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N. Alon [J. Graph Theory 10 (1986), 123-1271 proved that if the minimum 
degree of a graph G is not less than r] V(G)l/kl, then the circumference of G is 
at least LlV(G)I/(k- 1)j. In this article, we show a stronger theorem: if 
d,(x) t do(y) > r2] V(G)l/kl for any nonadjacent distinct vertices x and y of V(G), 
then G has a cycle of length at least r] V(G)l/(k- 1 )], (The lower bound 
r I V(G)l/(k - 1 )] is sharp.) 6 1989 Academic PXSS. lnc. 

1. INTRODUCTION 

In this article we consider only finite simple graphs. We denote the set 
of vertices and edges of a graph G by V(G) and E(G), respectively. We 
often write 1 G/ for 1 V(G)I. An edge joining x and y is represented as xy. We 
write C&(U) for the degree of a vertex v in G and T,(v) for the set of the 
neighbors of v (the subscript G is omitted when not necessary). Let c(G) 
mean the circumference of G, i.e., the size of a largest cycle of G. Let 6(G) 
denote the minimum degree of G and 

i 
2(n - 1) (if G is a complete graph of order n) 

S(G)‘= min{d,(x)+d,(y) / x, YE V(G), XJJ$E(G)) (otherwise). 

Other terminologies or notation not defined here can be found in [3]. 
Let G be a graph of order n and let k be an integer with n > k ~2. 

N. Alon proved the following theorem. 
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THEOREM 1.1 (Alon [ 1 ] ). Suppose that 6(G) 3 [n/k-l. Then c(G) 3 
Lnlb- WI. 

He conjectured that the proposition obtained by substituting ceiling for 
floor brackets in the conclusion of Theorem 1.1 is also true. As the com- 
mented in his paper, this conjecture follows if 1 V(G) 9 k (we have verified 
that his arguent in the proof of Theorem 1.1 works for this conjecture as 
well if ) V(G)/ > 2k(k- 1)). But the problem seemed difficult in the case 
where ) V(G)/ is small. 

We have solved this conjecture affirmatively and obtained the following 
Ore-type version of it: 

THEOREM 1.2. rf 6(G) 3 r2n/kl, then c(G) 3 rn/(k - 1)J 

In the case where the theorem is “meaningful,” i.e., if [n/k1 < 
rti/(k- l)], our new bound [n/(k- l)] is indeed best possible. For in that 
case, if we write n = (k - 1)r + s with 1 <s d k - 1 (Y and s are integers), 
then the graph H=(s-l)K,+, u (K, + (k - s)K,) satisfies 6(H) 3 rn/kl 
and attains the equality c(H) = rn/(k - l)]. 

2. LEMMAS 

LEMMA 2.1 (Bermond [a]). Let G be a 2-connected non-hamiltonian 
graph. Then c(G) 3 S(G). 

LEMMA 2.2. c(G)> S(G)/2 + 1. 

ProoJ: Let K be a connected component of G of maximum order, and 
let P be a maximal path of K. The endvertices of P are denoted by x and 
y. Note that all the neighbors of x (and y) lie on the path. If x~EE(G), 
then K is hamiltonian. Since S(G) < 2( IKl - 1) by definition, the lemma is 
true when xy E E(G). Suppose xy#E(G). Without loss of generality, we 
may assume that d(x) 3 d(y), which means d(x) 3 8(G)/2. Because a cycle 
of length at least J(G)/2 + 1 can be easily constructed by using one of the 
edges incident to x, the lemma is also true in this case as well. 1 

LEMMA 2.3. Let H be a 2-connected graph and let A be a nonempty 
subset of V(H). Suppose dH(x) + dH( y) > 1 for any two nonadjacent (in H) 
vertices x, y of V(H) - A. Then one of the following statements holds: 

(i) c(H) 3 I- JAI + 1, 
(ii) there exists a cycle of H visiting all the vertices of V(H) -A and 

at least one vertex qfA. 
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Proof. If 1 V(H) -A( d 1, it is obvious that (ii) holds, since H is 
2-connected. Thus we may assume 1 V(H) - Al > 2. Let P be a path such 
that its endvertices belong to V(H) -A and such that P contains at least 
one vertex of A. We choose P so that the number of the vertices of 
V(H) - A contained in P may be maximum. We represent the vertices of 
P as a,, a,, . . . . a, and suppose P visits them in this order. 

First of all, we will prove that if H has a cycle containing all the vertices 
of P, (ii) follows. Let C be such a cycle. It is clear that C contains at least 
one vertex of A. Thus we only have to show that all the vertices of 
P’(H) - A are contained in C. Suppose not. Then there exists a vertex 
v E V(H) - A and u is not contained in C. Since H is connected, H has a 
path Q linking v and V(C). Let u be a terminus of Q in V(C) and let u+, 
u - be vertices neighboring u on C. If one of u + or U- belongs to V(H) - A 
(we may assume that U+ belongs to V(H) - A), the path formed by con- 
catenating C - uu + and Q has more vertices of Y(H) - A than P; this is a 
contradiction. Suppose both belong to A. We denote by w the vertex of 
V(H) - A that we meet when we start from u, visit u+, and proceed along 
C in this direction. Then the path obtained by concatenating Q and 
2.4, u -, . ..) w has more vertices of V(H) - A than P; we again have a con- 
tradiction. Therefore, if H has a cycle visiting all the vertices of P, the 
lemma is true. 

Next we will show that we may assume Ir(a,)n V(P)[ + \r(a,)n V(P)1 
3 l- (1 AJ - 1). We may assume that a,a, 6 E(H); otherwise H has a cycle 
which visits all the vertices of P. Thus d(a,) + d(a,) >, 1. Similarly, we 
may also assume that a, and a, are not adjacent to the same vertex of 
V(H) - V(P). Since the maximality of / V(P) - A( implies (r(a,) u r(a,v)) - 
V(P) E A and since P contains at least one vertex of A, we have 

IF(Q) - I/(P)1 + Ir(a,) - VP)1 = l(U4 u JJa,)) - UP)1 

< IA - V(P)\ < IAl - 1. 

Therefore, \T(u,)n V(P)( + Ir(u,)n V(P)( 31-(IAl - 1). 
The rest of the argument corresponds almost word for word to that in 

[4, problem 10.27, p. 681, but we will describe the outline for the con- 
venience of the reader. We define integers k and h by 

k=max{cc (u,a,EE(H)] 

h=min{/3) aDasEE(H 

If k < h, then at most one vertex on P is adjacent to both a, and a,. Since 
we can show, by vrtue of the 2-connectedness of H, that H has a cycle con- 
taining a,, a,, and all the vertices on C adjacent to a, or a,, (i) follows in 
this case. Suppose that k > h. We can again construct a cycle C’ containing 
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a,, a,, and all the vertices on P adjacent to a, or a,. Now that we have 
already settled the case where H has a cycle visiting all the vertices of P, 
we may assume that if aoui E E(H) for some j, uj- ra, $ E(H). Thus in C 
there exist at least as many vertices, including a, and a,, nonadjacent to a, 
as adjacent to a,. Therefore, JC’I 2 I- (/A I- l), and the proof of the 
lemma is complete. i 

3. PROOF OF THEOREM 1.2 

Suppose that the theorem is false and G is a counterexample. We choose 
G edge-maximal, that is, for any nonadjacent vertices x, y E V(G), 
c(G + XY) 3 rn/(k - in. 

First we claim that G is connected; otherwise, we can add some bridges 
to G so that the resulting graph may be connected and may satisfy the 
condition of the theorem. Since the cycles in the new graph are also the 
ones in G, the new graph does not have a cycle of length not less than 
rn/(k - l)]. Th’ IS contradicts the maximality of G. 

Next, we will show that n >k(k- 1). Lemma 2.2 implies that c(G) 3 
rr2n/kJ/2] + 1 = /-n/k] + 1. Since G is a counterexample, [n/k3 + 1 < 
rn/(k - 1)J holds. Therefore, 

Hence, 

n>k(k- 1). 

A vertex of G is called internal if v is not a cutvertex of G. Thus all the 
neighbors of an internal vertex are contained in the block to which the 
vertex belongs. We call a block of G essential if it has an internal vertex; 
otherwise we call it nonessential Any vertex of a nonessential block is a 
cutvertex of G. 

We claim that G does not have more than k - 1 essential blocks. Let s 
denote the number of the essential blocks of G and let B,, B,, . . . . B, be the 
essential blocks. Then, 

n3 fi V(B,) I I i= 1 

3 c IBjl -(SF 1). 
r=l 

582b/46/3-8 
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Note that internal vertices belonging to different essential blocks are 
adjacent to each other. Thus the average order of an essential block is 
less than n/k + 1. Therefore, 

not 
not 

If s 3 k, we have a contradiction. Thus we have s < k - 1. 
We classify the vertices of G into three parts as follows: 

Co:= (u / E V(G), IJ is contained in no essential blocks of G}, 
Cl := {v 1 v E V(G), v is contained in just one essential block of G}, 
C, := {u / v E V(G), v is contained in at least two essential blocks 

of G). 

Since G has at most k - 1 essential blocks, 1 C,/ 6 k - 2 holds. 
We will show that CO = 4. Suppose there exists a vertex u E C,. There are 

at least two nonessential blocks B’ and B” sharing U. Since G is edge- 
maximal, c(G + uw) > rn/(k - 1 )I> k for any vertices u E V(R) - {v} and 
MI E V( B”) - {v}. This means I V(R) u V(B”) - {v > I 3 k, which implies that 
G has at least k endblocks. However, this is impossible because any 
endblock is essential. Thus we have C, = d. 

For each essential block B, we define an integerf(B) by 

(ifBnC,=$) 
(otherwise). 

Let B,, B,, . . . . B, be the essential blocks of G. Then, C;= 1 f(B[) 2 II holds 
because in the left-hand side of this inequality each vertex of C, is counted 
once and each of C, at least once. Thus there exists an essential block B 
that satisfies 

f(B)2 krl . i 1 
Since 

n 
IBl kf(B)ak- 1 ->kk22, 

B is 2-connected (i.e., not an acyclic block). Let t = I V(B) - C,I. Then since 
IV(B)nC,/dIC,lk-2, we have 

t=jBj-jV(B)nC,J>k-(k-2)=2. 
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Let x1, x2, . . . . x, be the vertices of V(B) - C,, and let 

bi= l(v I UE V(G)- V(B), UX~EE(G)}I. 

We arrange the vertices of V(B) - C2 so that b, 3 b, 3 . . . 3 b, holds. Then 
dB(x) + d,(y) B 2n/k - (6, + b2) for any distinct nonadjacent vertices x and 
y of V(B) - C,. Note that if u E V(B) - C2 has a neighbor u outside B, then 
v is a cutvertex of G, for u E C,. Since each of such cutvertices v as well as 
each vertex in V(B) n C,, “gives rise to” at least one endblock, and since 
any endblock is essential, we obtain 

k - 2 3 (the number of essential blocks other than B) 

3 lV(B)nC,I +- 2 bi 
i=l 

3 I V(B) n C,I + (b, + b,). 

If V(B) n C, = 4, then for any distinct nonadjacent vertices x and y, 

d,(x) + did) 3; - (b, + bJ 

$-(k-2) 

holds. Since B is 2-connected and 

;-(/+2)-&----i-- 
k-l k(k-1) 

{2(k- l)n-k(k- l)(k-2)-kn) 

=++{n-k(k-l)}>O, 

Lemma 2.1 implies that G has a cycle of length not less than rn/(k - 1)l 
(this conclusion obviously holds in the case where B is hamiltonian). 

We may now assume that V(B) n C, # 4. We apply Lemma 2.3 with 
H= B and A = V(B) n C?. If (ii) of the conclusion of the lemma holds, B 
has a cycle of length at least f(B). Since f(B) 3 rn/(k - l)l, we have a 
contradiction. If (i) holds, we have a cycle of length at least 

;-(b,+b,)-{(k-2)-(b,+bz)j+l=$-(k-2)+1 

This completes the proof of Theorem 1.2. 



362 EGAWA AND MIYAMOTO 

REFERENCES 

1. N. ALOK, The longest cycle of a graph with a large minimal degree, J. Graph Theory 10 
(1986), 123-127. 

2. J. C. BERMOND, On Hamilton walks, in “Proc. Fifth British Combinatorial Conference, 
Aberdeen, 1975,” pp. 41-51, Congressus Numerantiaum No. XV, Utilitas Math. Winnipeg, 
1976. 

3. G. CHARTRAND AND L. LESNIAK, “Graphs & Digraphs,” 2nd ed., Wadsworth, Monterey, 
1986. 

4. L. LovAsz, “Combinatorial Problems and Exercises,” North-Holland, Amsterdam, 1979. 


