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Abstract

A gauge theory with gauge group defined inD > 4 space—time dimensions can be broken to a subgtéum four-
dimensional fixed point branes, when compactified on an orbifold. Mass terms for extra-dimensional components of gauge
fields A; (brane scalars) might acquire (when allowed by the brane symmetries) quadratically divergent radiative masses and
thus jeopardize the stability of the four-dimensional theory. We have anagzetdmpactifications and identified the brane
symmetries remnants of the higher-dimensional gauge invariance. No mass term is allo@ed $owhile for D > 5 a tadpole
s Fl.‘}‘, can appear when there alk, (1) factors inH. A detailed calculation is done for the = 6 case and it is established
that the tadpole is related, although does not coincide, witli/th@) anomaly induced on the brane by the bulk fermions. In
particular, no tadpole is generated from gauge bosons or fermions in real representations.

0 2002 Elsevier Science B.V. Open access under CC RY license.

An importantissue in any model of particle physics known as the hierarchy problem and one might wish
is how the mechanism of electroweak symmetry break- to extend the Standard Model by supersymmetry to
ing is realized. In the Standard Model this is achieved soften the UV sensitivity of the scalar sector.
by introducing the Higgs field. However, this phenom- However, introducing extra space—time dimensions
enologically well motivated mechanism comes with opens new ways to solve the hierarchy problem.
an undesired effect. The Higgs mass should be of On the one hand, in the presence of transverse (as
the order of the electroweak symmetry breaking scale large as submillimeter) dimensions where only gravity
(~ 10 GeV), which is unnaturally small compared propagates the scale of quantum gravity (string scale)
to the ultraviolet (UV) cut-off of the Standard Model can be lowered from the Planck scale to the TeV
(~ 1019 GeV). In addition the hierarchy of scales is range [1,2], thus alleviating the problem of quadratic
destroyed by radiative corrections and fine tuning is divergences. On the other hand, in the presence of
required to keep the Higgs light. This is commonly (longitudinal) TeV extra dimensions [3] it is not

necessary to introduce any fundamental scalars at all,
— _ ' but instead one could use the fact that the extra-
oo o O 0545 a5y 5 s s CImensional companerds of gauige bosons are Scalars
HPRN-CT-2000-00152, HPRN-CT-2000-00148, HPRN-CT-2000- UNder the four-dimensional (4D) Lorentz symmetry
00122 and HPRN-CT-2000-00131. and transform non-trivially under the gauge symmetry
E-mail address: mariano@makoki.iem.csic.es (M. Quirés). they generate in the higher-dimensional theory. These
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scalars can be used to break electroweak symmetrytation ofG and 42 being theg structure constants.

spontaneously [4-8]. One might then conclude that
higher-dimensional gauge invariance protects those
scalars from being sensitive to the UV physics.
Orbifolds [9] play a prominent role in theories with
extra dimensions due to their property to create chiral-

ity in the massless sector, an indispensable property in

any phenomenologically relevant theory. Another in-
teresting feature of orbifolds is their ability to break
symmetries, in particular gauge and supersymmetry.
While local symmetries remain intact in the bulk by
an appropriate choice of parities for the transforma-
tion parameters, they are in general broken to smaller
subgroups on the boundaries (the fixed points of the
orbifold symmetry). As in any quantum field theory,
in the effective action we must allow for all operators
consistent with the symmetries. Allowed operators not
present at tree level will be generated by radiative cor-
rections [10-13].

The orbifold breaking of the bulk gauge symme-
try proceeds by projecting out some fields, i.e., only a
subset of the 4D gauge bosoaAg and the 4D scalars
A; (i =5, ..., D) will be non-vanishing at the bound-
aries. While thesed,, generate the unbroken gauge
group’H, the A; transform in some representation of
‘H. It is then necessary to determine how the sym-
metries restrict possible brane localized operators of
those fields, especially possible mass terms for the
scalars [12]. Would{ be the only symmetry left on the
brane, mass terms fot; would be perfectly allowed
leading to a quadratic sensitivity to the UV cut-off.

In this Letter we demonstrate that the remnant sym-
metry on the brane is larger than ti*& gauge sym-
metry left over from the bulk. This provides a further
restriction on the possible brane terms. We find that
brane mass terms for scalars can only occubib 6
and only forU (1) factors inH that were not already
present in the bulk gauge grogp These brane mass
terms are radiatively generated by bulk fermions.

We will consider a gauge theory (gauge grakip
coupled to fermions itD > 4 dimensional space—time
parametrized by coordinated! = x*, y' whereu =
0,1,2,3andi =5, ..., D. The bulk Lagrangian is

1

=-3 M

whereFj} = ay Ay — dvA%, — gfABCAB A with
the indicesA, B, C running over the adjoint represen-

Lp FayFAMN iwyM Dy v,

The local symmetry of (1) is the invariance under the
(infinitesimal) gauge transformations

1 1
8gAA _D;&/IBEB _ _8M5A _ fABCEBAiI. )
8 8
We now compactify thep = D — 4 extra dimensions
on theT?/Z5 orbifold with all the radii of the torus
equal toR" and with theZ; action defined as’ —
_yl_

In the compactified theory the surviving gauge
symmetry on the boundaries of the orbifold is a
subgroupH of G, according to the action df, on

the gauge fields

A", =) =Pa4A(X"Y),  Pa=A®P1 (3)
Here P; acts on the vector indices and it is the
diagonal matrix with eigenvalues, = +1, o; = —1.

A acts on the gauge indices and can also be taken
diagonal. Its eigenvalues? = +1 then define the
breaking pattern. We split the bulk gauge index as
A = a,a corresponding to the unbroken’(= +1)

and the broken generatorg'(= —1) respectively. The
non-zero fields on the brane are the even fields, namely
Af andAf, while Aﬁ andA¢ are odd and thus vanish
on the brane. The orbifold consistency constraint on
the structure constants comes essentially from the
invariance of (1) and it provides the automorphism
condition [14]

nAanC =1, for fABC #0. 4)

Finally, in the gauge sector, the Faddeev—Popov ghosts
¢ transform as thei-components of the gauge fields,
and for them the parity action 8, = A.

There are restrictions on the fermion representa-
tions as well. In even dimensions the bulk fermion
representation has to be chosen anomaly free. Further-
more, for any number of extra dimensions, the result-
ing four-dimensional massless fermion spectrum must
also be anomaly free. In addition, there are orbifold
consistency conditions analogous to (4). Theac-

tion on the fermions is
W(x“,—yi)zpq/llf(x”,yi), Pw=A®7D%,

©)
1 From now on we will work in units wher® = 1. Restoring

the R dependence as well as introducing different ragffi for
different dimensions should be straightforward.
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where 1 is a matrix acting on the representation bulk. Using (2), one can derive the transformation of
indices. The constraint comes from the requirement any non-zero brane field. We show explicitly only the
that the coupling A4, Wy TA¥ is Z, invariant. One  first two at the next level:

obtains [12] for any number of dimensicgns 1 is P
A 8¢ (0, A7) = =0, (3i5") — £*7(0,€7) A

[»,T]=0, {x.T=0. (6) J -

. . . . - . — fave AS 11
P% is the orbifold action on the spinor indices and will 1 8 (a’ ’)’ (11)
be given explicitly later on. 8¢ (9:A%) = =0, (3;5%) — f¥<(9:£")AS,

The non-vanishing fields on the branes are of the & R
general form — FACEP (9;AS). (12)
b It is convenient to separate the above transformations
[]o"e® =9"®, (7) into two different classes:
i=5 brane

3¢ =81 + Ok

wheren = ), n; is even (odd) for even (odd) fields. .
Similarly, the gauge parametes$ are even fields and ~ With &, = {£},  dxc = {9%ge, 92 H1gd). (13)

& are odd. They couplg to thg branes acco_rding 10 (7). This is a natural separation becaudsgis the surviv-
The effective four-dimensional Lagrangian can be 4 4age transformation on the brane reflectingts
written as gauge invariance. One can see immediately by inspec-

; ; tion of Eqgs. (9)—(13) than? are the gauge bosons of
£ = /dpy [ED + Egranen{a(y ) +8(y' - ”)}} H while all other fields transform homogeneously in
' ) either the adjoint oft, (T“)sc = if*", or in the rep-
resentation spanned y*);. = if**¢.3 The rest of
the transformations is a set of local (but not gauge)
transformations which we namég.

where £ is given by (1) andc8@" should be the
most general Lagrangian consistent with the symme-

t”?ﬁ}n-r?re Iazttenr] ng Ze n?t;mtgr]] butréfi}elgrlgltr;arl] bl:]”g Once the symmetries under which the brane action
symmetry (2) modded out by the orbifo’ld action a should be invariant are known, one can start construct-
subsequently evaluated at the location of the brane. Let.

us call the transformation resulting from this operation ing the allowed terms by these symmetries. A use-
5¢. Applying this rule to (2) acting on the massless ful guiding principle in this task is the gauge symme-

even fields. one obtains the transformations try H. We know that it is a necessary condition that the
' building blocks should b&{-covariant combinations

56 (A") _ }8 ga_ pabegh gc ©) of the fields since this (ar!d onIy_this) can ensure that
A w the square of these covariant objects&geinvariant.
. . . . Given a set ofH-covariant objects, invariance under
5 (Af) = gatéa — 1AL (10)  s¢ is a sufficient condition for their square to be in-

) ) ) variant under botld;; andsx and therefore to be an

In the above equations and in what follows, all fields gjowed terms in the effective action. The reason for
should be interpreted as coupled to the brane in (8) which we requiredc-invariance is because there is no
according to (7). . notion of K-covariance, sincé is not a gauge sym-

The brane symmetry is however much larger than \eqry Thus, even though at this point we have not
the transformations (9) and (10). In fact, there is ,y6yeq thatk-invariance is not only a sufficient but
an infinite number of non-zero independent fields on 550 5 necessary condition, we will enforce it.
the brane, i.e.9%{A%, A?} and 9% +1{A% A¢}, and
an infinite number of corresponding transformation

parameters{BZkga} and {32k+15&} induced by the 3 As a simple example consider the breakBg(3) - SU(2) ®
U(1). The adjoint ofSU(3), fABC = 8 then splits into theSU(2)
representationg“’¢ = 3@ 1 (H is not simple and hence its adjoint

2 Note that conditions (6) determirieup to a sign. is reducible) ancjf"’;6 =202
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A simple and very important example is the field
Af’. By looking at (10) one can see that this field
is indeedsy;-covariant but noBg-invariant. A naive
interpretation would then be that an explicit brane

mass term aSA?M&!;A[’.) is forbidden in the four-
dimensional effective action. However, as we will see

G. von Gersdorff et al. / Physics Letters B 551 (2003) 351-359

and gives rise to a logarithmic renormalization, as we
will see.

One might think that the term(tx T“)F“, where
A satisfies Egs. (6) and the mdﬁ’xdenotes some ar-
bitrary irreducible representation, would give a further
invariant linear inF;; 5 However, forTy belonging to

below, under particular circumstances such a term & simple factor ofH, Az must act as the identity in

can be part of a- and §x-invariant term in the

this subspace by Egs. (6) and Schur’'s lemma, so the

Lagrangian in which case such a term can be generatectrace vanishes. Only/ (1) factors will thus contribute

radiatively.

The terms which are at the same tifiecovariant
and/C-invariant are easily found from the transforma-
tion properties:

SFf, =—f"E" F Fi ach“ =0 (14)
5 m——f‘”’csb e OKF =0 (15)
SFf=—f"6"F;.  ScFf=0. (16)
Note the different structure df, = 9, Aj — 9, A, —

fabcAb AS and Fa = Aa — 9 A% — fabcAbAc

in the non-linear terms Further terms could be con-

structed from covariant derivatives of these operators.

At the renormalizable level the following terms can
appear in the Lagrangian:

1
ﬁlzrane: _ZZabFSu Fb/Lv
Loii g pin 12”"’F“F ZUFS
_Z_ ac llL/ _Z_ ab kl+ o Tij

+ Zk]ljDaADABFlf,

where theZ tensors in extra-dimensional indices must
be proportional to either the torus metrgé or to

17

to the trace and we do not get any new invariant. We
conclude that the term@‘} are the most general linear
terms.

We will be concerned mainly with the appearance
of scalar mass terms i65/@"¢ For a general unbro-
ken gauge groufi the most general renormalizable
Lagrangian allowed by the symmetries of the the-
ory contains the terms in (17). The first term in (17)
corresponds to kinetic terms for the four-dimensional
gauge bosons, the second one corresponds to kinetic
terms for the even scalars (plus some interactions),
while the third term contains brane mass terms for
the odd scalars. One consequence of the appearance
of brane mass terms in this particular way is that
their renormalization is expected to be governed by
the (wave function) renormalization &1, which does
not contain quadratic divergences. They are expected
to pick up only logarithmically divergent renormaliza-
tion effects. Brane mass terms for even scalars can
appear inﬁgra”e in the case where there are(1)
group factors inH corresponding to unbroken gen-
erators7*. Under this circumstance we have seen
that the operator (18) is allowed by all symmetries
on the brane and we expect that both a tadpole for

possible invariant tensors under the symmetry group of the derivative of odd fieldsy; A%, and a mass term

the torus. We differentiate in the last two terms of (17)
possibleU (1) factors ofH from the remaining semi-
simple part and denote thegg1) generators by'“.
Infact Eq. (16) implies that the field strength of/&1)
gauge field is invariant by itself allowing for the tefm
bé gb 4
Fi =20, A%, — gf*" A7 A (18)
that can give rise to a quadratic renormalization. In
a similar way, the termD¢ADABFE is invariant
allowing for the last term in (17). It is dimension four

4 Notice that unbroket (1) factors inG do not give rise in (18)
to bilinear terms in even fields.

for the even frelds,f“bCAbA° will be generated on
the brane by bulk radiative corrections. Moreover,
since these operators have dimension two, we ex-
pect that their respective renormalizations will lead to
guadratic divergences, making the theory ultraviolet
sensitive.

We would like to confirm by explicit calculation
that the allowed terms are indeed generated radia-
tively on the brane. In particular, mass terms for
brane scalars (extra-dimensional components of gauge

5 We thank C. Csaki for pointing this out to us and thus making
us aware of the possibility of having terms linearin on the brane.
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-I;?sbci(rae%e Lorentz symmetries broken/conserved by the orbifold. The corresponding reflected coordinates are indicated
%, y°.y® (6D parity) ¥ (4D parity) y® ¥®
77% conserved conserved broken broken
77’; broken broken conserved conserved
2

bosons) are contained in the third term of (17) for modes is a further requirement of any consistent the-
the odd scalarsi{, and in (18) for the even scalars ory.

Aa when there arelU(1) group factors inH. In Compactification of a six-dimensional theory to
all cases they arise from effective operators propor- four dimensions is done by means of usual tech-
tional to F;;. An important special case i® = 5, nigues. The Kaluza—Klein (KK) number is now a two-

i.e., a five-dimensional gauge theory compactified on dimensional vector denoted by. Generalizing the
51/22_ In this case the tern¥;; does not exist and techniques of [10,12] to six dimensions is easy, the
therefore we do not expect any type of brane mass only missing ingredient being the orbifold action on
terms to appear i3 This result has been con-  the fermionsPy in (5). Requiring that
firmed by explicit one loop calculation in Ref. [12].
However for D > 5 F;; does exist and we expect, P2 =1, Pi1ZynP1 = (Pl)fl(Pl)f\,ERS, (29)
from the previous symmetry arguments, the corre- 2 2 2
sponding mass terms to be generated on the branewherex,,y = 4[1~M7 I'y], we can identify two possi-
by radiative corrections. The rest of this Letter will ple solutions:
be devoted to an explicit calculation of these mass
terms in aD = 6 model compactified on the orb- P, =il%[%, Pl =ilsIsIYy. (20)
ifold 72/Z5. 2 2

In D = 6 the Clifford algebra is spanned by Both projections differ in their action on possible
eight-dimensional matrice$y, = I',, I; satisfying discrete space-reflection symmetries, which might be
{I'm, I'nv} = 2gyn. For an appropriate choice of the broken by the orbifold or not. The situation is summa-
representation of th€’™ | Dirac spinors in six dimen-  rized in Table 1.
sions are of the formy = (¥, ¥o)T wherey , are The main difference is that starting from a 6D Dirac
Dirac spinors in the four-dimensional sense. We can spinor, usingP1 the massless spectrum contains two

define the six-dimensional Wey! projector leading to 4p Weyl spmors of the same chirality while wmﬁl
the corresponding six-dimensional chirality such that it contains a 4D Dirac spinor. This is consistent W|th

Fy¥y = £W; wherew are six-dimensional chiral o 0 thatP’ breaks 4D parity while®; conserves
spinors. The chiral fermiong. contain the degrees

of freedom of a four-dimensional Dirac spinor. A the- it. We would like to stress that the distinction is
ory with six-dimensional chiral fermions is not free completely irrelevant in case the discrete symmetries
from six-dimensional anomalies, generated by box di- are broken in the first place, as is the case when
agrams, and anomaly freedom should be enforced bydealing with 6D Weyl fermions. We can obtain the
appropriately restricting the fermion conténifter same massless field content with and 73/ since
orbifolding on7?2/Zy, half of the degrees of freedom  we are now allowed to choose d|ffer9ntor different

of the chiral fermionsgPs. is odd and the zero mode chiralities! Without loss of generality we will choose
sector becomes chiral from the four-dimensional point P, for 6D Weyl fermions.

of view; four-dimensional anomaly freedom for zero

7 Indeed,); ® P1 produces the same zero mode spectrum as
2

- , T . .
6 Of course a theory with six-dimensional Dirac fermions does A ®P% with ; = &2, ¢; being the 6D chirality of the fermions

not have six-dimensional anomalies. speciesy; .
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Fig. 1. One loop tadpole diagrams.

The propagator of the:i-mode of an arbitrary field
@ (a gauge bosom s, a ghost fieldc or a fermion
¥) in the six-dimensional space compactified on the
orbifold T2/Z2 can be written as
(0™ &) = —<8m i+ Padir i) G (P pi),

(21)
where G®)(p,,, pi) is the propagator of the corre-
sponding field in flat six-dimensional space aRg
the parity as defined in (3) and (5).

The diagrams appearing in Fig. 1 contribute to
the renormalization of the first term in Eq. (18),
the dimension two operatof; A%, as well as to
the renormalization of the dimension four operator
9 0;0; A% contained in the last term of Eq. (17). In
the f|rst diagram of Fig. 1 six-dimensional fermions
circulate. The contribution of a chiral fermiow.
turns out to be
a* 1
lgtl’()»RTlg)E,'jm ﬁm,

ms, mg EVEn (22)

where the external leg corresponds to the 4D scalar

A® (we have definedss = —ess = +1). It leads to
the term8&

(24 F + 23/ DY PP FE)[3(vs) +8(y5 — m)]

x [8(y6) + 8(ye — )], (23)
wherea runs over the different/ (1) factors of { and
Z(ij ande”j are given by

Zi =l % A?, ¢ =tr(rrTF), (24)

32712

A
?C‘”Og;,

Zkll/ — (Sklflj
* 647

(25)

8 We have confirmed explicitly that the terryfﬁ‘&l;AfAé in (18)

receive the same renormalizatic}/ at one loop as the tadpole.

whereA is the ultraviolet angl the infrared cut-off.

A further comment concerns the gauge contribution
to the tadpole. At one loop it is given by the second
(contribution from gauge fielda ,,) and third (contri-
bution from ghostg) diagrams in Fig. 1. Each one is
proportional to the corresponding trace

tr(hadi TRy ) =062 F*4% =0 (26)

and thus vanish by the asymmetry of the structure
constants. Note that this is a generic feature of real
representations.

We have also computed the one loop contribution to
the terms(F“)2 in (17) and we found the logarithmic
divergence we anticipated:

1 i
— 2 Fi 2 Fo[309) + 805 — )]
x [8(ve) +8(y6 — )] (27)
where
ik 1 siksil _ gikgil
ab T 2( )2712
1 A
X (Cz(Ha) - Ecz(g))tsabmg;- (28)

Here,C2(H,) is by definition the Casimir of the group
factor in7H to which the generatdr® belongs (we de-
fine it to be zero fow (1) factors). One expects a cor-
responding logarithmic contribution from the fermion
sector.

Since we have seen that, in all cases, the one loop
contribution to the renormalization of (18) from six-
dimensional gauge bosons and fermions is propor-
tional to tr(AT%), wherei represents the parity action
on the corresponding representation, two main issues
can be addressed. The first issue concerns the vanish-
ing of the tadpole from the gauge sector (or in general
from real representations) at higher orders in perturba-
tion theory. In order to answer this question we have
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computed the two loop contribution to the tadpole. We
have verified (see Appendix A) that the contribution
of real representations to the tadpole vanish at higher
loop order and we can expect that it vanishes at all or-
ders in perturbation theory although we do not have an
explicit proof beyond two loops.

The second issue concerns the possible relation
between the tadpole and the generation of the four-
dimensional anomalies on the brane by (chiral) fermi-
ons in the bulk [15,16]. In fact we have seen that given
a collection of six-dimensional chiral fermions;,,
wheree = +, the generated tadpole for a givei(1)
factor is

S Ztr()upg T3).
v,

wheree = + is the six-dimensional chirality of the
field ¥,. On the other hand, the four-dimensional
anomaly on the brane is generated by bulk triangular
loop diagrams where chiral fermiong, circulate in

the loop, while gauge bosons and/or gravitons are ex-
ternal legs. In particular the mixdd(1)-gravitational
anomaly on the brane is easily seen to be proportional
to

A= "etr(hy, T3,).
Ve

Notice that different chiralities contribute with the
same sign to the tadpol&” while they contribute
with different signs to the anomaly®. Let us also
note that with the choic#®] the ¢ would move from

Eq. (30) to Eqg. (29). Keéping the physics constant
requires however to make the charige> —2 for the
negative chirality fermions (see footnote 7), which is
consistent with Egs. (29) and (30).

By looking at (29) and (30) one may conclude that
imposing¢* = A* = 0 results in the tadpole cancella-
tion to be equivalent to th& (1)-gravitational anom-
aly cancellation in the positive and negative chiral-
ity sectors separately. However, in models originat-

(29)

(30)

357

G=UER) x UQB)y x U(Dg, x U(1)g, broken
by the orbifold boundary conditions td = SU(3). x
U2y x UL g, x UD) g, x U(1)g,. Fermions are
in representationg. = (1, 3)?5,1), Ur = (3, 1)?“1,0),
0r=(3, 3)?{’1) wheref =1,2,3,612=—, s3=+,
and the notatiorir 3, rz)fq 42) represents a six-dimen-
sional Weyl fermion W|t?1 chiralitye in the represen-
tationrz andr, of SU(3). andSU(3),,, respectively,
andU (1) chargesyz andgz under the generatoi@s
and Q». Orbifold compactification breakdU(3),, —
U2y x U(l)g,, where Q; = diag(l, 1, —2) and
for U@Q),, triplets the matrix satisfying (6) i =
diag(1, 1, —1). The Standard Model hypercharge s re-
lated t0Q; by Y = Q1/6 — 29,/3 + 2Q3/3 and the
fields are decomposed undgy (2),, x U(1)g, as
(i) e ()
eRr

153

eL)’

_(a _ (i
0L = dL>7 0 (dR>’
Up=iyr, Ur =ur, (31)

where untilded (tilded) fields are (mirrors of) Standard
Model fields.

Given (31) the parity properties of fields is given
by: AL =X, Aoy = A, A9y, = —A, Ay = —1. Thus
their contribution ta; 1 cancels whiled! = 12(1+ N.)
since, as stressed in Ref. [&); is anomalous.

An alternative way to the Green—Schwarz mecha-
nism, that can be used to cancel the (bulk-induced)
brane anomalies in Eqg. (30), is by means of chiral
fermions localized on the brane. Localized fermions
do not possess tree level couplings WAﬁ, or their
derivatives, and thus they provide no one-loop con-
tribution to the tadpole. Moreover their unique two
loop contribution, given by the third diagram of Fig. 2
where the dashed (ghost) line is replaced by a local-
ized chiral fermion, vanishes as can be easily checked.

We want to conclude this Letter by stressing the

ing from string theories anomalies can be cancelled fact that the conditions for tadpole cancellation on the
by a generalized Green—Schwarz mechanism. In thosebrane do not coincide with those required from bulk-
cases the cancellation of the anomal¥y in Eq. (30) induced anomaly cancellation. As such the tadpole is
is no longer a necessary condition and therefore the not expected to be (as the anomaly) a purely one loop
tadpole cancellation as given by Eq. (29) remains as effect and in a general theory with fermions we expect
the only constraint in the model. We will illustrate a tadpole generation at least at the two loop level.
the above ideas with the six-dimensional model of However for theories with low (TeV) cut-off scale the
Ref. [8] compactified onl'?/Z, with gauge group latter will provide a mild (tiny) dependence on the
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ok

Fig. 2. Two loop tadpole diagrams from the gauge sector.

cut-off that should not disturb the stability of the low Using the contraction identiti@s
energy effective theory.

FEPE FEPE = Cy(G)s5€, (A.3)
1
fEPE fEPERP = (Cz(HB> - —Q(g))
Acknowledgements 2
x (g + 1)85€, (A.4)
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G.v.G. was supported by the DAAD. similar way it can be seen that the last diagram does

not contribute either.
Finally, fermions contribute at two loops unless
they transform in a real representaticﬁ’g = —Tg.

Appendix A. Two loop contribution to the tadpole The corresponding contraction identities read:
. . . BrC BC
The diagrams contributing to the tadpole at two (T Tg) =Cr8°". (A.6)
loops are given in Fig. 2. Note that fermionic diagrams tr(TlgkRTRC?»R) = CrnPBs8€, (A7)

are obtained by just replacing in the diagrams of (2)

ghost propagators by fermion propagators. To judge and in addition €727 xg) = tr(T§ TEAR) if R is
whether or not there are contributions to the tadpole, real. We conclude that in this case the third diagram
it is sufficient to examine the gauge index structure. (with the ghost replaced by a fermion) is zero, while
Recall that the gauge and ghost propagators have thefor generalR there will be a contribution from the

general structure (see Eq. (21)) antisymmetric part of tT27S ). Finally, the
fourth diagram can be seen to give terms proportional
8. 848 +8_Anp = (54 +8_14)8a5 (A1) to the four tensors (the sum ovBris understood)

tr(7°T875), nptr(T°TTH),
tr(TAT2T%), nptr(TATET?). (A.8)

while for fermions in the representatighwe have

846ii +6_(AR)ij. A.2 .. .
+0ij +9-(hr)ij (A-2) The CasimirsT2T8 and npTBT8 are symmetric

Here 8, symbolizes extra-dimensional momentum Matrices which commute witii'®. Together with
conservation and_ extra-dimensional momentum

flip. The fI.rSt four diagrams are redumblg in the sense 9 ¢ tensor in Eq. (A.4) vanishes fér= b. It has already been
that they just correspond to wave function renormal- encountered in Eq. (28).

ization insertions of the gauge or ghost propagators. 10 Itis easy to verify that this corresponds to a brane term.
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