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In this paper we investigate the computational difficulty of evaluating and
approximately evaluating Polya’s cycle index polynomial. We start by investigating
the difficulty of determining a particular coefficient of the cycle index polynomial.
In particular, we consider the following problem, in which i is taken to be a fixed
positive integer: Given a set of generators for a permutation group G whose degree,
n, is a multiple of /, determine the coefficient of x7 in the cycle index polynomial
of G. We show that this problem is # P-hard for every fixed /> 1. Next, we consider
the evaluation problem. Let y,, y,, ... stand for an arbitrary fixed sequence of non-
negative real numbers. The cycle index evaluation problem that is associated with
this sequence is the following: Given a set of generators for a degree n permutation
group G, evaluate the cycle index polynomial of G at the point (y,, ..., ¥,). We show
that if there exists an i such that y;#y’ and y;#0 then the evaluation problem
associated with y, y,, .., is #P-hard. We observe that the evaluation problem
is solvable in polynomial time if y,=y{ for every positive integer j and that it is
solvable in polynomial time if y, =0 for every integer j> 1. Finally, we consider the
approximate evaluation problem. We show that it is NP-hard to approximately
solve the evaluation problem if there exists an i such that y,> p|. Furthermore, we
show that it is NP-hard to approximately solve the evaluation problem if
Y1 =y,= --- =y for some positive non-integer y. We derive some corollaries of our
results which deal with the computational difficulty of counting equivalence classes
of combinatorial structures. 0 1993 Academic Press, Inc.

1. INTRODUCTION

In this paper, we investigate the computational difficulty of evaluating
and approximately evaluating Pdlya’s cycle index polynomial. This poly-
nomial is important in the field of combinatorial enumeration because
it provides an elegant method for counting equivalence classes of
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combinatorial structures. In particular, the cycle index polynomial of a
group of symmetries can be used to count structures up to isomorphism
under the symmetries in the group.

Before describing the computational problems that we study, we provide
the necessary definitions. Suppose that G is a group of permutations of
{1, ., n}. It is well known that each permutation ge G decomposes the set
{1, .., n} into a collection of cycles, which we will call the cycles of g. We
use the notation c(g) to denote the number of cycles in this decomposition
and the notation ¢,{g) to denote the number of cycles of length i The
cycle index polynomial of G is the n-variable polynomial P.(x,, .., x,) =
(/1G] Tye X8 x),

The first computational problem that we discuss is the generic cycle
index evaluation problem:

Generic Cycle Index Evaluation

Input: A set of generators for a degree n permutation group G and »
non-negative real numbers y,, ..., y,.

Output: P(;(yls eeey yn)'

It is easy to see that we could implement an algorithm that solves the
generic cycle index evaluation problem by summing over the permutations
in the group G. However, the size of a permutation group can be exponen-
tial in the size of its smallest generating set,' so this method is infeasible
computationally. In fact, no feasible method for solving this problem is
known to exist. Furthermore, the construction from Lubiw’s # P-hardness
proof for # Fixed-Point-Free Automorphism [Lub 81] can be used to show
that the generic cycle index evaluation problem is # P-hard.

Although the cycle index polynomial can be used to solve various
combinatorial counting problems, a proof that the generic cycle index
evaluation problem is # P-hard does not necessarily imply that the count-
ing problems are # P-hard. On the contrary, the counting problems that
are associated with the cycle index polynomial correspond to special cases
of the generic cycle index evaluation problem. In particular, each of the
counting problems that we discuss in Section 2 can be associated with a
specific sequence y,, y,, .. of non-negative real numbers in such a way
that solving the counting problem for a degree n permutation group G is
equivalent to evaluating the cycle index polynomial of G at the point
(V15 s V)

In order to obtain interesting results about the computational difficulty
of combinatorial counting problems and in order to obtain the strongest

' A degree n permutation group can contain up to n! permutations. However, every degree
n permutation group has a generating set of size at most n— 1, as [Jer 86] demonstrates.
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possible results about the difficulty of evaluating the cycle index poly-
nomial we let y,,y,,.. stand for an arbitrary fixed sequence of non-
negative real numbers and we study the computational difficulty of the
following cycle index evaluation problem:

Cycle Index Fvaluation(y,, v,, ...)
Input: A set of generators for a degree » permutation group G.

Output: Ps( ¥y ooy V)

In order to show that the cycle index evaluation problem is # P-hard we
consider the difficulty of determining a particular coefficient of the cycle
index polynomial. In particular, we consider the following problem in
which i is taken to be a fixed positive integer.

Cycle Index Coefficient(i)

Input: A set of generators for a permutation group G whose degree, »,
is a multiple of 7.

Output: The coefficient of x?" in the cycle index polynomial of G.

i

We obtain the following result:

THEOREM 1. Let i>1 be a fixed positive integer. Cycle Index Coeffi-
cient(i) is # P-hard.

The coeflicient of x”" in P is 1/|G| times the number of permutations
in G that have n/i cycles of length i. Therefore Theorem 1 implies that it is
# P-hard to determine how many permutations in a group have a given
cycle structure.

As well as being interesting in its own right, Theorem 1 is the main tool
which we use to establish the computational difficulty of cycle index
evaluation. Using Theorem 1 we obtain the following result:

THEOREM 2. If y,, y,,.. is a Sequence of non-negative real numbers
and there exists an i such that y,#y, and y;#0 then Cycle Index
Evaluation(y,, v,, ...) is #P-hard.

Theorem 2 has some interesting corollaries which describe the computa-
tional difficulty of solving certain counting problems. The corollaries are
discussed in Section 2.

It would be interesting to determine the computational difficulty of Cycle
Index Evaluation(y,, y,,..) when y,,,, .., 1s a sequence for which the
condition in Theorem 2 is false. We have not solved this problem in this
work, although we make the following observations:
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Observation 1. Let y,,y,,.. be a fixed sequence of non-negative real
numbers such that for every positive integer j we have y,=y{. Then Cycle
Index FEvaluation(y,, y,,..) can be solved in polynomial time.

Observation 2. Let y,, y,,.. be a fixed sequence of non-negative real
numbers such that for every integer j> 1 we have y;=0. Then Cycle Index
Evaluation (y,, y,, -..) can be solved in polynomial time.

We conjecture that Cycle Index Evaluation(y,,y,,..) is #P-hard for
every sequence v, ¥,, ... which fails to satisfy the conditions in Theorem 2,
Observation 1, and Observation 2. The techniques that we use to prove
Theorem 4 can be adapted to establish the # P-hardness of Cycle Index
Evaluation(y,, y,, ...) for many such sequences.

Since Cycle Index Evaluation(y,,y,,..) is almost always # P-hard we
are interested in determining the computational difficulty of approximately
solving the cycle index evaluation problem. In particular, suppose that g is
a function from N to N and consider the following approximation
problem:

Cycle Index Approximation(q, y,, y,...)

Input: A set of generators for a degree n permutation group G.
Otput: A quantity z € R such that (1/g(n)) P5( vy, .., y,) < z < g(n)
P (Viy e Va)

We obtain the following result concerning the computational difficulty of
Cycle Index Approximation(q, ¥, V1, .. ).

THEOREM 3. If y,, y,, .. is a sequence of non-negative real numbers and
there exists an i such that y,>y' then Cycle Index Approximation(q,
Y1 V2, ..) is NP-hard for every polynomial q.

As one would expect, we will be able to use Theorem 3 to derive
corollaries about the computational difficulty of approximately solving
certain combinatorial counting problems.

It seems to be difficult to determine the computational complexity of
Cycle Index Approximation(q, y,, y,, ..) when y,, y,, ... is a fixed sequence
such that the conditions in Observation 1, Observation 2, and Theorem 3
are false.

We consider the special case in which y, =y, = --- =y for some positive
real number y and we obtain the following theorem.

THEOREM 4 (Goldberg, Jerrum). If y is a positive real number that is not
an integer then Cycle Index Approximation(g, y, y, ...) is NP-hard for every
polynomial q.
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It will be clear from the proof of Theorem 4 that our technique does not
say anything about the difficulty of Cycle Index Approximation(q, y, y, ...)
when y is an integer. The condition that y be a non-integer seems rather
odd at first but we will see in Section 2 that it is precisely the integer values
of y for which Pg(y, y,..) has a combinatorial meaning. Therefore, our
theorem leaves open the possibility that the combinatorial interpretation
of P;(y,..,y) in the integer case could be exploited to provide a fast
algorithm.

The structure of this paper is the following: Section 2 describes the
combinatorial significance of the cycle index polynomial and, therefore, the
significance of our results. In that section, we derive some corollaries of
Theorems 2 and 3 which relate to the difficulty of counting equivalence
classes of combinatorial structures. Section 3 discusses the computational
difficulty of evaluating the cycle index polynomial. It contains a proof
of Theorems 1 and 2. Finally, Section 4 discusses the difficulty of
approximately evaluating the cycle index polynomial. It contains the proofs
of Theorems 3 and 4.

Before considering the combinatorial significance of the cycle index poly-
nomial, we state two definitions which are used throughout the paper.

1. The cycle bound of a permutation group is the length of the
longest cycle of a permutation in the group. That is, the cycle bound of G
is the maximum over all permutations ge G of the maximum 7 such that
¢;i(g)>0.

2. Let ID, denote the trivial group of permutations of {1, ..., j}. (That
is, let ID,; consist of the identity permutation on {1, ..,j}.) Let G be any
group of permutations of {1, .., n}. The Kranz Group G[ID,] [DeB 64]
is the group of permutations of {{a,b)|l1<a<n, 1<b<j} with the
following description. Each permutation ge G corresponds to exactly
one permutation g[/D,Je G[ID;]. If g maps the object o, to o, then
g[ID;] maps {o,,!) to {o,,1) for 1 </<;. We will use the fact that
Po(yis s ¥i)= Poriny (P15 s V)

Having stated these definitions, we proceed to consider the combi-
natorial significance of the cycle index polynomial.

2. THE COMBINATORIAL SIGNIFICANCE OF THE CYCLE INDEX POLYNOMIAL

In order to explain the combinatorial significance of our results, we must
attach a combinatorial meaning to the evaluation of the cycle index poly-
nomial. There are numerous papers and books that discuss the significance
of this polynomial (see, for example, [Rea 87]). Therefore, we provide only
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a brief discussion of the relevant counting problems here. The material in
this section is based on De Bruijn’s generalization of Polya’s theory of
counting and is taken from [DeB 63, DeB 64].

The basic framework is the following. Suppose that we have an n-object
set N={1,..,n} and an m-object set M = {1, .., m}. Let # denote the set
of functions from N to M and let G be a group of permutations of N. We
say that two functions f, and f, are equivalent whenever there exists ge G
such that f; g=/,. Let fG denote the equivalence class of f.

Polya’s theorem shows that the number of equivalence classes in % is
Pi(m, .., m). So the problem of counting the equivalence classes in Z is
the same as the problem of evaluating the cycle index polynomial of G at
the point (m, .., m). Using Polya’s theorem, we derive the following
corollary of theorem 2.

COROLLARY 1. Let m>1 be a fixed integer. The following problem is
# P-hard.

Input: A set of generators for a degree n permutation group G

Output: The number of equivalence classes (under G) in the set of
functions

Fi{l,..n}>{1,.,m).

In order to attach combinatorial meanings to the cycle index evaluation
problems that are associated with sequences other than m, m, .., we
consider a generalization of the basic framework. Suppose that 4 is a
permutation of M. We can define an induced permutation on the
equivalence classes of # that maps fG to hfG. We say that an equivalence
class /G is invariant with respect to 4 if fG = Af G. The equivalence class of f
is invariant with respect to & whenever it is the case that f'is equivalent to Af.

De Bruijn shows that the number of equivalence classes in % that are
invariant with respect to h is Ps(y,, .., y,), where y; denotes the number
of objects ke M such that A‘/(k)=k. Therefore, we can compute the
number of equivalence classes in % that are invariant with respect to # by
evaluating a cycle index polynomial. Using De Bruijn’s theorem, we derive
the following corollary of Theorem 2.

COROLLARY 2. Let m>1 be a fixed integer and let h be any fixed
permutation of {1, .., m}. The following problem is #P-hard:
Input: A set of generators for a degree n permutation group G

Output: The number of equivalence classes in the set of functions
F A1, ...n}—>{1,..,m} that are invariant with respect to h.
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Proof. Llet y, denote the number of objects k € M such that A/(k)=k.
By De Bruijn’s theorem, the number of equivalence classes in & that are
invariant with respect to & is P, (y,, .., ¥,)- Suppose that y, is zero or one.
Let i be the order of 4. Then y,=m so y;#y’ and y,;#0. The corollary
follows from Theorem 2. So, suppose that y, > 1. Let p be a prime number
that is larger than m. It is easy to see that y,=y,. We conclude that y, # y¥
and that y,#0. The corollary follows from Theorem 2. |

In addition, we can derive a corollary of Theorem 3.

COROLLARY 3. Let m>1 be a fixed integer and let h be any fixed per-
mutation of {1,..,m}. Let y, denote the number of elements in {1, .., m}
that are fixed by h'. If there exists some i such that y; >y then the following
problem is NP-hard for any polynomial g:

Input: A set of generators for a degree n permutation group G

Output: A quantity z that is within a factor of q(n) of the number of
equivalence classes in the set of functions F: {1, ..,n} - {1, .., m} that are
invariant with respect to h.

The condition that there exists an i such that y,> y| restricts the values
of m and & to which the NP-hardness result applies. This restriction makes
Corollary 3 more difficult to appreciate than Corollaries 1 and 2, so it is
worth considering a special case. Suppose that G is a group of permuta-
tions of {1,..,n} and that 4 is the permutation (1, 2) acting on the set
{1,2}. Let # be the set of functions from {1, ..,n} to {1, 2}. We say that
a function fe F is self~-complementary if and only if f is equivalent to Af.
We say that the equivalence class /G is self-complementary whenever its
members are. We can apply Theorem 3 directly to the problem of counting
self-complementary equivalence classes, obtaining the following corollary:

COROLLARY 4. The following problem is NP-hard for any polynomial q.

Input: A set of generators for a degree n permutation group G.

Output: A quantity z that is within a factor of q(n) of the number of self-
complementary equivalence classes in the set of functions F:{1,..,n}—
{1,2}.

Proof. By De Bruijn’s theorem, the number of self-complementary
equivalence classes is equal to P;(y,, y,, ..), where y; denotes the number
of objects ke {1, 2} that are fixed by (1, 2)”. It is easy to see that y,=0 if
Ji1s an odd number and that y, =2 otherwise. Therefore, the number of self-
complementary equivalence classes is P (0, 2,0,2,...). |

Corollaries 14 relate the problem of evaluating the cycle index poly-
nomial to the problem of counting equivalence classes of combinatorial
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structures. In the remainder of this paper we will leave aside the equivalence
classes and we will focus on the cycle index polynomial. In order to make
the material from this section more concrete, however, we conclude the
section by giving an example. We show how to use Pdlya’s theorem and
De Bruijn’s theorem to count unlabeled graphs and self-complementary
graphs.

First, observe that we can encode an undirected graph with v vertices as
a function from the () unordered pairs of vertices to the set {1,2}. (A
given pair of vertices is mapped to 2 if it is an edge and to 1 otherwise.)
If we let G, be the group of all permutations of unordered pairs of vertices
that can be produced by permuting the v vertices of a graph then (by
Polya’s theorem) the number of isomorphism classes of v-vertex graphs is
P (2, .., 2). Therefore, we can compute the number of unlabeled v-vertex
graphs by evaluating the cycle index polynomial of the appropriate group
at the point (2, .., 2).

A graph is self-complementary if it is isomorphic to the graph that is
obtained by turning all of its edges into non-edges and its non-edges into
edges. (For example, the graph with vertices v,, v,, v5, and v, and edges
(v{,0;), {v,,p3), and (v;, v,) is self-complementary.) The number of
isomorphism classes of graphs that are self-complementary is simply the
number of equivalence class of encoded graphs that are invariant with
respect to the permutation (1, 2). Therefore, by De Bruijn’s theorem, the
number of unlabed v-vertex graphs that are self-complementary is
P; (0,2,0,2,..).

Now that we have given a combinatorial meaning to the evaluation
of the cycle index polynomial, we proceed to consider the computational
difficulty of performing the evaluation.

3. THE DirricuLTY OF EVALUATING THE CYCLE INDEX POLYNOMIAL

In this section we focus on the computational difficulty of the problem
Cycle Index Evaluation(y,, y,,..). We start with some observations that
place upper bounds on the difficulty of the problem.

Observation 1. Let y(, y,,.. be a fixed sequence of non-negative real
numbers such that for every positive integer j we have y,=y{. Then
Ps(yy(, - ¥u)=y7. Therefore, Cycle Index Evaluation(y,,y,,..) can be
solved in polynomial time.

Observation 2. Let y,, v,,.. be a fixed sequence of non-negative real
numbers such that for every integer j > 1 we have y, = 0. Then
Ps(y1s o ¥a)=)1/1G|. Therefore, Cycle Index Evaluation(y,,y,,..) can
be solved in polynomial time.
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Observation 3. Let y,,y,,.. be a fixed sequence of non-negative
integers. The following problem is in # P.

Input: A set of generators for a degree » permutation group G.
Output: 3, .o ¥ &'y

The main results of this section are Theorems ! and 2. We begin our
presentation of these results by setting up the framework for the proof of
Theorem 1. Then we prove a slightly stronger version of Theorem 1 than
the version stated in the introduction. Finally, we use the strengthened
version of the theorem to prove Theorem 2.

Suppose that p is a prime number, that k is a positive integer, and that
i is an integer such that i # 0 (mod p). We use the notation Y(i, p, k) to
stand for the size of the set {m|(0<m<pk) and (m=i(mod p)) and
(ged(m, pk)=1)}. We will use the following fact in the proof of Theorem 1.

FacTt 1. Let p be a prime number. Let k be a positive integer and let i
and j be integers such that i #0 (modp) and j£ 0 (modp) Then
Y(i,p,k)=T(j,p, k) #0.

Proof. Let k' be the positive integer such that k= p*k’ for some x>0
and ged(p, k’)=1. Since the integers mod p form a field, there is a non-
negative integer 4 such that 0 <A< p and i+ ik’ = (mod p).

We use the notation S, , to represent the set {[/p + i] mod pk|/eN}.
Using this notation, we see that Y (i, p,k)=|{meS,, | ged(m, pk)=1}|.
Furthermore, S,, , = {[/p+i+ k'] mod pk|/eN}.

The equality of Y(i,p, k) and Y{j, p, k) follows from the fact that
ged([ip+i] mod pk,pk)=ged(lp+ i, pky=ged(lp+ L, k' )y=ged(lp+ i+ Ak, k')
= ged([Ip + i+ Ak'] mod pk, pk).

The fact that Y (i, p, k) # 0 follows from the fact that Y (1, p, k)#0. |

We have now established the fact that the value of Y (i p, k) does not
depend upon ¢ (so long as i # 0 (mod p)). Therefore, we will drop the
parameter “i,” and we will refer to Y(p, k). Using Fact 1, we can now prove
Theorem 1:

THEOREM 1. Let i>1 be a fixed positive integer. The following problem
is # P-hard:
Cycle-Bounded Cycle Index Coefficient(i)

Input: A set of generators for a permutation group G whose cycle bound
is i, and whose degree, n, is a multiple of .

Output: The coefficient of x7" in the cycle index polynomial of G.
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As we pointed out in the introduction, the coefficient of x™* in P is
1/1G| times the number of permutations in G that have n/i cycles of length
i. Therefore, Cycle-Bounded Cycle Index Coefficient(i) is polynomially
equivalent to the following problem:

Input: A set of generators for a permutation group G whose cycle
bound is i, and whose degree, », is a multiple of i.

Output: The number of permutations in G that have n/i cycles of
length i.

The # P-hardness of this problem is established by considering three
cases. Let p be a prime number and k be a positive integer such that / = pk.
Lemma 1 establishes the #P-hardness of Cycle-Bounded Cycle Index
Coefficient(i) for p>3. Lemma 2 establishes the result for p=3 and
Lemma 3 establishes the result for p=2.

LemMMA 1. Let p>3 be a fixed prime and let k be any fixed positive
integer. The following problem is # P-hard:

Input: A set of generators for a permutation group G whose cycle bound
is pk, and whose degree, n, is a multiple of pk.

Output: The number of permutations in G that have n/pk cycles of
length pk.

Proof. For any integer />3 the following problem is # P-hard
[Edw 861:

# Grap I-Colorability
Input: An undirected graph /.
Output: The number of /-colorings? of I
We proceed by reduction from # Graph (p— 1)-Colorability. Suppose

that we have a graph I with vertex set {v,, .., v,} and edge set {e,, .., e,}.
We construct a permutation group G by using the following method.

1. For each vertex v,, we introduce a set ¥, of pk objects and a
permutation g, that cycles them.

2. For each edge e;, we introduce a set E; of pk objects and a
permutation g, that cycles them.

3. Let G be the group generated by the following three sets:

2 An I-coloring of a graph is an assignment of a color from the set {1, .., /} to each vertex
in the graph in such a way that no two adjacent vertices receive the same color.
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(i) Ui{gf,-}
(i) U, {g2)
(i) {g)&=8,8.8,8.8.,")
where v; is a vertex of I" and it is the vertex of smaller index in edges e,,
eg, ... and the vertex of larger index in edges e,, €, ....

We claim that each (p-— 1)-coloring of [ corresponds to a set of
Y{(p, k)" *# permutations in G, each of which has n/pk cycles of length pk.
Furthermore, we claim that G has no other permutations that have n/pk
cycles of length pk. We prove the claim in two steps.

1. Suppose that we have a (p— 1)-coloring of I and let ¢; denote the
color of vertex v,. Since ¢; # 0 (mod p), we can use Fact1 to show that
there are Y(p, k) members of the set {[c;+p/] mod pk|/eN} that are
relatively prime to pk. Therefore, the set {g g?'|/e N} contains ¥{(p, k)
permutations that are cycles of length pk.

Suppose that ¢, is an edge in I whose smaller endpoint is colored with
color ¢ and whose larger endpoint is colored with a diffeent color, d. The
restriction of the permutation g ---g}* to the objects in E; is g ~4_ Since
¢—d # 0 (mod p) we can use Fact 1 to show that the set {ge’ g{j’!le N}
contains Y(p, k) permutations that are cycles of length pk.

Finally, we conclude that the set {g'---gy g%/ ---gl" gt ---gle|l, [[e N}
contains Y (p, k)" *# permutations Wthh have n/pk cycles of length pk.

2. Suppose that g is a permutation in G which has n/pk cycles of
length pk. It is easy to see that we can rewrite g as g§'---gi gl -
ght ghli-.- g, where 0<c¢,, .., c,<p and /;, /;e N. Since the restriction of
g to the objects in V, is a cycle of length pk, it must be the case that ¢;#0
for all i. Consider the function that assigns color ¢; to vertex v, for each i.
We must show that this function is a coloring of I".

Suppose that there is an edge ¢; whose vertices are both assigned the
same color. Then the restriction of g to the objects in E, is g"’ Now
ged(pl;, pk) # 1. Therefore, the restriction of g to the objects in E; is not a
cycle of length pk, which is a contradiction. ||

LemMma 2. Let k be any fixed positive integer. The following problem is
# P-hard:

Input: A set of generators for a permutation group G whose cycle bound
is 3k, and whose degree, n, is a multiple of 3k.

Output: The number of permutations in G that have n/3k cycles of length
3k.

Proof. This proof is very similar to the proof of Lemma 1. We start by
observing that the following problem is # P-hard:
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# Not-All-Equal 3Sat

Input: A set U of Boolean variables and a collection C of clauses over
U, each of which contains three literals.

Output: The number of assignments of truth values to the variables
that have the property that the number of “true” literals in any given clause
is either one or two.

To see that # Not-All-Equal 3Sat is # P-hard, recall that the following
problem is # P-hard [Val 79].

# Monotone 2Sat

Input: A Set U of Boolean variables and a collection C of clauses over
U, each of which contains two variables.

Output: The number of assignments of truth values to the variables
that have the property that the number of “true” literals in any given clause
is either one or two.

Let (U, C) be an input to # Monotone 2Sat. Let U' = U u {x} for some
variable x that is not in U and let C'={cu {x} |ce C}. The assignments
of truth values to the variables in U that are counted in the output
# Monotone 2Sat(U, C) are in one-to-one correspondence with the
assignments of truth values to the variables in U’ that are counted in
# Not-All-Equal 3Sar(U’, C') and have x = “false.” The result follows from
the fact that x = “false” in exactly half of the assignments that are counted
in # Not-All-Equal 3Sat(U’, C'), which follows from the fact that the
definition of the problem # Not-All-Fqual 3Sat does not change if we sub-
stitute “false” for “true.”

Now that we have established the # P-hardness of # Not-All-Equal 3Sat,
we proceed by reduction from this problem. Suppose that we have a set
U= {uy, .., u,} of variables and a collection {c,, .., ¢,} of clauses over U.
We construct a permutation group G by using the following method.

1. For each variable u;, we introduce a set U, of 3k objects and a
permutation g, that cycles them.

2. For each clause ¢;, we introduce a set C; of 3k objects and a
permutation g, that cycles them.

3. Let G be the group generated by the following three sets:
(i) U, {gi,}
(ii) Uj {gij}
(i) {glg=€.8.8, 8. 8,"}
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where u; is a variable in U that occurs positively in clauses ¢,, ¢, .., and
negatively in clauses ¢, ¢;, ... .

We claim that each assignment of truth values to the variables in U that
has the property that the number of “true” literals in any given clause in
C is either one or two corresponds to a set of ¥ (3, k)" * permutations in G,
each of which has n/3k cycles of length 3k. Furthermore, we claim that G
has no other permutations that have n/3k cycles of length 3k. We prove the
claim in two steps.

1. Suppose that we have an assignment of truth values to the
variables in U. Let ¢, be 1 if the variable u;, is assigned the value “true” and
— 1 otherwise. Since ¢, # 0 (mod 3) we can use fact 1 to show that the set
{gh gu’l /e N} contains ¥ (3, k) permutatlons that are cycles of length 34.

Consider any clause c;. If u; or u; is a “true” literal in ¢; then the restric-
tion of g!' to the objccts in C;is g, If u; or if isa “false” literal in c; then
the restriction of g/ to the ObjCCtS in C; is gl

Now, suppose that exactly one of the 11tera]s in ¢, is “true.” In this case
the restriction of gi---gi' to the objects in C, is g‘ Since —1#0
(mod 3) we can use Fact 1 to show that the set { 3’|le N} contains
Y(3, k) permutations that are cycles of length 3k. Alternatlvely, suppose
that exactly two of the literals in ¢; are “true.” In this case the restriction
of gi!--- g} to the objects in C; is g,,. Since 1 # 0(mod 3) we can use Fact 1
to show that the set {g gf.l’l /e N} contains Y (3, k) permutations that are
cycles of length 3k.

Finally, we conclude that the set { g ---gV g --- g g1 - gu| L, ;e N}

contains ¥ (3, k)" ** permutations which have n/3k cycles of length 3k.

2. Suppose that g is a permutation in G which has #n/3k cycles of
length 3k. It is easy to sece that we can rewrite g as gi'.--g0n gi{'
gl glh ---glk, where ¢,..,1,€ {—1,0,1} and /, ;e N. Since the restric-
tion of g to the objects in U, is a cycle of length 3%, it must be the case that
t;#0 for all i. Consider the truth assignment that gives u, the value “true”
if t; is 1 and “false” otherwise. We must show that one or two literals are
“true” in any given clause.

Suppose that ¢, is a clause with three “true” literals. Then the restriction
of g to the objects in C;is g} **". Since ged(3 + 37}, 3k) # 1, the restriction of
g to the objects in C, is not a cycle of length 3k which is a contradiction.
Similarly, if C, has three “false” literals then the restriction of g to the objects
inC;isg;** 3’/ Since ged( —3 + 3/}, 3k) # 1, the restriction of g to the objects
in C is not a cycle of length 3k. Once again, we get a contradiction. |

LeMMA 3. Let k be any fixed positive integer. The following problem is
# P-hard.
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Input: A set of generators for a permutation group G whose cycle bound
is 2k, and whose degree, n, is a multiple of 2k.

Output: The number of permutations in G that have n/2k cycles of length
2k.

Proof. Lubiw’s proof that # Fixed-Point-Free Automorphism is # P-
hard?® [Lub 81] establishes the lemma for the case k = 1. Following Lubiw,
we proceed by reduction from the following # P-hard problem [Val 79]:

# Satisfiability

Input: A Set U of Boolean variables and a collection C of clauses over
U, each of which contains three literals.

Output: The number of assignments of truth values to the variables
that have the property that each clause has at least one “true” litral.

Our clause checker will be a generalization of Lubiw’s, so we use the
following gadget (which was used in her paper).

GADGET 1. Let H be the group of permutations of {1, .., 8} that is
generated by

AlL]=(1 2)(3 4)(5 6)(7 8)

h[2]=(1 3)(2 4)(5 7)(6 8)

AL3]7=(1 5)2 6)(3 7)4 8).
This group is the commutative. Therefore, H = {h[1]° h[2]’ A[3]*|i,
J, k€ {0, 1}}. Every member of H except the identity is the product of four

transpositions (i, i,)(is i,)(is ig)i; ig), where i,, ., iz is a permutation
of 1, .., 8.

In order to generalize to the case £ > 1, we need an additional gadget.

GADGET 2. Let S, be a set of k objects S,[1], ..., S;[k].

Let S,, be a set of k objects S,,[1], ..., S,,[k].

Let Swap(/m) represent the permutation (S,[1] S8, [1])---(S,[k] S..[k])
Let Cycle(/) represent the permutation (S,{1]---S,[k]).

It is easy to prove the following identity:*

Cycle(m) Swap(lm) = Swap(Im) Cycle(/)
=(S,[1]1S,01]---S,, (k] S,[k])
3 Since every permutation in Lubiw’s group has cycle bound 2, her proof actually shows

that Cycle Index Evaluation(y,, y,,..) is #P-hard whenever y; =0 and y, #0.
4 Note that permutations are being composed from right to left.

643/105:2-9
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Let J' be the group {Cycle(/), Cycle(rm)>” and let J= {Swap(im),
Cycle(l), Cycle(m))>. Using the identity, it is easy to see that
J=J" v {Swap(im) i|AeJ'}. Clearly, J' has no cycle of length 2k. We
know from the identity that at least one member of J is a cycle of length
2k, however, Let Y(k) denote the number of members of J that are cycles
of length 2k.

We are now ready to proceed. Suppose that we have a set U= {u,, ..., u,}
of variables and a collection {c,, .., v“} of clauses over U. We construct a
permutation group G by using the following method.

1. For each variable u;, we introduce a set U, of 2k objects and a
permutation g, that cycles them.

2. For each clause ¢;, we introduce eight sets of objects, C;, ..., Cj.

Each set C, contains k objects, C;[1], .., C;[k]. Using the notation that
we defined in our description of gadget 2, we let Swap,(/m) represent the
permutation (C,[1]1C,, [1])---(Cy[k]C,,[k]) and we let Cycle;(/)
represent the permutation (C,[1]---C,[k]). We introduce three permu-
tations:

h,[1]=Swap,(12) Swap,(34) Swap,(56) Swap,(78)
h;[2] =Swap,(13) Swap,;(24) Swap,(57) Swap,(68)
h;[3]=Swap,(15) Swap,(26) Swap,(37) Swap,(48).

3. Let G’ be the group generated by |J, {Cycle,;(1), .., Cycle;(8)}.
4. Let G be the group generated by the following four sets:

(i) U {el}

(i) {AlieG'}

(i) {mn, =g, A1 1A 1T~ (2] h, [2)--- A, [37A.[3] -}
where u; occurs in position 1 in clauses ¢;, ¢,, .. and in position 2 in clauses
€}y ¢, - and in position 3 in clauses ¢, ¢, ...

(iv) {pilpi=g,h; (1 1A [1]-- 1, [2] A, [2]---H,[3] . [3]---}
where @, occurs in position | in clauses c¢;, ¢, ... and in position 2 in clauses
C/» Cms - and in position 3 in clauses c,, c., ...

me

We claim that each assignment of truth values to the variables in U
which has the property that each clause has at least one “true” literal
corresponds to a set of Y(2, k)" Y(k)* permutations in G, each of which
has #/2k cycles of length 2k. Furthermore, we claim that G has no other

5 Recall that the notation < g,, g5, ...) represents the group generated by g/, g,, ... .
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permutations that have n/2k cycles of length 2k. We prove the claim in two
steps.

1. Suppose that we have an assignment of truth values to the
variables in U. Let g; denote 7, if the variable u; is assigned the value “true”
and let g, denote p,; otherwise. The restriction of g; to the objects in U, is
g.- Since 1 #£#0(mod2) we can use factl to show that the set
{g. 8211e N} contains Y(2, k) permutations that are cycles of length 2k.

Let g be g, ---g, . Consider any clause ¢; and let g} denote the restriction
of g to the objects associated with ¢;. By construction, A,[t] is a factor of
g; il and only if the rth literal in ¢; has been assigned the value “true.”
Suppose that at least one of the literals in c, is “true.” Our consideration
of Gadget1 shows that g;=Swap,(i,,i,) Swap;(i3,i,) Swap;(is, is)
Swap, (i, ig) where i,, .., ig is a permutation of 1, .., 8. If we consider one
of the four factors Swap,(i;, i,,}) and the permutations Cycle;(i;) and
Cycle,(i,,) then we can use our analysis of Gadget 2 to show that the
set {Swap; (i, i,,) A|Ae {(Cycle,;(i;), Cycle;(i,,)>} has IY(k) permutations
which are cycles of length 2k. Therefore, the set {gjijie
{Cycle,(1), .., Cycle;(8)>} has I(k)* permutations which are cycles of
length 2k.

Finally, we conclude that the set {g,---g, git---giA{l,eN, ieG'}
contains Y(2, k)" Y(k)* permutations which have n/2k cycles of length 2k.

2. Suppose that g is a permutation in G with cycles of length 2k. It
is easy to see that we can rewrite g as n{ p{' .- nl pl g2 g2 2, where 1,
fi€{0,1}, l;eN, and AeG". Since the restriction of g to the objects in U,
1s a cycle of length 2k, it must be the case that one of ¢;, f; is 1 and the
other is O for each i. Consider the truth asignment that gives u, the value
“true” if ¢; is 1 and “false” otherwise. We must show that each clause
contains at least one “true” literal.
Suppose that ¢; is a clause with no “true” literals. Then none of
h;[1], .., h,[3] is a factor of g. Therefore, the restriction of g to the objects
associated with c; is not a cycle of length 2k, which is a contradiction. |

Having completed the proof of Theorem 1, we use it to prove the
following theorem.

THEOREM 2. If v,,y,,.. is a sequence of non-negative real numbers
and there exists an i such that y,#y| and y,#0 then Cycle Index
Evaluation(y,, y,, ...) is # P-hard.

Proof. First, suppose that y, =0. Choose the index ¢ such that for all
j<i we have y;=0 and y,#0. If G is a permutation group whose cycle
bound is i and whose degree, n, is a multiple of i then the coeflicient of x7"
in Pgis |G|y, ™ Ps(py, - ¥n) sO the result follows from Theorem 1.
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Otherwise, choose the index i such that for every j<i either y,=0 or
=yJ but y,#0 and y,# y{. Let G stand for the set

G ={ge G| g has no cycle whose length is a member of {j| y;=0}}.

Let Pg, be the single-variable polynomial defined by Py .(z)=(1/|G|)
Yoz If G is a permutation group whose degree, n, is a multiple of
then the coefficient of z*// in Py, is the same as the coefficient of x7" in Pg.
Furthermore, we claim that if G has cycle bound i then P (y,, .. ¥.) =
ViPo(yilyh).

Suppose that the claim is true. Suppose further that we could compute
the values Pgpip,1(V(s o ¥n)=Ps(y, . yy) for 1<I<n+1. Then we
would be able to evaluate P, at the n+ 1 points z=(y,/y}) for 1 </<
n+ 1. (Note that y,/y| #1 and that y,/yi #0.) We could interpolate to get
the coefficient of z”' in P}, which is the coefficient of x7” in P;. The
theorem follows from the proof of the claim (which will be given below)
and from the #P-hardness of Cycle-Bounded Cycle Index Coefficient(i),
which was established in Theorem 1.

To prove the claim we must show that Pg(y,, .., y,)= 1P (¥i/y})
Since the cycle bound of G is i the value of P;(y, .., y,) can be written
as

PG(yl"’yn Z f:(g) H yfj(g)

g€eG 1< /<i

Note that we can restrict the summation to permutations g € G since all of
the terms which are eliminated by this restriction are equal to zero. Using
the fact that 09'® = y/9(#) when ¢,(g) =0 we can replace the right hand side
with

Po(yys V)= |G| Z y"(g’ H y{q(g).

geG 1€j<i

Since ¥_, jc;(g)=n we get

PG(yls' ayn =_G— Z c,(g) " ate),

Simplifying the right hand side we get

n
Y1

~16G]

Y ()M =yt P (yily)) |

geC

PG(.VU' ’yn
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4. THE DIFFICULTY OF APPROXIMATELY EVALUATING
THE CycCLE INDEX POLYNOMIAL

In this section we focus on the computational difficulty of Cycle Index
Approximation(q, y,, y,, ...). We start with the following lemma.

LEMMA 4. Let i> 1 be a fixed positive integer. The following problem is
NP-hard:

Cycles-of-Length(i)

Input: A set of generators for a permutation group G whose cycle bound
is i, and whose degree, n, is a multiple of i.

Output: “Yes,” if G has a permutation that has n/i cycles of length |i.
“No,” otherwise.

Proof. 1t is known [GJ79] that it is NP-hard to decide, given an input
for # Graph I-Colorability, # Not-All-Equal 3Sat, or # Satisfiability, whether
the corresponding output is zero. Therefore, the lemma follows from the
proof of Theorem 1. |

Using this lemma, it is easy to prove Theorem 3.

THEOREM 3. Let y,, y»,.. be a fixed sequence of non-negative
real numbers. If there exists an i such that y;>y' then Cycle Index
Approximation(q, y,, ¥,, ...) is NP-hard for every polynomial q.

Proof. Choose the index i such that Vj<i.-y,<y{and y,>y{. Let G be
any input to Cycles-of-Length(i) and let n be the degree of G. We make the
following observations:

1. If G has a permutation that decomposes {1, ..., n} into n/i cycles of
length i then Ps(y, ... ¥,) = |G| "y
2. Otherwise, Pg(y, .. y,)<y™ 'yl

Let r be a polynomial and recall that P ([, ..., p7™

Using Observations | and 2, we conclude:

L. If Cycles-of-Length(i)(G) is “Yes,” then Pgrp (Y5 ¥u) 2
|G|y,
2. Otherwise, Porsp,,1(V1s s V) SIG| 1y x [ 1/, 1" |G

)= PG[ID,“,,](yl s e V)

To establish the theorem, we need only choose the polynomial r in such
a way that [y%/y, 17" |G| is exponentially small. [

We mentioned in the introduction to this paper that it is difficult to deter-
mine the computational complexity of Cycle Index Approximation(q, y,, ¥, ...)
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when y;, y,, ... is a fixed sequence such that y,< y{ for all j and for some
i it is the case that y,<y‘. We consider the special case in which y, =
y,= ... =y for some positive real number y and we obtain the following
theorem.

THEOREM 4 (Goldberg, Jerrum). [If'y is a positive real number that is not
an integer then Cycle Index Approximation(q, y, y, ...) is NP-hard for every
polynomial q.

Before proving Theorem 4, we set up the framework for the proof. Let
S, stand for the symmetric group of degree / and let 4, stand for the alter-
nating group of degree /. Define the polynomials f; and f,, as follows:
Jex)=3ces, 4, x® and £, ,(x) =3, 4, x"®. We use the following fact:

Fact 2. Suppose that y is a positive real number that is not an integer
and that 1=y |+ 1. Then f¢ ,(¥}>f4,(»).

Proof. Let fi(x)=f4/(x)—fc,(x). It is easy to sec that the coefficient
of x'in f, ,is 1 and that the degree of f,, , is I. The degree of f, is less than
l. Therefore, f, is a degree I polynomial and for big enough values of i, £, (i)
is positive. Suppose that i is an integer such that 0 <i</ We claim that
fi:(i)=0. (To see that the claim is correct, use Polya’s theorem to show that
P, (i)= P 4,(i) for every integer i such that 0 <7</ Then use the definition
of the cycle index polynomial, observing that |S,|=2x|A4,}.) Since a
degree / polynomial has at most / zeros, we conclude that f(i) is negative
in the range /—2 <i</—1, which establishes the fact. ||

Using Fact 2, it is not hard to prove Theorem 4.

Proof of Theorem 4. Suppose that y is a positive real number that is not
an integer and let /=[y’|+ 1. Fact 2 shows that f,(y)>f,,(»). Let r be
a polynomial such that [/, ,(¥)/fc.(»)]1"™ 2" is exponentially small (as a
function of v). We proceed by reduction from the following NP-hard
problem [GJ 79]:

Simple Max Cut

Input: A connected graph /" and a positive integer k.

Output: “Yes,” if I" has a cut-set® whose size is at least k. “No,”
otherwise.

Suppose that we have a graph I” with vertex set {v,, .., v,} and edge set
{e,, .., e,}. We construct a permutation group G using the following
method:

SA size k cut-set of /" is a partition of the vertices of I into two disjoint (and
indistinguishable) subsets such that the number of edges which span the two subsets is k.
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1. For each edge e;, we introduce r(v) sets of objects, E;[1], ..,
E;[r(v}]. Each set E;[x] contains / objects. We use the notation 4,[«] to
stand for the alternating group of degree / acting on the objects in E,[«].

2. For each vertex v;, we let g, be the permutation which transposes
the first two objects in each set E;[k] such that e; is incident on v; and
1 <Kk<r(v)

3. Let G' be the group generated by {AeA[k]|l <<y
1 <k<r(v)).

4. Let G be the group generated by {g,|1<i<v}u{i|ieG'}.

Each permutation ge G corresponds to exactly one (unordered)
partition (S, 7'} of the vertices in I” and to one permutation Ae G'. g can
be written as [ ],,.s g,,4 and as [],,. r g.,,4. We associate g with the cut-set
(S, T). Consider an edge ¢; with endpoints v, and v, and let g;, be the
restriction of g to the objects in E;[«]. It is easy to see that g;, €.5,— 4,
if exactly one of v,,vs is in S and that g;,.€ A4, otherwise. That is,
8.« €S,— A, if e; spans the two subsets of the cut-set that is associated with
g and g;, € A, otherwise.

Let (S, T) be a cut-set of I" and let G(S, T) stand for the set of permuta-
tions in G that are associated with the cut-set (S, T). Suppose that the size
of the cut-set (S, T) is k. It is not difficult to see that 3. . X" =
Fei(x) ™% 4 () ™=k,

We make the following observations:

1. If I" has a cut-set (S, T') whose size, k', is at least k, then

Po(3, s VYZLG| 7 S (YK £ (p) =50,

Fact 2 shows that f,(y)>f, (y). Therefore,

Po(y o )2 G fe (Y O, [ (py sk,

2. If I" does not have a cut-set whose size is at least k, then

Po(ys o »)S2 |G fe (p)y - Df g (yytle=k+n
=G felyyO* [ (yyw=h
XL a s e (3)17 2%

The proof is concluded by observing that we have chosen the polynomial
r in such a way that [f,,(»)/fc..(¥)] 2" is exponentially small. (We
chose r so that the relevant quantity was exponentially small as a function
of v. By construction, it is also exponentially small as a function of the
degree of G.) |
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As we pointed out in the introduction to this paper, our proof of
Theorem 4 says nothing about the difficulty of Cycle Index Approxi-
mation(q, y, y, ...} when y is an integer. Furthermore, it is the integer values
of y for which Pg(y, .., ») has a combinatorial meaning. It is an interesting
open problem to determine the computational difficulty of Cycle Index
Approximation(q, v, ¥,, ...) when y; </ for all j and there exists an i such
that y; < y|. It would also be interesting to determine the difficulty of Cycle
Index Approximation(q, v, y, ...} for integer values of y.
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