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A b s t r a c t - - I n  this paper, we consider a nonautonomous predator-prey model with dispersion and 
a finite number of discrete delays. The system consists of two Lotka-Volterra patches and has two 
species: one can disperse between two patches, but the other is confined to one patch and cannot 
disperse. Our purpose is to demonstrate that the time delays are harmless for uniform persistence 
of the solutions of the system. Furthermore, we establish conditions under which the system admits 
a positive periodic solution which attracts all solutions. (~) 2000 Elsevier Science Ltd. All rights 
reserved. 

K e y w o r d s - - H a r m l e s s  delays, Global attractivity, Dispersion. 

1. I N T R O D U C T I O N  

A number  of  models in ecology can be formulated as systems of differential equat ions with 
t ime delays. One of  the most  impor tan t  problems for this type  of sys tem is to  analyze the  

effect of  t ime delays on the  stabil i ty of the system. May [1] has shown tha t  if a t ime delay is 

incorpora ted  into the  resource l imitation of  the logistic equation,  then  it has destabilizing effect on 

the  stabil i ty of the system. For some systems the stabil i ty switches can happen  m a n y  t imes and 

the  systems will eventual ly become unstable when t ime delays increase (see [2,3]). Gopa l samy and 

Aggarwala  [4] has shown tha t  for certain values of the delay, there  occurs an unstable equil ibrium 

with  periodic oscillation. Freedman and Wu [5] discussed persistence in a delayed sys tem by 

using the  mono tone  dynamical  systems theory  developed by Smith [6]. By  cons t ruc t ing  suitable 
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persistence functionals, Wang and Ma [7] obtained uniform persistence conditions for Lotka- 
Volterra predator-prey systems with a finite number of discrete delays. Their results suggest that  
delays are "harmless" for uniform persistence. Similar phenomena were observed by Zanolin [8] 
in delayed Kolmogorov competing species systems. By utilizing the results in [9], Cao et al. [10] 
studied uniform persistence for Kolmogorov-type predator-prey and competition models with 
per capita net growth rates that  are dependent on time-delayed population densities. Kuang 
and Tang [11] also established sufficient conditions for uniform persistence in nonautonomous 
Kolmogorov-type delayed population models. See also [12-14]. For other related work, we refer 

to [15,161. 
For general ODEs with dispersion, Levin [17] first established this kind of model for the au- 

tonomous Lotka-Volterra system. Kishimoto [18] and Takeuchi [19] also studied these kinds of 
models, but all the coefficients in the system they studied are constants. Song and Chen [20] 
extended the autonomous Lotka-Volterra system to a two species nonautonomous dispersion 
Lotka-Volterra system. Reference [21] extended the results of [20] to the continuous time delay, 
and investigated persistence of the populations and periodic behavior of the system. 

In this paper, we consider a nonautonomous system consisted of two species predator-prey 
system with dispersion and a finite number of discrete delays. Thus, the model includes not 
only the dispersal processes, but also some of the past states of the system. Our purpose is 
to demonstrate that  the time delays are harmless for uniform persistence of the solution of the 
system. Furthermore, we establish conditions under which the system admits a positive periodic 
solution which attracts all solutions. 

2. A N A L Y S I S  O F  U N I F O R M  P E R S I S T E N C E  

In this paper, we consider the following Lotka-Volterra population model: 

Xl ~ Xl 

X2 ~ X2 

y = y  

[ r l ( t )  - 

~2(t) - 

-~a( t )  + 

k alj ( t ) x l  (t -- Tlj (t)) -- ~ blj ( t ) y ( t  - Plj (t)) 
j = l  j----1 

~ _ a 2 j ( t ) x 2 ( t  - r2j ( t ) )  + D 2 ( t ) ( x l  - x2) ,  
j = l  

m 7~Z ] 
a a , ( t ) x ~ ( t  - ~3j( t )  ) - ~ e = j ( t ) y ( t  - p : j ( t )  ) , 

j = l  j = l  

+ D l ( t ) ( x 2  - x l ) ,  

(2.1) 

with initial conditions 

Xl(S)-~-~l(S ) ~0, 
Z2(S) =~2(S) >0, 

y(s) =~b(s) >0, 

s e [ -~ ,0];  ~1(0) > 0, 

s e [ -~ ,  0]; ~ ( 0 )  > 0, 

s e [ -~ ,0] ;  ~(0)  > 0, 

(2.2) 

where xl and y are the population density of prey species x and predator species y in patch 1, 
and x2 is the density of prey species x in patch 2. Predator species y is confined to patch 1, 
while the prey species x can disperse between two patches. Di( t ) ,  (i = 1, 2) are dispersion 
coefficients of species x.  r i ( t ) ,  aij(t), rij($), (i = 1, 2, 3); bij(t), pij(t), (i = 1, 2; j = 1, 2 , . . . ,  rn) 
are nonnegative bounded continuous functions. Not all of aij (t) and not all of b2j (t) are zero. 
~Ol(S), ~2(s), and ¢(s) are continuous on the interval I--T, 0] in which 

r = sup{ r i j ( t ) ,  (i = 1,2,a), p~j(t)( i  = 1,2; j = 1 ,2 , . . .  ,m)}. 
t>o 
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We introduce the following notation: for any strictly positive function defined on [to, ~ ) ,  we 
let 

0 < f t  = inf f ( t )  <_ f ( t )  <__ sup f ( t )  = fu  < +c~. 
t>_to t>to 

Let z(t) = (xl(t), x2(t),y(t))  denote the solution of system (2.1) corresponding to the initial 
conditions (2.2). 

DEFINITION 2.1. System (2.1) is said to be uniformly persistent if there exists a compact region 
K1 C int R 3 such that every solution z(t) of (2.1) with the initial conditions (2.2) eventually 
enters and remains in the region K1. 

LEMMA 2.1. Everysolution z(t) of system (2.1) with initial conditions (2.2) exists in the interval 
[0, +o~) and remains positive for all t >_ O. 

PROOF. It  is true because 

.~llx,=O = Dl(t)x2 > 0, for x2 > 0, x21x2=o = D2(t)xl > 0, for xl > 0, 

y ( t )  = y ( o ) e x p  + ( s  - - b j(s)y - p j(s)) a s  , 
j=l  j=l 

for y(0) > 0. 

LEMMA 2.2. Every solution z(t) of system (2.1) with initial conditions (2.2) is bounded for all 
t _> 0 and all these solutions are ultimately bounded. 

PROOF. We define 

V(t) = max(xl( t ) ,x2( t )} .  

Calculating the upper-right derivative of V along the positive solution of system (2.1), we have 
the following. 

(P1) If xl(t)  > x2(t) or xl(t)  = x2(t), and :cl(t) k i2(t) ,  

' D + g ( t )  = Xl (t) r l  (t) - E al j  ( t)xl  (t - Tlj ( t))  -- E blj  ( t ) y  (t - Plj  ( t))  
j -1  j= l  

+ Dl(t)(x2 - Xl) 

<_ xl(t)[rl(t) - al~(t)zl(t - ~dt ) ) ]  

< xl(t)  [r r - a~i exp ( - r rT)  xl(t)] . 

(P2) If xl(t)  < x2(t) or xl(t)  = x2(t) and :/:l(t) _< J:2(t), 

D+V(t)  = x2(t) r2(t) - ~-~a2j(t)x2(t - r2j(t)) + D2(t)(xl - x2) 
j= l  

<_ x2(t)[r2(t) - a2~(t)x2(t - rei(t) )] 

_< x2(t) [r~ - at2~ exp (--r~T) x2(t)] • 

We let 
M = max { ( r ~ +  1)exp(r~T) ( r ~ +  1)exp(r~T) } 

a/li ' a~ i • 
From (P1) and (P2), we derive 

(I) if max{xl(0),x2(0)} _< M, then max{xl( t ) ,x~( t )}  <_ M t >_ 0, 
(II) if max{xl(0),x2(0)} > M, and let - a  = maxj=l,2{M(r~ - a } i M e x p ( - r ~ T ) )  } 

we consider the following three possibilities: 
(i) V(0) = xl(0) > M, (Xl(0) > X2(0)) , 

(ii) V(0) = x2(0) > M, (Xl(0) < x2(O)), 
(iii) V(0) = Xl(0) = z2(0) > M. 

(a > 0), 
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If (i) holds, then there exists e > 0, such tha t  if t 6 [0, e) ,  V(t) > M, and we have 

D+V(xl(t),x2(t)) = 5:l(t) < - a  < 0. 

If (ii) holds, then there exists e > 0, such tha t  if t E [0, e), V(t) = xz(t) > M and also we have 

.D+V(xl(t),x2(t)) = 22(t) < - a  < 0. 

If (iii) holds, then there exists e > 0, such tha t  if t E [0, e), V(t) = xl ( t )  > M or V(t) = x2(t) 
> M.  Similar to (i) and (ii), we have 

D+V(xl(t),x2(t)) = ~i(t) < - a  < 0, (i = 1 or 2). 

From investigating the above (i), (ii), and (iii), we can conclude tha t  if V(0) > M,  then V(t) is 
str ict ly monotone decreasing with speed at  least a ,  so there exists T1 > 0 if t _> T1, we have 

V(t) = max{xl( t ) ,  x2(t)} < M. 

Using the inequality 

9(t)<-Y(t)[~-~"a~jM-bt2~y(t-p2dt))] ' j = l  t ~ - T l '  

it is found tha t  there exists a constant  N > 0, and a T2 > T1 + r such tha t  y(t) < N for all 
t _> T2. Consequently, z(t) = (xl(t) ,  x2(t), y(t)) is bounded and 

O < x i ( t ) _ M ,  ( i = 1 , 2 ) ;  O < y ( t ) < _ N ,  fort_>7"2. 

This completes the proof. 

We let 

m m 

= a u r/l(t) [rl(t) - -  Dl(t)] E a l j  - -  r 3 ( t ) E  lj ,  
j=l  j=l  

r/2(t) = r2(t) - D2(t). 

THEOREM 2.1. / f~ i ( t )  > 0, (i = 1, 2), then system (2.1) is uniformly persistent. 

PROOF. Construct  the first continuous functional 

Vl(t) = Vl(t, x l ,y)  = (xl(t))al(y(t)) ~' exp[fl(t)],  for t > 0, 

where 
m ~n 

a I a u 
Oq = E 3j, fll---- E l j ,  

j= l  j=l  

(2.3) 

m [ t  m / ,  
z . x l ( s )  d s  f l ( t )  = -  E at3j b~k y ( s ) d s -  E aaJ ala 

j ,k=l Jt--plk(t) j ,k=l Jt--rlk(t) 

+ E  u l  u u  alja3k Xl(S) ds - E alj b2k y(s) ds. 
j,k= 1 r s k  ( t )  j , k =  1 P2k  ( t )  

Calculat ing the derivative of. V1 with respect to t along the solution of system (2.1), we have 

II1(t) > Vl(t) a l ( r l ( t )  n l ( t ) )  r3(t)fll ~ t u u u ] - - - (aajblk + aub2k ) y(t) . 
j ,k=l J 
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We let 

Hence, 

A 1 
m 

E l u u u (a3jbtk + aub2k ) • 
j,k=l 

Vl(t) > Vl(t)[~lt(t) - Aly(t)]. 

Then ~/l(t) >0  by assumption. Choose hi >0  so small such that  0 < hi < (1/2) min(N, ~/~/A1), 
if 0 < y(t)  < hi ,  we have 

/ 

el(t) > ~ v , ( t ) .  (2.a) 
Construct the second continuous functional 

V2(t) = V2(t, x2) = x2exp[f2(t)],  for t > O, (2.5) 

where 

x2(s) ds. S~(t) = - Z ~ -,.(,) 
j----1 

Calculating the derivative of V2 with respect to t along the solution of system (2.1), we have 

We let 

Hence, 

~'2(t) > V2(t) 2(t) - D2(t) - a~jx2(t . 

m 

E ° A 2 = a2j. 
j = l  

?2(t) > v2(t)[v2(t) - ~2~2(t)]. 
Then ~/2(t) > 0 by assumption. Choose h2 > 0 so small such that  0 < h2 < (1/2) min(M,~/t2/A2), 
if 0 < x2(t) < h2 we have 

l 

(/~(t) > ~v2( t ) .  (2.6) 

Now construct the third continuous functional 

Va(t) = V3(t, x l , y )  = (x l ( t ) )~2(y( t ) )  -f~ exp[f3(t)], for t > 0, (2.7) 

where 
m m 

j=l  j=i 

m / t  m ~tt 
l ~, x t ( s ) d s -  E l u f3(t) -- E b2j alk y(s)  ds = b2jbik -ply(t) 

j,k----i J t--rlk ($) j,k-= 1 

- E blj u Xl(S) d s +  E bub2k ~ ~ y(s)  ds. 
j,k=l yak ( t)  j,k=l p2k( t )  

Calculating the derivative of V3 with respect to t along the solution of system (2.1), we have 

Y3(t)>Y3(t)[~(n(t) Dl(t))+r3(t)~2 ~ ~ ~ ~ ~ ] 
_ _  _ (b2jalk + blja3k) Xl(t) . 

j,k=i 
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We let 

Hence, 

?~3(t) ~--- G : 2 [ r l ( t  ) - -  D,(t)]  + r3(t)32 > O, A3 = f i  (b~ja~k + bi~a~k ) . 
j,k=l 

~'3(t) > V3(t)[7/3(t) - A3xl(t)] .  

Choose h3 > 0 so small such tha t  0 < h3 _< (1/2)min(M,~?~/A3), i f 0  < xl(t)  <_ h3, we have 

l 
I}'3(t) > -~V3(t). (2.8) 

We can complete  the proof  by showing tha t  sys tem (2.1) is uniformly persistent  under  the hy- 
potheses. In fact, if system (2.1) is not persistent,  then there  exists a solution z(t)  = (x 1 (t), x2 (t), 
y(t)) and a sequence t~ : tn+l > t,~, t~ ~ cx~, as n -* oo, such tha t  one of the following seven 
cases holds: 

(a) lira xl(tn) = 0; lim x2(tn) > 0; lira y(tn) > 0; (2.9) 
n " - * O O  n - - - *  O O  n - - - * o o  

(b) lim xl(t~) > 0; lim x2(t~) = 0; lira y(t~) > 0; (2.10) 
r t  "--* O O  ~ t - " *  O O  ~Ct - - ~  O O  

(c) lira xl(tn) > 0; lim x2(tn) > 0; lim y(tn) = 0; (2.11) 

(d) lira xl(tn) = 0; lim x2(tn) : 0; lim y(tn) > 0; (2.12) 
n " - *  O O  r t  ---~ ~ : )  n - - * o o  

(e) lim xl(tn) > 0; lim x2(tn) = 0; lim y(tn) = 0; (2.13) 
n " - *  OO n - - + O O  ~ t  - - * t : X )  

(f) lira xl(t~) = 0; lim x2(t~) > 0; lim y(tn) = 0; (2.14) 

(g) lira xl(tn) : 0; lim x2(tn) = 0; lim y(t~) -- 0. (2.15) 
r t  - - *  ~ n - - - * o o  n - - * o o  

If (2.9) holds, then  it follows from (2.4) tha t  

Vl(tn) > Vl(tm) > O, for tn > t,~, (2.16) 

such tha t  0 < y(tn) < hi. On the other  hand, we have from (2.3) tha t  

= : t OL1 t ~ 1  Yl(]~n) Yl(Xl,y)(tn) ( x 1 ( n ) )  (Y(n)) exp[fl(tn)] : (Xl(tn))°°gl(tn)~ 

where 
gl(t, ) = (v l ( tn ) )  zl exp[ / l ( tn ) ] .  

From the boundedness of the solutions of (2.1), one can see tha t  gl(t~) is also bounded.  
From (2.9), we derive tha t  

lim VI(tn) = 0, (2.17) 
r t  "--4 ~ 

and (2.17) contradicts  (2:16). Similarly using Vl(t) or V2(t) or V3(t), we can show tha t  (2.10) 
and (2.11) will also lead to a contradiction.  Suppose now tha t  (2.12) holds, by (2.4) and (2.6), it 
follows tha t  

Vl(tn) )~ Vl(tm) > O, V2(tn) > V2(tm) > O, for tn > tm, (2.18) 

such tha t  0 < y(tn) <_ hi, 0 < x2(tn) < h2. Consider now V4(t) defined as follows: 

V4(tn) = Vl(tn)V2(tn) = (xl(tn))alx2(tn)(y(tn)) ~1 exp[fl(tn) + f2(tn)] 

in which (y(tn)) ~1 exp[ f l ( tn )  + f2(tn)] is bounded,  tha t  

lira V4(t,~) = 0. (2.19) 

Bu t  (2.18) implies tha t  V4(tn) > Co for some Co > 0, m > n, and this contradicts  (2.19). 
Similarly using V4(t), we can show tha t  (2.13)-(2.15) will also lead to a contradict ion.  T he  proof  
of the  uniform persistence of system (2.1) is now complete.  
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3. G L O B A L  A T T R A C T I V I T Y  OF P E R I O D I C  S O L U T I O N  

In this section, we suppose that  system (2.1) is a periodic system. We derive sufficient condi- 

tions for all positive solutions of (2.1) to converge to a periodic solution. 
We let the following denotes the unique solution of periodic system (2.1) for initial value 

Z 0 ITO,xO ~01. l" 1 2,9 J" 

Z (t,Z O) = {x I (t ,Z 0) ,,T 2 (t ,Z O) ,y (t ,Z 0)},  
Z (0, Z °) = Z ° 

f o r t  > 0 ,  

Now define Poincare transformation A : R 3 --* R 3 is 

A (Z °) -- Z (~, Z°),  

here, w is the period of periodic system (2.1). In this way, the existence of periodic solution of 
system (2.1) will be equal to the existence of the fixed point of A. 

THEOREM (BROUWER). Suppose that the continuous operator A maps dosed and bounded 
convex set Q c R n onto itself, then the operator A has at least one fixed point in set Q. 

THEOREM 3.1. If  periodic system (2.1) satisfies ~h(t) > 0, (i = 1,2), then there is a t /eas t  one 
strictly positive periodic solution of system (2.1). 

PROOF. If 7h(t) > 0, (i = 1, 2) is satisfied, then from Theorem 2.1 we know that  there exist 
ml  > 0, m2 > 0, m > 0 such that  

x l ( t )  > ml,  x2(t) > m2, y(t) > m. (3.1) 

Let 

Kl={(xl,x2,Y) irnl_<xl_<M, m2<_x2<M, m _ y < N } ,  

then the compact region K1 C R 3 is a positive invariant set of system (2.1), and K1 also is a 
closed bounded convex set. So we have Z ° ~ K1 ~ Z(t,  Z °) E K1, also Z(w, Z °) E K1, thus 
AK1 c K1. The operator A is continuous because the solution is continuous about the initial 
value. Using the fixed point theorem of Brouwer, we can obtain that  A has at least one fixed 
point in K1, then there exists at least one strictly positive w-periodic solution of system (2.1). 
This completes the proof of Theorem 3.1. 

Now we consider the global attractivity of periodic solution. If (xl(t) ,  x2(t), y(t)) denotes any 
solution of system (2.1), then we define ul,  u2, and u3 as follows: 

ul( t )  = lnxl ( t ) ,  u2(t) = lnx2(t),  u3(t) ---- lny(t) .  (3.2) 

It is found from (2.1) that  ul, u2, u3 are governed by 

d?.t I ~ m 
dt = rl(t)  - au(t)eU~(t-'lJ(t)) - E bu(t)eU3(t-o~(t)) 

j=l j=l 

+ Dx(t)(e u~-u' - 1), 

du2 m 
dt = r2(t) - E a2j(t)e u2(t-T2.¢(t)) + D2(t)(e u'-u2 - 1), 

j= l  

du3 m 
dt = - r a ( t )  + E a3j(t)e~'(t-'3J(t)) - b2j(t)£ '3(t-"2At)). 

j=l j=z 

(3.3) 
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If ( U l ,  ?/'5, U3)  and (vl, v2, v3) are any two solution of (3.3), then 

d[//'l-dr v i i _  ~ {a l j ( t  ) [eUl(t_rlj(t) ) _ evl(t_rlj(t))] -~-blj(t) [eu3(t_plj(t))_eVa(t_plj(t))] } 
j=l 

+ D (t) - e 

m 

1=1 

d[U3_d~t v3]_ ~ {a3j(t  ) [eU,(t_r3.~(t), - eVl(t_r3~(t))] _ b21(t) [eUa(t_o~(t))_ev~(t_o~i(t,)] } . 
j = l  

We define Yl, Y2, and Y3 as follows: 

yi(t) = ui(t) - vdt) ,  (i = 1, 2, 3). (3.5) 

We derive from (3.1), (3.4), and (3.5) that 

m m 

dyl < _ E Al j  ( t )yl( t  - "rlj(t)) - E Bu( t ) y3 ( t  - plj( t))  + C2(t)y2(t), dt - 
j = l  j = l  

m 

dy2 < _ E A21 (t)y2(t - T2j(t)) + Cl( t )y l ( t ) ,  
dt - 

j = l  

m m 

dy____33 = E A3j( t )y l ( t  - T31(t)) -- E B21(t)y3(t - P2J( t))' dt 
j = l  j = l  

(3.6) 

where 

Aij( t)  = a~j(t)e °''(t), (i = 1,2,3), Bij( t )  = bii(t)e ~'(t), 

C 1 (t) -- D2(t)erl(t) C2(t) = D1 (t)e "~2(t) 
m 2  ?It 1 

(i = 1, 2), 

Oiy (t) lies between ui(t - Tij (t) ) and vi(t - Tij (t)), (i = 1, 2); 5ij (t) lies between u3(t - Pij (t) ) and 
v 3 ( t -  pij(t)), (i = 1,2); 03j(t) lies between u l ( t -  T3j(t)) and v l ( t -  T3j(t)); 7i(t) lies between 
ui(t) and v~(t), (i = 1,2; j = 1 ,2 , . . . ,m) .  

We return now to a further analysis of (3.6); for t > to + 2T, we rewrite (3.6) as follows: 

m m 

dyl < _ E A1j(t)yl( t )  + ~ Al j ( t )  f t~  dt - fll(s) ds - B13(t)y3(t - pl j( t ))  
j = l  j = l  r l j ( t )  j = l  

+ c (t)y2(t), 

dy2 
< - A2j(t)y2(t) + ~_, 

dt - 
j = l  j = l  

m m 

dy3 _ Z B2j(t)y3(t) + E 
dt j=l j=l 

y2(s) ds + Cl (t)yl(t) ,  A2j(t) r2j(t) 

m 

B2j(t) y3(s) ds + E A3j( t )y l ( t  - T3j(t)). 
p2j(t) j = l  

(3.7) 

We define 

~i(t) = sup lYi(s)l, (i = 1,2,3), t > to + 2T. (3.8) 
sE[t--2v,t] 
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We let ~tt denote the upper-right derivative and derive from above that  for t > to + 2~-, 

u 2 ~ D[yl(t)I < -A~M(t)I + C~ly2(t)l + (A,) Ty 1 q- A~C~rff2 + (B~ + A~B~T)/J3, 
Dt - 

Dly2(t)I u u - u 2 - < C~[y1(t)l - Al21y2(t)[ + A2C1Tyl + (A2) Ty2, 
Dt - 

Dly3(t)I < -B~lY3(t)l + (A~ + d~B~r)Yl  + (B~)27~/3, 
Dt - 

(3.9) 

where 
m 

A,(t) = E A,j(t), 
j = l  

Equation (3.9) can be rewritten as follows: 

m 

B~(t) = E Bij(t). 
j = l  

/[Y2(t)[ _< P ly2(t)l + Q  |ff2(t)/ , 
Lly~(t)l ]y3(t)l Lffz(t)J 

where 

P = C~ -Al2 , Q = 

0 0 -B~ 

(A~)2T A?C~T B~ + A~B~T)  

A~C~T (A~)2T 0 . 

A~ + B~A~T 0 (B~)2r 

If we assume that  the matrix - ( P  + Q) is an M-matrix, then by the result of [22], it follows that  
there exist positive numbers kl, k2, k3, and 5 such that  

ly,(t)l < kie -St, for t > to. 

According to the above, we obtain the following. 

THEOREM 3.2. Suppose the coefficients of (2.1) and (3.6) satisfy ~i(t) > 0, (i = 1,2) and 
- ( P  + Q) is an M-matrix, then system (2.1) has a unique globally attractive positive periodic 
solution. 

4. D I S C U S S I O N  

For one patch case, Wang and Ma [7] considered the following autonomous predator-prey 
system with a finite number of discrete delays: 

~ = x  r l  --  E a l j x  ( t  --  T l j )  --  E b l J y  ( t  -- 191j) , 
j = l  j = l  

- ~  + ~ a~j~ (t - ~-~j) - ~ b~y (t - p~j) . 
j = l  

(4.1) 

m m If rt ~-~j=l a3j > r3 ~ j = l  alj, then system (4.1) is uniformly persistent. 
Similarly, we can obtain the following result: if all coefficients in system (4.1) are time depen- 

dent, and rl(t) ~-~'~jm__ 1 al3j > r3(t) ~-~j~--t a~j, then system (4.1) is uniformly persistent. 
In this paper, we consider a predator-prey system in which the prey population can disperse 

between two patches and there are time delays in the self-regulation terms in both species. 
Moreover, M1 coefficients in system (2.1) are time dependent. We first show that  the system is 
persistent independent of the time delay by choosing a Liapunov-type function. In the second 
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part ,  we assume tha t  all the coefficients are indeed periodic and prove t ha t  all solut ions converge 

to a periodic solut ion of the system. 

Our  uniform persistence condi t ion in Theorem 2.1 is 

m m m 

r l ( t )  ~ al3j > D I ( t ) ~  al3j -{- r3(t)~--~ a~j, r2(t) > D2(t).  
j - -1  j = l  j = l  

Obviously, the t ime delays and the smaller dispersion rates do not  change the proper ty  of persis- 

tence. 

From this paper,  we can find the t ime delays and  the smaller dispersion rates also have no 

effect on the existence of a positive periodic solution, bu t  the t ime delays and  the dispersion 

rates have an effect on the global a t t rac t iv i ty  of periodic solution. 

We expect a similar technique to work in higher-dimensional  systems with t ime delays and  

dispersion. We leave this invest igat ion for future  work. 
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