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ON HEREDITARY PROPERTIES
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Abstract: A property of a space is called hereditary if each subspace of the space possesses
this property. In this paper, we consider some properties which are not hereditary in general and
we ask: when are they hereditary? A typical result is: a regular space is a Lindel¢ ” p-space heve-
ditarily if and only if the space has a countable base. Some other new results of this kind are ob-
tained.
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hereditary property  space of point-countable type
p-space Fréchet—Urysohn space

Let P be a topological property and X a topological space. Suppose
that each subspace of the space X has P. Assumptions of this kind often
prove to be very strong. A number of cases is kncwn in which from a
supposition of this type, unexpected corollaries follow nontriviaily. It is
remarkable that the arguments in these considerations do nct have any
common features at all. Moreover, they do not fit into any general ‘
scheme.

Here are some results of this type.

(1) Each hereditarily-k-space (“‘very-k-space”’; is a I'réchet—-Urysohn
space [2].

¢2) Each hereditarily normal diadic bicompactum is metrizable [10,
Theorem 25, p. 244].

(3) If a bicompactum X satisfies the countable chain condition (ccc)
hereditarily (i.e., c(¥Y) < &, for each Y C X) then its tightness [6] is
countable (1(X) € 8,) (B. Shapirovskil; another proof of this assertion
was found independently by Arh~ngel'skii {6]).
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It seems interesting that the above three assertions are similar in their
'construction: an assumption that a space X has a property P hereditarily
* (where P is nct always hereditary) turns out o be equivalent to an as-

sumption that X has a much stronger well known property P* which is
always inherited bty subspaces, i.e., is hereditary.

In the fivst assertion, the Role of P* is played by the Frechet -Urysohn
property, in the second assertion the role of P* is played by metrizability,
in the third asseriion P* is the condition #(X) < R,.

This empirical rule will never take the shape of a general theorem, pro-
bably, but suiely we shall find other interesting assertions of this nature
in the future.

In what follows, we take into account regular T, -spaces only. We put:

Xe A, if each subspace of the space X is of point-countable type
[3, Definition 3.8, p.34].

(i X e Fp if each subspace of the space X is a2 Lindelof p-space [4,
Definition 1.4, p.57].

(iii) X € Fpp if each subspace of the space X is a paracompact p-space
[4, Definition 1.4, p.57].

Let 7 be a cardinal number such that 7 > X,. Let A, denote the Alex-
androff bicompactifi.ation (with one point) of a discrete space of cardi-
nality 7.

The Souslin number ¢(X) of a topological space X is defined as the
least upper bound of cardinalities of disjoint systems of open subsets of
the space X. This is a weil-known topological invariant. It will play an
important role in our subsequent considerztions. Let us mention that
(A, )=r7forall 7> K.

We assume that the Continuum Hypothesis holds: 280 = K.

Theorem 1. If X € Ap, then it.ere is a subspace Y C X such that the clo-
sure [Y] of Yis X, Y is an open subset of the space X and Y is first
countable.

Proof. Let Z be the set of all points at which the space X is first count-
able,ie., Z={x€X: x(x, X) < Rol. We put Y =Int Z. The set Y has ail
the desired properties. Indeed, we must only verify that [Y] = X. Let us
suppose the contrary. Then U = X\[Y] is a nonempty open subset of X
such that X\Z is dense in U. We define X' = (X\Z) N U, then X' # Q.
There exists a nonempty bicompactum ¢ C X’ such that x(p, X') < No-
Observing that X' is dense in U, it follows that x(p, U) < Ng. Clearly
X(e, XY = x(p, U). Thus x(p X) < &,
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Each subspace of the space g is of point-countable type. Hence ¢ is a
very-k-space [2; 3, Theorem 3.7', p. 35]. We know that any very-k-space
is Fréchet—Urysohn [2]. It was proved in [5] that if 2% > 2%y then
each bicompact Hausdorff space which is Fréchet—Urysohn satisfies the
First Axiom of Countability at some point. Hence x{x. y) < N.O for sorne
x € ¢. But x(p, X) < 8 and x(x, @) < 8, imply that x(x, X} < 8, [8;11].
It follows that x € Z, which contradicts the fact that xr€ X' C Y\ Z
The proof is complete.

Raemark 1. Each subspace of the space A4, is either discrete or bicc mpact.
Ir; any case, each subspace of 4. is a space of point-countable type. For
T> Ry, theset{ix € A, : x(x, A,;) < Ny} does not coincide with 4.

IfXe A, and X is separable then each point x of X is contained in &
countable subspace of X which is dense in X (of course this subspace is
dependent on the point x). But any countable space of point-countable
type has a countable base. In addition, X is regular, and so X is first
countable. A finer assertion holds.

Theorem 2. If X € A, and c(X) < W, then X is first countable.

Proof. By Theorem 1, there exists an open subspace U of X which is
dense in X and satisfies the First Axiom of Countability. Choose any
z € X. We will show that x(z, X) < R (i.e., X is first countable at z). We
may suppose that z € Y\U. By Zorn’s Lemma, the regularity of X, and
the conditions c(U) < c(X) < 8, (we take into account that U is open
in X), thers exists a countable disjoint family v of open subsets of X
such that two more properties are fulfilled:

G))-IfVery, then[V]C UcC X\{z}.

G- UV :VeyH=X

Let us consider the subspace X, ={z} U U{V : V € v} of the space X.
By (y), {z} = N{X,\[V]: V € v} — i.e., the point z is G in X,. Since
X, is of poini-countable type, this implies that X, is first countable ~t
z. Observing that [X,] = X and that X is regular, it follows that
x(z, X) < R,. The proof is complete.

Remark 2. By a slight change of the above argument, one can shov that
itX e Ap and x(x, X) = 7 for some x € X, then thereisa Y C X such
that x € Y x is non-isolated in Y dnd Y is homeomorphicto 4.



42 A.V, Arhangel’skil, On hereditary properties
Corollary 2.1. If X € A, and c(X) < Ry, then | X| < 280,

By Theoremn 2, X is first countable. Since c(X) < R, i* follows [16]
that |X| < 2%o,

We have Fp C Fpp C4, (see [3, Definition 3.8, p. 34] and [4, Theo-
rem 2.6, p. 61]. The condition “X &€ Fp” is of course much stronger than
the condition “Y € A!‘-,” — each first-countable space belongs to 4. In
any case, the fcllowing results may be unexpexted.

Theorem 3. X € Fp if and only if X has countable base.
We begin the proof of Theorem 3 with three lemmas.
lemmal./fFCX€ Fp and F is bicompact, then F is perfectly normal.

Indeed, a bicompact Hausdorff space is hereditarily Lindelof if and
only if it is perfectly normal [ 1, Chapte: 2, Section 3, no. 12].

Lemma2./fX € Fp, F C X ani F is bicompact, then either | X|< §, or
|7} = 2%,

This follows from Lemma 1 (see [1, Chapter 2, Scction 3, Theorem 6}).

Lemma 3. Let X € F, and vy be the family of all bicompact subspaces of
X. Then |y < 2%o,

Proof. There exists a perfect map f of the space X onto some separable
metrizable space Y (see [4, Theorem 6.1, p. 77]. Let X be the family of
all bicompact subspaces of Y. Clearly |\| < 280, We put u = {f"1P:PEA}.
Then |u| = [A] < 2%0,

Lety(@)={Fc X : Fc Qand F s bicompact} for each Q € u. Since
fis perfect, cach Q € u is bicompact. By Lemma 1, all elements of u are
perfectly normal bicompacta. But for each perfectly normal bicompac-
tum, the cardinality of the family of all bicompact subspacsas of this bi-
compactum does not exceed 2™9; we conclude that |y(Q)l < 20 for each
Qe pu.

Let y=U {y(Q) : QO € u}. Then |y| < 2%0, Let F be any bicompact sub-
space of X. Then ¢ = fF is bicompact and o C Y. Thusp€ A and flypecu.
Since F C 1y, it follows that Fe y(f 1p) C 4.



A.V. Arhangel’skii, On hereditery properties 43

We have shown that v is the family of all bicbmpact subspza-es o X.
The proof of Lemma 3 is complete.

Lemma 4. If X € F,), then there exist X C X and X, . X such that
X =X, U X, and the following property (+) is fulfilled:

() If F is a bicompact subspace of X, ¢r ' is a bicompaci subspace
of X,, then |Fl < N,.

Indeed, Because of Lemamas 2 and 3 we can apply [15, Chapter 3,
Section 40, Theorem 2], where the family of ail uncountable bi. ompact
subspaces of X plays the role of M.

Now we are prepared for the proof of Theorem 3.

Proof of Theorem 3. Clearly, every metrizable space with countable base
belongs to F), [4, Theorem 2.3, p. 60]. Let X, and X, satisfy the condi-
tions of Lemma 4. We fix the perfect maps (which are onto)

50Xy =Y andf, : X, - Y,, where Y| and Y, are some metrizebic
spaces (such maps exist because X; and X, are Lindelof p-spaces (see
[4, Theorem 6.1, p. 771). We may suppose that ¥; N Y, = @. Neither
X nor X, contains uncountable bicompact s.ubspaces. Thus

LTIyl < Ry, 131yl < 8, foreachy € Y| U i, Foreach y € Y, (resp.
y € Y,), we fix a map of the set N of all natural numbers onto the set
Sy (resp. onto f51y); of course we do not suppose the map te be one-
to-one. The image of n € N under this map w: denote x,(y). Let Z} =
{x,0):ye ¥}, Z: ={x,(») : y € Y,}, foralt n € N. Then Xi =
=U{Zl: neN}and X, = U{Z2: n <= N}. The rsstriction f; |1 Z} of the
map f; onto Z! is a one-to-one continuous map of the space Z} onto
some metrizable space. The same holds for f, and Z2, for arbitrary

n € N. Since Z1 (resp. Z2) is a Lindeldf p-space, it follows by (4, Theo-
rem 8.2, p. 811, that ZL (resp. Z2) is merrizable and has a countabl:
base. Since X = U {Z{: n € N, i = 1, 2}, we ccrclude that X has a ceunt-
abie network. Hence by [4, Theorem 4.2, p. 54|, X has a countabi. Luse
(note that X is a p-space). The proof of Theorem 3 is complete.

Taking into account the spaces A, for 7> 8, we conclude thei not
every pbicompactum belonging to Fpp is metrizable (4, € F - forali
7 > Ny). Ali metrizable spaces belong to Fpp (see {4, Theorem 2.3, p.60}).
Thus Fpp strictly contains the class of all metrizable spaces. Neves-
theless, there are good reasons to assert that the properties ol spaces be-
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longing to Fpp_ resemble in general the properties of spaces belonging o
[;, In any case, the elements of Fp are characterized among ali elements
of "»p DY @ very simple, rough condition.

Theorem 4. X € Fp ifand only if X € Fpp and c(X) < ¥;.

Proof. (=). If X € Fp, then X is hereditarily Lindelof and c(X) < R. Be-
sides, every subspace of X is a paracompact p-space. Hence X € Fpp.
The necessity is proved.

(=) Now we suppose that X € F, and c(X) < W, It is sufficient to
prove thai each open subspace Y of X is Lindelof.

Let v b2 an open covering of Y. We fix a locally finite open covering
A of the space Y refining v. By Zorn’s Lemma and the local finiteness of
A, ihere exists a family £ of open pairwise disjoint subsets of Y such that
theset G =U{V : V€ §}isdense in Y and each V € { has common points
with only finitely many elements of A. Since G is uense in Y, every ele-
ment of A intersccts some element of £. Also all elements of & are open
in X. Thus A is countable. Moreover, Y is Lirndelof. This completes the
procf.

Corollary 4.1. Let Y be a subspace of a perfectly normal bicompactum
such that all subsraces of the space Y are p-spaces. Then Y is a metriz-
abie space with a countable base.

It is known [9] that each p-space X is of countable type [3, Defini-
tion 3.7, p. 34]. That is, for every bicompact subspace F of X there ex-
ists a bicompactum ¢ C X such that x(p, X) < ¥,.

Problem 1. Let X be a perfectly normal bicompactum such that every
subspace of X is of countable type. Is X metrizable?

The product of countably many paracompact p-spaces is a paracom-
pact p-space [4, Theorem 2.4, p. 60]. It is obvious (after Theorem 3)
thatif X € Fp and Y € Fp, thenX X Y& Fp. But it is easy to verify that
A, X A, ¢F,, whenr> Rg. *

Problem 2. Let X € Fpp. Is it true that the weight of X is equal to c(X)?

(If the answer is “ves”, then we get a good generalizatior of Theo-
rem 4).

* The last sentence was added in proof.
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Problem 3. Let X € F,,, and let - ¥ » Y be a perfect ont .
thatYeF)p‘? pp e a perfect onto map. Is it true

(See [9;11;16; 17]).

?r(;?r}em 4. Let X € F,,. Is there ¥ ¢ X which is metrizable and dense
in X7

Problein 5. What are the simplest criteria of metrizability for spaces be-
longing to Fpp?

Propblem 6. B}’ which properties are developable spaces characterized
among hereditarily p-spaces?

?r?legl 7. What else can be said about the structure of spaces belonging
to !
PP

We conclude with the following theorem.

Theorem 5. Let X =TL {X; : i=1], 2 ...} be the 10pological product of

countably many spaces and X € A Then X, is first countable for all
but at most finitely many valueg ofz

Proof. By Theorem 1, there eXists a nonempty open subset U of X such
that x(x, X) < ¥ for all * € U. We may choose U to be a standard basic
set of the product topology : U=py {U; : i =1, 2...}, where U; is an open
subset of X; and U; = X; for all but at most finitely many values of /.
Clearly, U contains a topological copy of X; if U; = X;. Sinze U is first
countable, it follows that if U; = x,, then X is first countable. This com-
pletes the proof.

Corollary 5.1. X is first countable if and only if eack: subspace of the to-
pological product X®o of countaply many ropological copies of X is of
point countable type (that is, if X®o € A).
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