programs, and discusses various low-level optimizations based on this 
information. Experimental  results from the j c system are presented to show that  
such analyses can improve the performance of programs significantly. 

Thanks are due to Will Winsborough for many interesting discussions, and to the anonymous 
referees for their thoughfu| comments, which helped improve both the contents and the presenta- 
tion of the paper. 
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