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Abstract: A property of a space is called hereditary if each subspace of the space possesses 
this property. In this paper, we consider some properties which are not hereditary in general and 
we ask: when are they hereditary? A typical result is: a regular space is a Lindeli;. 1 p-space he:re- 
dEtarily if and on!y if the .;p~e has a countable base. Some other new results of this kind are 0b-u 
tained. 

pFyyy~~~ space of point-countable type 

Let 9 be a topological property and X a topological space. Suppose 
that each subspace of the space X h;as I? Assumptions of this kind often 
prove to be vF;ry strong. A number of cases is known in which from a 
supposition of thlis type, unexpected corollaries follow nontrivially. It is 
remarkable that the arguments in these considerations do nox have any 
common features at all. Moreover, they do not fit into any general e 

scheme. 
I-Iere are some results of this type. 
(1) Each hereditarily-k-space (“very-k-space”) is a Frechet-Trysohn 

space [2]. 
/2) Each hereditarily normal diadic bicompac[um is me~ri~abl~ 

Theorem 25, p. 2441 D 

(3) If a bicom tacturn X satisfies 
rily (Le., C(Y) 
le (f(X) G HO) another proof 

was found independen 
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te,resting that the above three assertions are similar in t 
an assumption that a space X has a pro 
t always hereditary) turns ut to be equivale 

ch stronger we 
by subspaces, i.e., is hereditary. 

ssertion, the Role of ohn 
y!, in the second assertion th Pity, 

third assertion * is the condition t(X) < H,. 
al rule will never take the shape of a general theorem, pro- 

but surely we s?laU find other interesting assertions of this nature 

n what follows, we take into account regular T, -spaces only. 
) X E A, if each subspace of the space X is of point-countable type 

(ii) X E .Fa if each subspace of the space X is a indelof p-space [ 4, 

IDefinition 1.4, p.573. 
) X E Fpp if each subspace of the space X is a paracompact p-space 
efinitiorl 1.4, p.571. 

Let r be a cardinal number such that r 2 HO. Let A, emote the Alex- 
androff bicompacti&ation (wit one point) of a discrete space of cardi- 

Souslin number c(X) of a topological space X is defined as the 
Eeast upper bound of cardinalities of disjoint systems of open subsets of 
the space X. This is a well-known topological invariant. Ht will play an 
important role in our subsequent considerations. Let us mention that 
+?(A,) = 3 for al!! 7 2 h,. 

e assume that the Continuum ypothk:sis holds: zNo = H,. 

. If X E A,, then Siere is a subspace Y c X such that the clo- 
is X9 Y is ay1 open szdwt of the space .Y and Y is first 

countable. 



ie proof is complete. 

1. Each subspace of the space A 7 is either discrete or bicc mpact. 
In any case, each subspace of A7 is a space of point-countable type. For 
T> &-,,theset{xEA, : x(x, A,) < Ho) does not coincide with A,. 

If X E A, and X is separable then each point x: of X is contained in a 
countable subspace of X which is dense in X (of course this subspace is 
dependent on the point x). But any countable space of point-countable 
type has a countable base. In addition, X is regular, and so X is first 
countable. A finer assertion holds. 

eorern 2. If X E A, and c(X) < HO, then X is Jut cmntabl’e. 

roof. By ‘Theorem 1, there exists an open subspace U of X which is 
dense in X and satisfies the First Axiom of Countability. Chcrose an!1 
z E X. We will show that ~(2, X) < H, (i.e., X is first countable at z). 
may suppose that z E Y\U. By Zorn’s Lemma, the regularity of X, and 
the conditions c(U) < c(X) 6: N, (we take into a,ccount that U is open 
in X), there exists a countable disjoint family y of open subsets of X 
such that two more properties are fulfilled: 

0’1). I y, then [V] c UC X\(z). 
0,). r : VEy}] =x. 
Let us consider the subspace Xz (V: VEy}of thespace. 

BY Cil>9 Id=. {lu,\[V]: VEy) - i.e., the point z is 6, in X,. Since 
Xz is of point-countable typle, this implies that Xz is first countable ?t 
z. Observing that [X,] = X and that ,Y is regular, it follows that 
~(z, Xj SE H,. The proof is complete. 

change of the above a 
= 7 for some x E X, t 

that x E Y, x is non-isolated in Y 
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, 1~33~ A, artd c(X) < H,, then lx’i < 2% 

reorem 2, X is first countable. Since c ) G H,, i:’ follows 
< 2Nij” 
kve FP C FPP C p (see 13, efinition 3.8, p. 34 an 

2.6, p. 611. The condition “‘X E I$, ” is of course uch stronger than 
each first-countable space longs to A,. In 

ults may be unexpexted. 

3, X E .Fi if and o&y if X has countable base. 

e begin the proof of Theorem 3 with three lemmas. 

_ If 17 c X E Fp and I-+- is bicompact, then F is perfmtZy nsrmal. 

ndeed, a bkcompac Hausdorff space is hereditarily Lindelijf if and 
only if it is perfectly normal [ , Chapte; 2, Section 3, no. U]. 

a 2. If X E FP, F c X an f F is bicompact, thert either 1 XI < Ho or 

I i-0 = 
2 cc Q 

. 

is lfollows from emma 1 (see [ 1, Chapter 2, Section 3, Theorem 61). 

a 3. Eelt X E FP and y be the fan@ of all bicompact subqpaces of 

mpact subspaces of 1 

the space X onto some separable 
em 6.1 9 p. 771. Let X be the family of 
rly 1x1 \G 2% We put p = u-V:PE X}.. 

compact} for each Q E p. Since 
Lemma 1, all ekmentd of p are 

for each perfectly normal bicompac- 
act subspaces of this bi- 

“0; we conclude that IT(Q)I G 2”0 for each 

et F be any bicompact sub- 
uscg~handf-$EP. 



then there exist .x, c - Qnd x-2 c x such that 

foZZowing property (*) is fuZfilZed: 

act subspact? of Xl, G;r F’ is a bicompQ&.T Sub~Spw+~? 

Indeed, Beca.use of Lemmas 2 and 3 we can apply [ IS, Chapter 3, 
Section 40, Theorem 21, where the family of ~11 uncountable bik*om 
subspaces of X plays the rcle cfM. 

IVow we are prepared. for the proof of Theorem 3. 

Clearly, every m.etrizl-ible space with countable base 
ecrem 2.3, p. 601. Let XI and Xz satisfy the condi- 

tions of Lemma 4. We fix the perfect maps (which are onto) 

J’; :X1 + Y, andfz : X2 --) Yz, where Y, and Y2 are some metriz;;bit. 
spaces (such maps exist because Xt and X2 are Lindelcf p-spaces (:;ee 
[4, Thecrem 6.1, p. 771). We may suppcse that If, n Yz -= 0. Neither 
X, nor Xz contains unccuntable biccmpact sdbspaces. Thu? 
Ifi’yl G MO, Ifi_lyl < No for ea y E Y, u $, Fcr each y Ef YI (resp, 
y E Y2), we fix a map of the clet of all natulna numbers antlo the set 

dl f-l.~ (resp. onto f&); of ccurse we do not suppose the map tc be cne- 
to-cne. The image of y1 E IV under this’ map wz den x,(y). Let 2:: = 
(x’,(y): yE r,-j,z; ={xJy): yE Yz Then A” = 
=U{Z~:n~N)a~ldX*=2J{~~:nr i ion fl 12, of the 
map fr onto Z?, is a one-to-one continuous map o,f the space Z?, onto 

met&able space. Thle same hc!ds for f2 and Z$ for arbitrary 
Since 2; (resg. 2;) is a Lindelcf p-space, it follows by $, ‘I%cv- 

rem 8.2, p. 8 B 1, t.hat Zi (resp. Zi) is Imeirizable and has a count&&: 
base. Since II;’ = , i = 1, 2}, we cc’rclude that 
able network. Hence by [4, Theorem 4.2, p. Mf, X has a ccuntabf~~ t.tise 
(note that X is a p-space). The proof cf Theorem 3 is complete. 

Taking intc aeccunt the spaces A, fcr 7 > W 
every pactum belonging to Fm i 
;a> H metrizable spaces belong to 
Thus *F&., strictly contains the class of 
theles:?, there are gee 



It is sufficient to 

local finiteness of 
ets of Y such that 

V E t has common points 
s dense in Y, every ele- 

ment of E. Also all elements of r are open 

Let Y be a subspace of a perfectly ~iormaH bicornpactum 
~;1b~7ccs of the space Y are p-sd;laces. Then Y is a meLriz- 
r’h a&m table base. 

p--space X is of countable type [ 3., Defini- 
every bicompact subsgace F of X there ex- 

such Ithat x(p, X) < HO. 

ctum such that every 

it is easy to verify that 

eralization 



perties 

hat are the simplest criteria of metrizability f0r s 
Bonging to FW? 

BY which ProPertieS are developable s aces characterized 
among hereditarily p-spaces? 

hat else can be said about the structure of spaces belonging 

We conclude lwith the following th,eO,rem. 

Y Theorem 19 there exists a nonempty open subset i/’ of X such 
that x(x, X) < PC, for all .‘c E I/, w e may choose U to be a standard Ibasic 
set of the prOduct ,topology : U = {L/i : i = 1 ,, 2.. . ), vk-hertz U,( is an ope 
subset of Xi and Ui = xi for all but at most finiitely many WlueS of r!;. 
Clearly, U contains a topological copy of Xi if (Ji = Xi. Sin/;e iu iis f&t 
countable, it ‘ITOUOUVS th.at if Ui = Xi, then Xi is first cou,ntable. l’his corn-- 
pletes the proof. 
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