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Oxidative stress caused by drought stress is a major limiting factor for grass cultivation in arid and semi-arid
regions. In order to investigate the effect of nitric oxide (NO) donors on drought tolerance and recovery of Poa
pratensis L. ‘Balin’, Lolium perenne L. ‘Numan’ and Cynodon dactylon [L.] Pers., sodium nitroprusside (SNP) and
potassium nitrite (PN) were applied at 150, 200 and 250 μM concentrations with irrigation intervals of 3, 5, 7
and 9 days. The NO donors significantly increased the antioxidant enzymes' activity of the three grass species
during drought stress. This enhancing effect was not dependent on the source of NO (SNP or NP), but rather
reliant on their concentrations. The maximum activity of catalase (CAT), peroxidase (POD), superoxide
dismutase (SOD) and ascorbate peroxidase (APX) was obtained with the application of 200 μM SNP or PN. Nitric
oxide donors caused the greatest increase in activities of antioxidant enzymes in plants subjected to 7 or 9 days of
drought stress. Among different turfgrasses tested under water stress, warm season turfgrass C. dactylon had the
highest activity for antioxidant enzymes.

© 2014 SAAB. Published by Elsevier B.V. All rights reserved.
1. Introduction

A great variety of abiotic stresses such as drought, salinity, UV light,
air pollutants and heavy metals induce molecular damage in plants
through the production of reactive oxygen species (ROS) (Mahajan
and Tuteja, 2005). Drought stress promotes the production of
superoxide (O2

−), singlet oxygen (1O2), hydroxyl (OH−), and hydrogen
peroxide (H2O2), which can be detrimental to proteins, lipids,
carbohydrates, and nucleic acids (Smirnoff, 1993). The plant cells are
normally protected against this oxidative damage by a broad range of
radical scavengers such as antioxidant enzymeswhich detoxify reactive
oxygen species (Foyer et al., 1994; Møller et al., 2007; Bian and Jiang,
2009; Ashraf and Harris, 2013).

Although antioxidant enzymes' activity under drought stress
depends on plant species, stress intensity and duration (DaCosta and
Huang, 2007), maintaining a high level of antioxidant activity increases
the capacity of protection mechanisms for drought tolerance (Sharma
and Dubey, 2005; Türkan et al., 2005). In a study using three bentgrass
species, Agrostis canina L.maintained antioxidant enzyme activities for a
greater duration of drought treatment compared to both Agrostis
capillaris L. and Agrostis stolonifera L. Higher capacity of the antioxidant
enzymes superoxide dismutase (SOD) and catalase (CAT) was linked to
decrease lipid peroxidation of leaves andhigher turf quality, leaf relative
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water content, and photosynthesis efficiency for a longer duration of
drought stress compared with A. capillaris L. and A. stolonifera L.
(DaCosta andHuang, 2007). Fu andHuang (2001) showed that in leaves
of Poa pratensis and Festuca arundinacea when surface soil drying was
prolonged, SOD activity increased while CAT and peroxidase (POD)
activities remained unchanged. Further increase in the duration of
drought stress resulted in a decline of SOD, POD and CAT activities.
The drought tolerance of perennial grasses is attributed to the
modification of the antioxidant metabolisms (Jiang and Huang, 2001;
DaCosta and Huang, 2007; Bian and Jiang, 2009, Efeoğlu et al., 2009).

Nitric oxide is considered a small extremely diffusible gas and a
versatile bioactive molecule which is implicated in the signal trans-
duction pathway responsible for stress responses in plants (Crawford
and Guo, 2005; Delledonne, 2005; Velikova et al., 2008). Furthermore,
NO is involved in many other important physiological processes such
as germination, mitochondrial function and floral regulation (Beligni
and Lamattina, 2000; Lamattina et al., 2003; He et al., 2004; Hu et al.,
2005). In recent years there has been increasing evidence that
application of exogenous nitric oxide (NO) is useful to allay oxidative
stresses caused by drought, high temperature and salinity (Lu et al.,
2009; Bavita et al., 2012; Nalousi et al., 2013; Freschi, 2013).

The main objective of this study was to elucidate the effect of nitric
oxide donors on relieving the oxidative stress induced by drought stress
in cold and warm season turfgrasses. To our knowledge, this is the first
report on using sodiumnitroprusside on P. pratensis, Lolium perenne and
Cynodon dactylon to improve their drought stress tolerance.
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Fig. 1. The effect of NO donors on CAT activity at different water stresses of three turfgrass species.
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2. Materials and methods

2.1. Plants and experiment condition

Turf seeds of three species of P. pratensis L. ‘Balin’, L. perenne L.
‘Numan’ and C. dactylon [L.] Pers. were cultivated in 5 L pots in April
2010 and April 2011 at a greenhouse located in the Department of
Horticulture Science in Shiraz University, Shiraz, Iran. The plants were
grown for 2 months after which shoots were clipped twice at 10 day
intervals to a height of 5 cm above the soil surface in order to reach a
uniform establishment and get ready for the treatments. The air
temperaturewas set at 32–35 °C during daytime and at 25–27 °C during
nighttime with a relative humidity of 60%.
2.2. Water stress treatments

Water stresswas implemented from Juneuntil the endof September
by withholding irrigation for 3, 5, 7 or 9 days. These irrigation
frequencies ranged from 50% of field capacity at day 3, to the least
retention of water near the permanent wilting point at day 9. Regular
daily watering was resumed after the water stress period, to allow the
plants to recover.
Fig. 2. The effect of NO donors on POD activity at dif
2.3. Nitric oxide (NO) donors

Prior to the drought stress treatments, in each pot 20 ml of freshly
prepared sodium nitroprusside (SNP) or potassium nitrite (PN)
solutions was applied as foliar spray at 150, 200 and 250 μmol L−1

concentrations. Deionized water was used as solvent and control for
the treatments.

2.4. Antioxidant enzymes' activity

2.4.1. Catalase assay
Activity of CAT was measured in a cuvette using the method of

Dhindsa et al. (1981) with slight modifications. The CAT reaction
solution (1 mL) of 50 mM phosphate buffer (pH 7.0) and 15 mM H2O2

was mixed rapidly with 50 μL enzyme extract. Reaction was initiated
by adding the enzyme extract. Changes in absorption at 240 nm were
read after 1 min with a WPA spectrophotometer (Biochrom, UK).
One unit CAT activity was defined as an absorbance decrease of
0.01 unit min−1.

2.4.2. Superoxide dismutase assay
The SOD activity was determined by measuring its ability to inhibit

the photoreduction of nitro blue tetrazolium (NBT) (McCord and
ferent water stresses of three turfgrass species.
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Fig. 3. The effect of NO donors on SOD activity at different water stresses of three turfgrass species.
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Fridovich, 1969). Each 1 mL reaction solution contained: 75 μM NBT,
13 mM methionine, 0.1 mM EDTA, 50 mM phosphate buffer (pH 7.8),
and 50 μL enzyme extract. Riboflavin (2 μM) was added at the last
step to the reaction. Microtubes containing the reaction mixture were
irradiated under fluorescent lamps at 78 μmol m−2 s−1 for 15 min.
The light absorbance at 560 nm was determined with a WPA spectro-
photometer (Biochrom, UK). One unit of SOD activity was defined as
the amount of enzyme that would inhibit 50% of NBT photoreduction.

2.4.3. Peroxidase assay
Activity of peroxidase was determined using the method of Chance

and Maehly (1995), with minor changes. The reaction solution (1 mL)
contained 13 mM guaiacol, 5 mM H2O2 and 50 mM phosphate buffer
(pH 7.0) which was mixed with 33 μL enzyme extract. The absorbance
of the reaction mixture at 470 nm was read every 10 s for 1 min.

2.4.4. Ascorbate peroxidase assay
The ascorbate peroxidase (APX) activity was determined according

to the method of Nakano and Asada (1981). The reaction solution
(1 mL) contained 50 mM phosphate buffer (pH 7.0), 0.1 mM EDTA,
0.5 mM sodium ascorbate, 0.1 mM H2O2 and 50 μL enzyme extract.
The light absorbance of the reaction solution was read after 1 min at
290 nm.
Fig. 4. The effect of NO donors on APX activity at dif
2.5. Experiment design and data analysis

Experiments were conducted in a randomized complete block
design with four replications. Data were analyzed by factorial ANOVA
at a significance level of P b 0.05 using SPSS v.16 and means were
compared using LSD test.
3. Results

3.1. Antioxidant enzymes' activity during drought stress

3.1.1. CAT activity
Water stress significantly increased CAT activity in all treatments

(F83, 249 = 63.35, P b 0.01) and species (F2, 249 = 293.99, P b 0.01);
however, this increase was not always consistent over time and peaked
at either day 7 or 9 (Fig. 1). The magnitude of this increase in CAT
activity was different between species and treatments (F12, 249 =
10.37, P b 0.01). The 200 μmol SNP treatment resulted in the greatest
increase in CAT activity in P. pratensis and C. dactylon, while the same
concentration of either SNP or PN resulted in the greatest CAT activity
in L. perenne. The highest increase in CAT activity was observed in
C. dactylon.
ferent water stresses of three turfgrass species.
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3.1.2. POD activity
Drought stress significantly raised POD activity in all treatments

(F83, 249 = 145.47, P b 0.01) and species (F2, 249 = 524.49, P b 0.01),
though this rise was not at all times constant over duration and hit
the highest pointed at either day 7 or 9 (Fig. 2). The degree of this in-
crease in POD activity was different between species and treatments
(F12, 249 = 18.89, P b 0.01). The 200 μmol PN treatment resulted in
the biggest increase in POD activity in C. dactylon and L. perenne,
while the identical concentration of either SNP or PN resulted in
the greatest POD activity in P. pratensis. The highest increase in POD
activity was found in C. dactylon.

3.1.3. SOD activity
Water deficiency significantly enhanced SOD activity in all treat-

ments (F83, 249 = 222.17, P b 0.01) and species (F2, 249 = 763.89,
P b 0.01); nevertheless, this increase was not consistent across the dif-
ferent drought treatments over time and peaked at either day 7 or 9
(Fig. 3). The extent of this increase in SOD activity was different
between species and treatments (F12, 249 = 21.78, P b 0.01). The 200
μmol SNP and PN treatments resulted in the greatest increase in SOD
activity in C. dactylon and P. pratensis, respectively, whereas, the same
concentration of either SNP or PN resulted in the greatest CAT activity
in L. perenne. The greatest increase in SOD activity was seen in
C. dactylon.

3.1.4. APX activity
Scarcity of water during drought stress significantly added to APX

activity in all treatments (F83, 249 = 541.02, P b 0.01) and species (F2,
249 = 8246.34, P b 0.01), but this increase was not consistent over
time and reached themaximum at either day 7 or 9 (Fig. 4). The amount
of this increase in SOD activity was different between species and treat-
ments (F12, 249= 83.19, P b 0.01). The 200 μmol SNP treatment brought
about the greatest increase in APX activity in C. dactylon, while the same
concentration of PN resulted in the greatest APX activity in P. pratensis
and L. perenne. The greatest increase in APX activity was detected in
C. dactylon.

4. Discussion

Environmental stresses lead to intensive production of reactive
oxygen species (ROS) setting off progressive oxidative damage and fi-
nally cell death (Asada, 1999; Reddy et al., 2004; Sharma et al., 2012;
Ashraf and Harris, 2013). Drought is a major source of oxidative stress
increasing ROS production and further lipid peroxidation, thus cellular
homeostasis is disrupted and antioxidant enzymes' production and ac-
tivity is diminished (Shi et al., 2007). Antioxidant enzymes' activity
has a beneficial function on plant tolerance in drought stress (Møller
et al., 2007; Bian and Jiang, 2009). SOD scavenges O2

− to H2O2 (Bowler
et al., 1992), and POD, CAT and APX detoxify H2O2 to H2O at different
cellular locations (Mittler, 2002). Our results showed that application
of SNP and PN as NO donors comparably increased the production and
activity of SOD, CAT, POD and APX in three turfgrasses. At longer
drought stress,withholdingwater for 7 days, turfgrasses showed higher
antioxidant enzymes' activity. Warm season turfgrass C. dactylon had
the highest activity for antioxidant enzymes. Similar results have been
seen in rice at greater drought intensities (Shehab et al., 2010). Nitric
oxide donors have a positive role in raising the antioxidant enzymes'
activities in different stressed plants (Shi et al., 2007; Tan et al., 2008;
Tanou et al., 2009; Corpas et al., 2011; Nalousi et al., 2013; Egbichi
et al., 2014). There are a few reports showing that drought stress has
caused oxidative injury to Kentucky bluegrass and perennial ryegrass
(Liu et al., 2008; Farfan-Vignolo and Asard, 2012). DaCosta and Huang
(2007) showed that in three bentgrass species antioxidant metabolism
is one essential process that improves drought tolerance. It is concluded
that SNP and PN are useful NO donors which increase antioxidant
enzymes' activity in plants under drought stress and may reduce the
oxidative stress damage and adapt plants to deteriorating conditions.
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