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Abstract

A gauge theory with gauge groupG defined inD > 4 space–time dimensions can be broken to a subgroupH on four-
dimensional fixed point branes, when compactified on an orbifold. Mass terms for extra-dimensional components of gauge
fieldsAi (brane scalars) might acquire (when allowed by the brane symmetries) quadratically divergent radiative masses and
thus jeopardize the stability of the four-dimensional theory. We have analyzedZ2 compactifications and identified the brane
symmetries remnants of the higher-dimensional gauge invariance. No mass term is allowed forD = 5 while forD > 5 a tadpole
∝ Fα

ij
can appear when there areUα(1) factors inH. A detailed calculation is done for theD = 6 case and it is established

that the tadpole is related, although does not coincide, with theUα(1) anomaly induced on the brane by the bulk fermions. In
particular, no tadpole is generated from gauge bosons or fermions in real representations.
 2002 Elsevier Science B.V.

An important issue in any model of particle physics
is how the mechanism of electroweak symmetry break-
ing is realized. In the Standard Model this is achieved
by introducing the Higgs field. However, this phenom-
enologically well motivated mechanism comes with
an undesired effect. The Higgs mass should be of
the order of the electroweak symmetry breaking scale
(∼ 102 GeV), which is unnaturally small compared
to the ultraviolet (UV) cut-off of the Standard Model
(∼ 1019 GeV). In addition the hierarchy of scales is
destroyed by radiative corrections and fine tuning is
required to keep the Higgs light. This is commonly
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known as the hierarchy problem and one might wish
to extend the Standard Model by supersymmetry to
soften the UV sensitivity of the scalar sector.

However, introducing extra space–time dimensions
opens new ways to solve the hierarchy problem.
On the one hand, in the presence of transverse (as
large as submillimeter) dimensions where only gravity
propagates the scale of quantum gravity (string scale)
can be lowered from the Planck scale to the TeV
range [1,2], thus alleviating the problem of quadratic
divergences. On the other hand, in the presence of
(longitudinal) TeV extra dimensions [3] it is not
necessary to introduce any fundamental scalars at all,
but instead one could use the fact that the extra-
dimensional components of gauge bosons are scalars
under the four-dimensional (4D) Lorentz symmetry
and transform non-trivially under the gauge symmetry
they generate in the higher-dimensional theory. These
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scalars can be used to break electroweak symmetry
spontaneously [4–8]. One might then conclude that
higher-dimensional gauge invariance protects those
scalars from being sensitive to the UV physics.

Orbifolds [9] play a prominent role in theories with
extra dimensions due to their property to create chiral-
ity in the massless sector, an indispensable property in
any phenomenologically relevant theory. Another in-
teresting feature of orbifolds is their ability to break
symmetries, in particular gauge and supersymmetry.
While local symmetries remain intact in the bulk by
an appropriate choice of parities for the transforma-
tion parameters, they are in general broken to smaller
subgroups on the boundaries (the fixed points of the
orbifold symmetry). As in any quantum field theory,
in the effective action we must allow for all operators
consistent with the symmetries. Allowed operators not
present at tree level will be generated by radiative cor-
rections [10–13].

The orbifold breaking of the bulk gauge symme-
try proceeds by projecting out some fields, i.e., only a
subset of the 4D gauge bosonsAµ and the 4D scalars
Ai (i = 5, . . . ,D) will be non-vanishing at the bound-
aries. While theseAµ generate the unbroken gauge
groupH, theAi transform in some representation of
H. It is then necessary to determine how the sym-
metries restrict possible brane localized operators of
those fields, especially possible mass terms for the
scalars [12]. WouldH be the only symmetry left on the
brane, mass terms forAi would be perfectly allowed
leading to a quadratic sensitivity to the UV cut-off.

In this Letter we demonstrate that the remnant sym-
metry on the brane is larger than theH gauge sym-
metry left over from the bulk. This provides a further
restriction on the possible brane terms. We find that
brane mass terms for scalars can only occur inD � 6
and only forU(1) factors inH that were not already
present in the bulk gauge groupG. These brane mass
terms are radiatively generated by bulk fermions.

We will consider a gauge theory (gauge groupG)
coupled to fermions inD > 4 dimensional space–time
parametrized by coordinatesxM = xµ, yi whereµ =
0,1,2,3 andi = 5, . . . ,D. The bulk Lagrangian is

(1)LD = −1

4
FA
MNF

AMN + iΨ γMDMΨ,

whereFA
MN = ∂MAA

N − ∂NA
A
M − gf ABCAB

MAC
N with

the indicesA,B,C running over the adjoint represen-

tation ofG andf ABC being theG structure constants.
The local symmetry of (1) is the invariance under the
(infinitesimal) gauge transformations

(2)δGA
A
M = 1

g
DAB

M ξB = 1

g
∂MξA − f ABCξBAC

M.

We now compactify thep ≡ D − 4 extra dimensions
on theT p/Z2 orbifold with all the radii of the torus
equal toR1 and with theZ2 action defined asyi →
−yi.

In the compactified theory the surviving gauge
symmetry on the boundaries of the orbifold is a
subgroupH of G, according to the action ofZ2 on
the gauge fields

(3)A
(
xµ,−yi

) =PAA
(
xµ, yi

)
, PA =Λ⊗P1.

Here P1 acts on the vector indices and it is the
diagonal matrix with eigenvaluesαµ = +1, αi = −1.
Λ acts on the gauge indices and can also be taken
diagonal. Its eigenvaluesηA = ±1 then define the
breaking pattern. We split the bulk gauge index as
A = a, â corresponding to the unbroken (ηa = +1)
and the broken generators (ηâ = −1) respectively. The
non-zero fields on the brane are the even fields, namely
Aa
µ andAâ

i , whileAâ
µ andAa

i are odd and thus vanish
on the brane. The orbifold consistency constraint on
the structure constants comes essentially from the
invariance of (1) and it provides the automorphism
condition [14]

(4)ηAηBηC = 1, for fABC �= 0.

Finally, in the gauge sector, the Faddeev–Popov ghosts
c transform as theµ-components of the gauge fields,
and for them the parity action isPc =Λ.

There are restrictions on the fermion representa-
tions as well. In even dimensions the bulk fermion
representation has to be chosen anomaly free. Further-
more, for any number of extra dimensions, the result-
ing four-dimensional massless fermion spectrum must
also be anomaly free. In addition, there are orbifold
consistency conditions analogous to (4). TheZ2 ac-
tion on the fermions is

(5)

Ψ
(
xµ,−yi

) =PΨΨ
(
xµ, yi

)
, PΨ = λ⊗P 1

2
,

1 From now on we will work in units whereR ≡ 1. Restoring
the R dependence as well as introducing different radiiRi for
different dimensions should be straightforward.
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where λ is a matrix acting on the representation
indices. The constraint comes from the requirement
that the couplingiAA

MΨγMT AΨ is Z2 invariant. One
obtains [12] for any number of dimensions2

(6)
[
λ,T a

] = 0,
{
λ,T â

} = 0.

P 1
2

is the orbifold action on the spinor indices and will

be given explicitly later on.
The non-vanishing fields on the branes are of the

general form

(7)
D∏
i=5

∂
ni
i Φ

∣∣∣∣∣
brane

≡ ∂nΦ,

wheren ≡ ∑
i ni is even (odd) for even (odd) fields.

Similarly, the gauge parametersξa are even fields and
ξ â are odd. They couple to the branes according to (7).

The effective four-dimensional Lagrangian can be
written as

(8)

Leff
4 =

∫
dpy

[
LD +Lbrane

4

∏
i

{
δ
(
yi

) + δ
(
yi − π

)}]

whereLD is given by (1) andLbrane
4 should be the

most general Lagrangian consistent with the symme-
tries. The latter can be nothing but the original bulk
symmetry (2) modded out by the orbifold action and
subsequently evaluated at the location of the brane. Let
us call the transformation resulting from this operation
δξ . Applying this rule to (2) acting on the massless
even fields, one obtains the transformations

(9)δξ
(
Aa
µ

) = 1

g
∂µξ

a − f abcξbAc
µ,

(10)δξ
(
Aâ
i

) = 1

g
∂iξ

â − f âbĉξbAĉ
i .

In the above equations and in what follows, all fields
should be interpreted as coupled to the brane in (8)
according to (7).

The brane symmetry is however much larger than
the transformations (9) and (10). In fact, there is
an infinite number of non-zero independent fields on
the brane, i.e.,∂2k{Aa

µ,A
â
i } and ∂2k+1{Aâ

µ,A
a
i }, and

an infinite number of corresponding transformation
parameters{∂2kξa} and {∂2k+1ξ â} induced by the

2 Note that conditions (6) determineλ up to a sign.

bulk. Using (2), one can derive the transformation of
any non-zero brane field. We show explicitly only the
first two at the next level:

δξ
(
∂jA

a
i

) = 1

g
∂j

(
∂iξ

a
) − f ab̂ĉ

(
∂j ξ

b̂
)
Aĉ
i

(11)− f abcξb
(
∂jA

c
i

)
,

δξ
(
∂iA

â
µ

) = 1

g
∂µ

(
∂iξ

â
) − f âb̂c

(
∂iξ

b̂
)
Ac
µ

(12)− f âbĉξb
(
∂iA

ĉ
µ

)
.

It is convenient to separate the above transformations
into two different classes:

δξ = δH + δK

(13)with δH = {
ξa

}
, δK = {

∂2kξa, ∂2k+1ξ â
}
.

This is a natural separation becauseδH is the surviv-
ing gauge transformation on the brane reflecting itsH
gauge invariance. One can see immediately by inspec-
tion of Eqs. (9)–(13) thatAa

µ are the gauge bosons of
H while all other fields transform homogeneously in
either the adjoint ofH, (T a)bc = if abc, or in the rep-

resentation spanned by(T a)
b̂ĉ

= if ab̂ĉ.3 The rest of
the transformations is a set of local (but not gauge)
transformations which we namedδK.

Once the symmetries under which the brane action
should be invariant are known, one can start construct-
ing the allowed terms by these symmetries. A use-
ful guiding principle in this task is the gauge symme-
try H. We know that it is a necessary condition that the
building blocks should beH-covariant combinations
of the fields since this (and only this) can ensure that
the square of these covariant objects areδH-invariant.
Given a set ofH-covariant objects, invariance under
δK is a sufficient condition for their square to be in-
variant under bothδH andδK and therefore to be an
allowed terms in the effective action. The reason for
which we requiredK-invariance is because there is no
notion ofK-covariance, sinceK is not a gauge sym-
metry. Thus, even though at this point we have not
proved thatK-invariance is not only a sufficient but
also a necessary condition, we will enforce it.

3 As a simple example consider the breakingSU(3) → SU(2)⊗
U(1). The adjoint ofSU(3), fABC = 8 then splits into theSU(2)
representationsf abc = 3 ⊕ 1 (H is not simple and hence its adjoint

is reducible) andf ab̂ĉ = 2 ⊕ 2.
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A simple and very important example is the field
Aâ
i . By looking at (10) one can see that this field

is indeedδH-covariant but notδK-invariant. A naive
interpretation would then be that an explicit brane

mass term as(Aâ
i Mâb̂

Ab̂
j ) is forbidden in the four-

dimensional effective action. However, as we will see
below, under particular circumstances such a term
can be part of aδH- and δK-invariant term in the
Lagrangian in which case such a term can be generated
radiatively.

The terms which are at the same timeH-covariant
andK-invariant are easily found from the transforma-
tion properties:

(14)δHFa
µν = −f abcξbF c

µν, δKF
a
µν = 0

(15)δHF â
iµ = −f âbĉξbF ĉ

iµ, δKF
â
iµ = 0

(16)δHFa
ij = −f abcξbF c

ij , δKF
a
ij = 0.

Note the different structure ofFa
µν ≡ ∂µA

a
ν − ∂νA

a
µ −

gf abcAb
µA

c
ν and Fa

ij ≡ ∂iA
a
j − ∂jA

a
i − gf ab̂ĉAb̂

i A
ĉ
j

in the non-linear terms. Further terms could be con-
structed from covariant derivatives of these operators.
At the renormalizable level the following terms can
appear in the Lagrangian:

Lbrane
4 = −1

4
ZabF

a
µνF

bµν

− 1

4
Z ij

âĉ
F â
iµF

ĉµ
j − 1

4
Z ijkl
ab F a

ij F
b
kl +Z ij

α F
α
ij

(17)+Zklij
α DαA

k DAB
l FB

ij ,

where theZ tensors in extra-dimensional indices must
be proportional to either the torus metricgij or to
possible invariant tensors under the symmetry group of
the torus. We differentiate in the last two terms of (17)
possibleU(1) factors ofH from the remaining semi-
simple part and denote theseU(1) generators byT α .
In fact Eq. (16) implies that the field strength of aU(1)
gauge field is invariant by itself allowing for the term4

(18)Fα
ij = 2∂[iAα

j ] − gf αb̂ĉAb̂
i A

ĉ
j

that can give rise to a quadratic renormalization. In
a similar way, the termDαA

k DAB
l FB

ij is invariant
allowing for the last term in (17). It is dimension four

4 Notice that unbrokenU(1) factors inG do not give rise in (18)
to bilinear terms in even fields.

and gives rise to a logarithmic renormalization, as we
will see.

One might think that the term tr(λRT a
R)F

a
ij , where

λR satisfies Eqs. (6) and the indexR denotes some ar-
bitrary irreducible representation, would give a further
invariant linear inFij .5 However, forT a

R belonging to
a simple factor ofH, λR must act as the identity in
this subspace by Eqs. (6) and Schur’s lemma, so the
trace vanishes. OnlyU(1) factors will thus contribute
to the trace and we do not get any new invariant. We
conclude that the termsFα

ij are the most general linear
terms.

We will be concerned mainly with the appearance
of scalar mass terms inLbrane

4 . For a general unbro-
ken gauge groupH the most general renormalizable
Lagrangian allowed by the symmetries of the the-
ory contains the terms in (17). The first term in (17)
corresponds to kinetic terms for the four-dimensional
gauge bosons, the second one corresponds to kinetic
terms for the even scalars (plus some interactions),
while the third term contains brane mass terms for
the odd scalars. One consequence of the appearance
of brane mass terms in this particular way is that
their renormalization is expected to be governed by
the (wave function) renormalization ofF 2, which does
not contain quadratic divergences. They are expected
to pick up only logarithmically divergent renormaliza-
tion effects. Brane mass terms for even scalars can
appear inLbrane

4 in the case where there areU(1)
group factors inH corresponding to unbroken gen-
eratorsT α . Under this circumstance we have seen
that the operator (18) is allowed by all symmetries
on the brane and we expect that both a tadpole for
the derivative of odd fields,∂iAα

j , and a mass term

for the even fields,f αb̂ĉAb̂
i A

ĉ
j , will be generated on

the brane by bulk radiative corrections. Moreover,
since these operators have dimension two, we ex-
pect that their respective renormalizations will lead to
quadratic divergences, making the theory ultraviolet
sensitive.

We would like to confirm by explicit calculation
that the allowed terms are indeed generated radia-
tively on the brane. In particular, mass terms for
brane scalars (extra-dimensional components of gauge

5 We thank C. Csáki for pointing this out to us and thus making
us aware of the possibility of having terms linear inFij on the brane.
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Table 1
Discrete Lorentz symmetries broken/conserved by the orbifold. The corresponding reflected coordinates are indicated

�x,y5, y6 (6D parity) �x (4D parity) y5 y6

P 1
2

conserved conserved broken broken

P ′
1
2

broken broken conserved conserved

bosons) are contained in the third term of (17) for
the odd scalarsAa

i , and in (18) for the even scalars
Aâ
i when there areU(1) group factors inH. In

all cases they arise from effective operators propor-
tional to Fij . An important special case isD = 5,
i.e., a five-dimensional gauge theory compactified on
S1/Z2. In this case the termFij does not exist and
therefore we do not expect any type of brane mass
terms to appear inLbrane

4 . This result has been con-
firmed by explicit one loop calculation in Ref. [12].
However forD > 5 Fij does exist and we expect,
from the previous symmetry arguments, the corre-
sponding mass terms to be generated on the brane
by radiative corrections. The rest of this Letter will
be devoted to an explicit calculation of these mass
terms in aD = 6 model compactified on the orb-
ifold T 2/Z2.

In D = 6 the Clifford algebra is spanned by
eight-dimensional matricesΓM = Γµ,Γi satisfying
{ΓM,ΓN } = 2gMN . For an appropriate choice of the
representation of theΓ M , Dirac spinors in six dimen-
sions are of the formΨ = (Ψ1,Ψ2)

T whereΨ1,2 are
Dirac spinors in the four-dimensional sense. We can
define the six-dimensional Weyl projector leading to
the corresponding six-dimensional chirality such that
Γ7Ψ± = ±Ψ± whereΨ± are six-dimensional chiral
spinors. The chiral fermionsΨ± contain the degrees
of freedom of a four-dimensional Dirac spinor. A the-
ory with six-dimensional chiral fermions is not free
from six-dimensional anomalies, generated by box di-
agrams, and anomaly freedom should be enforced by
appropriately restricting the fermion content.6 After
orbifolding onT 2/Z2, half of the degrees of freedom
of the chiral fermionsΨ± is odd and the zero mode
sector becomes chiral from the four-dimensional point
of view; four-dimensional anomaly freedom for zero

6 Of course a theory with six-dimensional Dirac fermions does
not have six-dimensional anomalies.

modes is a further requirement of any consistent the-
ory.

Compactification of a six-dimensional theory to
four dimensions is done by means of usual tech-
niques. The Kaluza–Klein (KK) number is now a two-
dimensional vector denoted by�m. Generalizing the
techniques of [10,12] to six dimensions is easy, the
only missing ingredient being the orbifold action on
the fermionsP 1

2
in (5). Requiring that

(19)P2
1
2

= 1, P 1
2
/MNP 1

2
= (P1)

R
M(P1)

S
N/RS,

where/MN = i
4[ΓM,ΓN ], we can identify two possi-

ble solutions:

(20)P 1
2

= iΓ5Γ6, P ′
1
2

= iΓ5Γ6Γ7.

Both projections differ in their action on possible
discrete space-reflection symmetries, which might be
broken by the orbifold or not. The situation is summa-
rized in Table 1.

The main difference is that starting from a 6D Dirac
spinor, usingP ′

1
2

the massless spectrum contains two

4D Weyl spinors of the same chirality while withP 1
2

it contains a 4D Dirac spinor. This is consistent with
the fact thatP ′

1
2

breaks 4D parity whileP 1
2

conserves

it. We would like to stress that the distinction is
completely irrelevant in case the discrete symmetries
are broken in the first place, as is the case when
dealing with 6D Weyl fermions. We can obtain the
same massless field content withP 1

2
and P ′

1
2

since

we are now allowed to choose differentλ for different
chiralities.7 Without loss of generality we will choose
P 1

2
for 6D Weyl fermions.

7 Indeed,λi ⊗ P 1
2

produces the same zero mode spectrum as

λ′
i ⊗ P ′

1
2

with λ′
i = εiλi , εi being the 6D chirality of the fermions

speciesψi .



356 G. von Gersdorff et al. / Physics Letters B 551 (2003) 351–359

Fig. 1. One loop tadpole diagrams.

The propagator of the�m-mode of an arbitrary field
Φ (a gauge bosonAM , a ghost fieldc or a fermion
Ψ ) in the six-dimensional space compactified on the
orbifold T 2/Z2 can be written as

(21)

〈
Φ �m′ �Φ �m〉 = 1

2
(δ �m′− �m +PΦδ �m′+ �m)G(Φ)(pµ,pi),

whereG(Φ)(pµ,pi) is the propagator of the corre-
sponding field in flat six-dimensional space andPΦ

the parity as defined in (3) and (5).
The diagrams appearing in Fig. 1 contribute to

the renormalization of the first term in Eq. (18),
the dimension two operator∂iAa

j , as well as to
the renormalization of the dimension four operator
∂k∂l∂iA

α
j contained in the last term of Eq. (17). In

the first diagram of Fig. 1 six-dimensional fermions
circulate. The contribution of a chiral fermionΨ±
turns out to be

ig tr
(
λRT

B
R

)
εijm

j

∫
d4q

(2π)4
1

q2 − �m2/4
,

(22)m5,m6 even,

where the external leg corresponds to the 4D scalar
AB
i (we have definedε56 = −ε65 = +1). It leads to

the terms8(
Z ij
α F

α
ij +Zklij

α DαA
k DAB

l FB
ij

)[
δ(y5)+ δ(y5 − π)

]
(23)× [

δ(y6)+ δ(y6 − π)
]
,

whereα runs over the differentU(1) factors ofH and
Z ij
α andZklij

α are given by

(24)Z ij
α = εij

g

32π2ζ
αΛ2, ζ α = tr

(
λRT

α
R

)
,

(25)Zklij
α = δklεij

g

64π2ζ
α log

Λ

µ
,

8 We have confirmed explicitly that the termsf αâb̂Aâ
i A

b̂
j in (18)

receive the same renormalizationZij
α at one loop as the tadpole.

whereΛ is the ultraviolet andµ the infrared cut-off.
A further comment concerns the gauge contribution

to the tadpole. At one loop it is given by the second
(contribution from gauge fieldsAM ) and third (contri-
bution from ghostsc) diagrams in Fig. 1. Each one is
proportional to the corresponding trace

(26)tr
(
λAdjT

α
Adj

) = ηAδABf αAB = 0

and thus vanish by the asymmetry of the structure
constants. Note that this is a generic feature of real
representations.

We have also computed the one loop contribution to
the terms(F a

ij )
2 in (17) and we found the logarithmic

divergence we anticipated:

−1

4
Fa
ijZ

ijkl

ab F b
kl

[
δ(y5)+ δ(y5 − π)

]
(27)× [

δ(y6)+ δ(y6 − π)
]
,

where

Z ijkl
ab = 1

2

(
δikδjl − δjkδil

) g2

2π2

(28)×
(
C2(Ha)− 1

2
C2(G)

)
δab log

Λ

µ
.

Here,C2(Ha) is by definition the Casimir of the group
factor inH to which the generatorT a belongs (we de-
fine it to be zero forU(1) factors). One expects a cor-
responding logarithmic contribution from the fermion
sector.

Since we have seen that, in all cases, the one loop
contribution to the renormalization of (18) from six-
dimensional gauge bosons and fermions is propor-
tional to tr(λTα), whereλ represents the parity action
on the corresponding representation, two main issues
can be addressed. The first issue concerns the vanish-
ing of the tadpole from the gauge sector (or in general
from real representations) at higher orders in perturba-
tion theory. In order to answer this question we have
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computed the two loop contribution to the tadpole. We
have verified (see Appendix A) that the contribution
of real representations to the tadpole vanish at higher
loop order and we can expect that it vanishes at all or-
ders in perturbation theory although we do not have an
explicit proof beyond two loops.

The second issue concerns the possible relation
between the tadpole and the generation of the four-
dimensional anomalies on the brane by (chiral) fermi-
ons in the bulk [15,16]. In fact we have seen that given
a collection of six-dimensional chiral fermionsΨε,
whereε = ±, the generated tadpole for a givenU(1)
factor is

(29)ζ α =
∑
Ψε

tr
(
λΨεT

α
Ψε

)
,

whereε = ± is the six-dimensional chirality of the
field Ψε . On the other hand, the four-dimensional
anomaly on the brane is generated by bulk triangular
loop diagrams where chiral fermionsΨε circulate in
the loop, while gauge bosons and/or gravitons are ex-
ternal legs. In particular the mixedU(1)-gravitational
anomaly on the brane is easily seen to be proportional
to

(30)Aα =
∑
Ψε

ε tr
(
λΨεT

α
Ψε

)
.

Notice that different chiralities contribute with the
same sign to the tadpoleZα while they contribute
with different signs to the anomalyAα . Let us also
note that with the choiceP ′

1
2

the ε would move from

Eq. (30) to Eq. (29). Keeping the physics constant
requires however to make the changeλ→ −λ for the
negative chirality fermions (see footnote 7), which is
consistent with Eqs. (29) and (30).

By looking at (29) and (30) one may conclude that
imposingζ α =Aα = 0 results in the tadpole cancella-
tion to be equivalent to theU(1)-gravitational anom-
aly cancellation in the positive and negative chiral-
ity sectors separately. However, in models originat-
ing from string theories anomalies can be cancelled
by a generalized Green–Schwarz mechanism. In those
cases the cancellation of the anomalyAα in Eq. (30)
is no longer a necessary condition and therefore the
tadpole cancellation as given by Eq. (29) remains as
the only constraint in the model. We will illustrate
the above ideas with the six-dimensional model of
Ref. [8] compactified onT 2/Z2 with gauge group

G = SU(3)c × SU(3)w × U(1)Q3 × U(1)Q2 broken
by the orbifold boundary conditions toH = SU(3)c ×
SU(2)w ×U(1)Q1 ×U(1)Q3 ×U(1)Q2. Fermions are
in representationsLf = (1,3)+(0,1), Uf = (3,1)+(1,0),
Qf = (3,3)

εf
(1,1) wheref = 1,2,3, ε1,2 = −, ε3 = +,

and the notation(r3, r2)
ε
(q3,q2)

represents a six-dimen-
sional Weyl fermion with chiralityε in the represen-
tation r3 andr2 of SU(3)c andSU(3)w, respectively,
andU(1) chargesq3 andq2 under the generatorsQ3
andQ2. Orbifold compactification breaksSU(3)w →
SU(2)w × U(1)Q1, whereQ1 = diag(1,1,−2) and
for SU(3)w triplets the matrix satisfying (6) isλ =
diag(1,1,−1). The Standard Model hypercharge is re-
lated toQi by Y = Q1/6 − 2Q2/3 + 2Q3/3 and the
fields are decomposed underSU(2)w ×U(1)Q1 as

LL =
(
:L
ẽL

)
, LR =

(
:̃R
eR

)
,

QL =
(
qL

d̃L

)
, QR =

(
q̃R
dR

)
,

(31)UL = ũL, UR = uR,

where untilded (tilded) fields are (mirrors of) Standard
Model fields.

Given (31) the parity properties of fields is given
by: λL = λ, λQ3 = λ, λQ1,2 = −λ, λU = −1. Thus
their contribution toζ 1 cancels whileA1 = 12(1+Nc)

since, as stressed in Ref. [8],Q1 is anomalous.
An alternative way to the Green–Schwarz mecha-

nism, that can be used to cancel the (bulk-induced)
brane anomalies in Eq. (30), is by means of chiral
fermions localized on the brane. Localized fermions
do not possess tree level couplings withAA

i , or their
derivatives, and thus they provide no one-loop con-
tribution to the tadpole. Moreover their unique two
loop contribution, given by the third diagram of Fig. 2
where the dashed (ghost) line is replaced by a local-
ized chiral fermion, vanishes as can be easily checked.

We want to conclude this Letter by stressing the
fact that the conditions for tadpole cancellation on the
brane do not coincide with those required from bulk-
induced anomaly cancellation. As such the tadpole is
not expected to be (as the anomaly) a purely one loop
effect and in a general theory with fermions we expect
a tadpole generation at least at the two loop level.
However for theories with low (TeV) cut-off scale the
latter will provide a mild (tiny) dependence on the
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Fig. 2. Two loop tadpole diagrams from the gauge sector.

cut-off that should not disturb the stability of the low
energy effective theory.
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Appendix A. Two loop contribution to the tadpole

The diagrams contributing to the tadpole at two
loops are given in Fig. 2. Note that fermionic diagrams
are obtained by just replacing in the diagrams of (2)
ghost propagators by fermion propagators. To judge
whether or not there are contributions to the tadpole,
it is sufficient to examine the gauge index structure.
Recall that the gauge and ghost propagators have the
general structure (see Eq. (21))

(A.1)δ+δAB + δ−ΛAB = (δ+ + δ−ηA)δAB

while for fermions in the representationR we have

(A.2)δ+δij + δ−(λR)ij .

Here δ+ symbolizes extra-dimensional momentum
conservation andδ− extra-dimensional momentum
flip. The first four diagrams are reducible in the sense
that they just correspond to wave function renormal-
ization insertions of the gauge or ghost propagators.

Using the contraction identities9

(A.3)f BDEf CDE = C2(G)δBC,

(A.4)

f BDEf CDEηD =
(
C2(HB)− 1

2
C2(G)

)

× (ηB + 1)δBC,

(A.5)f BDEf CDEηDηE = C2(G)ηBδBC,

one can verify immediately that all these insertions are
matricesZBC which are symmetric inBC. These are
then to be contracted withf ABC , giving zero. In a
similar way it can be seen that the last diagram does
not contribute either.

Finally, fermions contribute at two loops unless
they transform in a real representation,T T

R = −TR.
The corresponding contraction identities read:

(A.6)tr
(
T B
R T C

R

) = CRδ
BC,

(A.7)tr
(
T B
R λRT

C
R λR

) = CRη
BδBC,

and in addition tr(T B
R T C

R λR) = tr(T C
R T B

R λR) if R is
real. We conclude that in this case the third diagram
(with the ghost replaced by a fermion) is zero, while
for generalR there will be a contribution from the
antisymmetric part of tr(T B

R T C
R λR).10 Finally, the

fourth diagram can be seen to give terms proportional
to the four tensors (the sum overB is understood)

tr
(
T aT BT B

)
, ηB tr

(
T aT BT B

)
,

(A.8)tr
(
T aλT BT B

)
, ηB tr

(
T aλT BT B

)
.

The CasimirsT BT B and ηBT
BT B are symmetric

matrices which commute withT a . Together with

9 The tensor in Eq. (A.4) vanishes forB = b̂. It has already been
encountered in Eq. (28).

10 It is easy to verify that this corresponds to a brane term.
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Eq. (6) this implies that all four traces vanish forR
real.
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