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Inhibitory neurotransmission in the mammalian
CNS is mainly mediated by the amino acids GABA
and glycine, which activate ionotropic GABAA
receptors and glycine receptors (GlyRs), respectively.
Both types of receptors are members of the group I
ligand-gated ion channel superfamily [1]. GABAA
receptors constitute major targets of widely used
drugs such as barbiturates and benzodiazepines,
whereas clinically applicable compounds that target
GlyRs have yet to be identified. In this article, recent
results from studies of the molecular pharmacology
of mammalian GlyRs are summarized, and potential
leads for clinically useful GlyR modulatory agents
are discussed.

Glycinergic synapses are found in many regions of
the CNS but are particularly abundant in spinal cord,
brain stem, caudal brain and retina, where they are
implicated in the control of motor rhythm generation,
coordination of reflex responses and processing of
sensory signals [2]. The transmitter function of
glycine has been studied mostly in spinal cord, where
glycine mediates reciprocal inhibition in stretch reflex
circuits via interneurons in addition to recurrent
inhibition of motoneurons via Renshaw cells [2].
Decreases in glycine-mediated input therefore result
in pathologies of muscle tone regulation [3]. The roles
of glycine in sensory processing range from
modulation of neuronal circuits in the central
auditory pathway and of receptive fields in the retina

to suppression of nociceptive signals in spinal
structures. These multiple functions of glycine
transmission correlate with the localization of
different types of GlyRs in the respective brain
regions [4,5]. Compounds that selectively potentiate
GlyR responses are therefore potential therapeutics
for spasticity, muscle relaxation and pain relief.

Developmental changes in GlyR function and

subunit composition

In adult neurons, activation of GlyRs by
presynaptically released glycine or extracellularly
applied agonists causes the opening of the
anion-selective channel of the receptor, thereby
allowing influx of Cl− ions into the cytoplasm. The
resulting hyperpolarization of the postsynaptic
membrane stabilizes the resting potential of the cell,
and thus inhibits neuronal firing. During early
development, glycine acts as an excitatory transmitter
because of a more positive Cl− equilibrium potential in
embryonic neurons. Consequently, GlyR activation
results in Cl− efflux, thus causing depolarization of the
neuronal plasma membrane and opening of
voltage-gated Ca2+ channels [6]. The subsequent rise in
intracellular Ca2+ appears to be important for synapse
formation because Ca2+ channel antagonists have been
found to prevent proper localization of GlyRs at
glycinergic nerve terminals [7]. After birth, the 
Cl− equilibrium potential shifts to more negative
‘hyperpolarizing’values, as a result of active Cl−

extrusion by the K+/Cl− cotransporter KCC2 [8]. During
the first two postnatal weeks, a change to more rapid
channel decay kinetics is also observed [9]. This shift in
kinetic properties reflects a change in the subunit
composition of GlyRs (Box 1) [10]. In adult spinal cord,
the GlyR is a hetero-pentameric membrane protein
composed of α1- and β-subunits [11]. By contrast,
embryonic GlyRs appear to be predominantly
homopentamers of the α2-subunit [12].

GlyR agonists and antagonists

In addition to glycine, the endogenous β-amino acids
β-alanine and taurine (Fig. 1) display inhibitory
activity when applied to neurons [13]. The agonistic
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Box 1. Glycine receptor (GlyR) structure and molecular determinants of GlyR activity

TRENDS in Pharmacological Sciences 

L

H

T

138

52

38

152159

161

198

209

276

279

202

204

200

271

267

254

266

250

244

D

GlyR α1 Adult spinal cord and brainstem

GlyR α3 Adult spinal cord and brainstem

GlyR α4
In chick: embryonic spinal cord and
sensory and sympathetic ganglia

GlyR α2 Embryonic and neonatal cortex,
brain stem and spinal cord

GlyR β Throughout the embryonic and adult CNS

(a)

(b)

160

80

109

D

112

107

288

A

ARA S

T K P M S P S D F L D K L M G R T S G Y
D
A

RIRPNFKGPPVNVSCNIF
IN

S

F G S I A E T T M D Y R V N I F L R Q Q
W

N

DP
RLAYNEYPSLDLDPSM

D
S I W K P D L F F A N E K G A F

E
I

TDNKLLRISRNGNVL
Y

S
I R I T L T L A C P M D L K N

F
PMVQTCIMQ

D

H

LES
F
G

Y T
M N D L I F E W Q E Q

G

D

AVQVADGLTL
P

Q F I L K E E
K
D

LRYC

C

TYN

T

H K

G K F T
I
E

A
RFHL

E
R Q

M

K VP
L S

S
A
R

V
Y

K

Q

N
H

V
D
E

R
RVIIDIAS

GS
G Y Y

L I Q S
M Y I P T T Q

AMW I Y K
Y W IV L L

N ML T
C

MS L L F V F F
FILLLASVTTIVI L

S W I L G I E Y A M A F
S F W I V G A V N F G F PI

V
S

R
SR K D I KQH

R

A

N
M
D

K
E K

A
P

A L L R F R R K R R H H K
E

A
R

DEAGEG Q

I
F

L
K

RM

RFNFSAY
G

M G P C L Q A K D G
I

SVKGANNSNTTN
P P P A P S K S P E E

Fig. I. Phylogenetic tree of mammalian glycine receptor (GlyR) subunits and model of their
membrane topology. (a) Evolutionary relationships between GlyR subunits. In addition to the
individual subunits, their major sites of expression in the mammalian CNS are indicated.
(b) Transmembrane topology of the human α1-subunit and location of functionally important
amino acids. Conserved cysteine residues that are thought to form disulfide bridges are indicated
in black. Residue N38 (brown) constitutes the sole N-glycosylation site. Natural GlyR mutants
(yellow residues): mutation A52S is found in the spasmodic mouse; and mutations I244N, P250T,
Q266H, R271Q/L, K276E and Y279C are found in different hyperekplexia families. Binding site
determinants (blue residues): residues G160, K200 and Y202 contribute to strychnine binding,
whereas F159, Y161 and T204 are important determinants of agonist affinity. S267 (green) in the
second transmembrane segment (M2) and A288 (green) in the third transmembrane segment
(M3) are targets for alcohol and volatile anesthetics. Residue D80 (pink) is an important
determinant of Zn2+ potentiation, whereas residues H107, H109 and T112 (pink) are important
determinants of Zn2+ inhibition. Channel function: G254 (red) in M2 of the α1-subunit determines
the main-state conductance and sensitivity to the channel blocker cyanotriphenylborate (CTB);
E290 and E297 in the homologous region of the β-subunit are crucial for resistance to inhibition by
picrotoxinin. Residues of M2 that are thought to line the ion channel, as deduced by molecular
modeling [g] and cysteine accessibility studies of the highly homologous GABAA receptor [h], are
shown in gray.

The glycine receptor (GlyR) is a member of the group I
ligand-gated ion channel superfamily, which includes
nicotinic acetylcholine, 5-HT3, GABAA and GABAC receptors.
In adult vertebrates, GlyRs are pentameric membrane
proteins composed of two types (α and β) of homologous
membrane-spanning subunits [a–c]. The α-subunits contain
major determinants of agonist and antagonist binding and
exist in four different isoforms (α1–α4) encoded by distinct
genes. To date, only a single gene encoding the β-subunit is
known. The different GlyR subunit genes show marked
regional and temporal differences in their expression
patterns (Fig. Ia) [d]. Whereas the gene encoding the
β-subunit is widely expressed throughout the embryonic
and adult CNS, the gene encoding the α1-subunit and, to a
lesser extent, the gene encoding the α3-subunit are mainly
active in spinal cord and brain stem at later postnatal stages.
By contrast, expression of the gene encoding the α2-subunit
is high in the embryonic and perinatal CNS but barely
detectable in the adult brain, although some expression
persists in higher cortical regions. The gene encoding the
α4-subunit has been found to be transcribed in lower
vertebrates, but might be a pseudogene in humans [e].

Upon heterologous expression, all α-subunits generate
functional homomeric receptors whose properties closely
resemble those of native GlyRs [a–c,e]. By contrast, the
β-subunit forms channels only upon co-assembly with
α-subunits at an α:β stoichiometry of 3:2 [a]. A major function
of the β-subunit is synaptic anchoring of the GlyR by binding
to the postsynaptic scaffolding protein gephyrin. In addition,
incorporation of β-subunits alters the pharmacological and
functional properties, such as main channel conductance,
gating kinetics, and sensitivity to channel blockers and
modulatory compounds. Although adult GlyRs are
heteromeric proteins, homo-oligomeric GlyRs appear to be
synthesized during embryonic and early postnatal
development and might serve as extrasynaptic receptors.

Sequence comparisons and site-directed mutagenesis
of different GlyR α-subunits have allowed the identification
of major determinants of agonist and antagonist binding
(Fig. Ib) [a–c]). These are localized in distinct subdomains of
the N-terminal extracellular region. Mutations causing
hereditary neuromotor disorders have been identified in
mouse and humans [a–c,f]. Residues within the second
transmembrane segment have been shown to determine
the rate and duration of Cl− flux through, and channel
blocker binding to, the ion channel of the GlyR [a–c].

References

a Kuhse, J. et al. (1995) The inhibitory glycine receptor: architecture,
synaptic localization and molecular pathology of a postsynaptic ion
channel complex. Curr. Opin. Neurobiol.5, 318–323

b Rajendra, S. et al. (1997) The glycine receptor. Pharmacol.
Ther. 73, 121–146

c Harvey, R.J. and Betz, H. (2000) Structure, diversity,
pharmacology and pathology of glycine receptor chloride
channels. In Handbook of Experimental Pharmacology
(Endo, M. et al., eds), pp. 479–497, Springer

d Malosio, M.L. et al. (1991) Widespread expression of glycine
receptor subunit mRNAs in the adult and developing rat
brain. EMBO J. 10, 2401–2409

e Harvey, R.J. et al. (2000) Glycine receptors containing the α4
subunit in the embryonic sympathetic nervous system, spinal
cord and male genital ridge. Eur. J. Neurosci. 12, 994–1001

f Becker, C-M. (1995) Glycine receptors: molecular heterogeneity
and implications for disease. Neuroscientist 1, 130–141

g Zhorov, B.S. and Bregestovski, P.D. (2000) Chloride channels
of glycine and GABA receptors with blockers: Monte Carlo
minimization and structure-activity relationships.
Biophys. J. 78, 1786–1803

h Xu, M. and Akabas, M.H. (1996) Identification of channel-lining
residues in the M2 membrane-spanning segment of the GABA(A)
receptor alpha(1) subunit. J. Gen. Physiol.107, 195–205



and antagonistic actions of several α- and β-amino
acids have been studied in detail using recombinant
GlyRs generated by heterologous expression of the
α1-subunit in Xenopus oocytes or mammalian 
cells [14]. This revealed that the agonistic activity of
several α-amino acids (e.g. glycine, alanine and
serine) exhibits marked stereoselectivity and is
sensitive to substitutions at the Cα-atom. By
contrast, antagonism as observed with other α-amino
acids [13] is neither influenced by C-atom
substitutions nor chirality. β-Amino acids such as
taurine, β-aminobutyric acid (β-ABA) and
β-aminoisobutyric acid (β-AIBA) (Fig. 1) act as partial
agonists at GlyRs and competitively inhibit glycine
responses at low concentrations, whereas high
concentrations elicit significant membrane 
currents [14,15]. The conformationally constrained
nipecotic acid and related piperidine carboxylic acid
(Fig. 1) mimic β-amino acids in trans-conformation
and behave as competitive GlyR antagonists.
Ivermectin, an antihelmintic macrocyclic lactone, 
is an unconventional GlyR agonist [16].

Strychnine (Fig. 1) is a classical GlyR antagonist
that causes motor disturbances, increased muscle
tone, and hyperactivity of sensory, visual and acoustic
perception, with higher doses resulting in convulsions
and death [17,18]. Further selective GlyR antagonists
have emerged from studies on quinolinic acid
derivatives [19]. Both 4-hydroxy-quinoline and
4-hydroxy-quinoline-3-carboxylic acid inhibit the
responses of micromolar glycine at recombinantly
expressed GlyRs [19]. Substitution of the 
5- and 7-positions of the quinoline ring system by 

chloro (5,7-ClQA; Fig. 1) or trifluoromethyl groups
increases their inhibitory potency.

The GABAA receptor antagonist picrotoxinin
(Fig. 1) inhibits GlyR Cl− channels and has been used
to discriminate homo-oligomeric from heteroligomeric
GlyRs [20]: α1β GlyRs are relatively resistant to
picrotoxinin, whereas α1 GlyRs are blocked at low
micromolar concentrations [21,22]. The bulky 
anion cyanotriphenylborate (CTB) (Fig. 1) is a
use-dependent inhibitor of α1-containing GlyRs and
is more potent at positive membrane potentials,
consistent with open channel blockade [23].

Allosteric modulation of GlyR function by anesthetics,

alcohols, steroids and dihydropyridines

At present, only a few agents are known to potentiate
GlyR-mediated currents and, unfortunately, most
lack receptor specificity. For decades, anesthetics and
alcohols have been known to potentiate not only
GABAA receptor responses but also GlyR responses,
and the potentiating effect of ethanol has been
demonstrated for GlyRs from various sources [24].
The potency of n-alcohols on recombinant GlyR
responses increase with alkyl chain length up to
12 carbon atoms [25]. Anesthetic concentrations of
propofol, an aromatic alcohol (Fig. 1), also potentiate
neuronal glycine-mediated currents [26] and
recombinant α1 GlyR responses [27], albeit to a lesser
extent than GABAA receptor responses [26].
Furthermore, anesthetic concentrations of
trichloroethanol, ethers and volatile halogenated
hydrocarbons, such as halothane, enflurane,
isoflurane, methoxyflurane and sevoflurane, enhance
the effects of low concentrations of glycine [25,28].
The available data are consistent with both alcohols
and anesthetics potentiating glycine-mediated
inhibition at concentrations reached during
intoxication and narcosis, respectively.

Steroids are known to markedly affect inhibitory
neurotransmission mediated by both GABA and
glycine. Whereas progesterone inhibits GlyRs only
partially [29,30], the sulfates of pregnenolone (Fig. 1),
androsterone and dehydroepiandrosterone (DHEA)
cause a complete block [30]. This inhibition is only
seen with negatively charged 3-sulfate and
3-hemisuccinate ester derivatives, whereas
pregnenolone, its 3-acetic ester, and minaxolone, a
dimethylamino derivative of allopregnanolone,
potentiate recombinant GlyR responses [30,31].
Importantly, pregnenolone sulfate and progesterone
display distinct modes of GlyR inhibition: full
competitive versus partial non-competitive
inhibition, respectively [29]. These varying effects on
GlyR function suggest heterogeneous binding sites for
neurosteroids, which, depending on the ligand bound,
might facilitate or inhibit agonist activation.

The bidirectional modulatory effects of
neurosteroids on GlyRs depend on subunit composition:
pregnenolone potentiates only α1 GlyRs, whereas
inhibition by progesterone is seen only at α2 GlyRs [30].
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Glycine β-Alanine Taurine β-ABA

Nipecotic acid Strychnine 5,7-ClQA
Picrotoxinin

CTB

_

Propofol Pregnenolone sulfate Tropisetron

Fig. 1. Chemical structures of selected compounds that act at glycine receptors (GlyRs). The α-amino
acid glycine, the β-amino acids β-alanine and taurine, and β-aminobutyric acid (β-ABA) exert agonistic
activity. Taurine and β-ABA act as partial agonists at GlyRs. The piperidine derivative nipecotic acid
mimicks β-amino acids in trans-conformation and behaves as a competitive GlyR antagonist.
Strychnine and 5,7-dichloro-4-hydroxyquinoline-3-carboxylic acid (5,7-ClQA) are competitive GlyR
antagonists, whereas picrotoxinin and cyanotriphenylborate (CTB) block the Cl− channel of GlyRs.
Propofol, pregnenolone sulfate and tropisetron are modulators of GlyRs. Propofol potentiates neuronal
glycine-mediated currents [26] and recombinant α1 GlyR responses, pregnenolone sulfate exhibits full
competitive inhibition of GlyR responses, and tropisetron, in spinal neurons, potentiates the effects of
low concentrations of glycine but inhibits glycine-mediated currents at higher concentrations.
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Also, the inhibition patterns of different homo- and
hetero-oligomeric GlyRs differ for distinct sulfated
steroids. Notably, the inhibitory potencies of DHEA
sulfate compared with pregnenolone sulfate are lower
at adult α1βGlyRs than at embryonic α2 GlyRs [30].
These findings suggest that neurosteroids might
preferentially modulate perinatal GlyR activity. Indeed,
neurosteroids such as pregnenolone and progesterone
can be present perinatally at concentrations sufficient
to alter GlyR responses. Neurosteroids display different
structure–activity relationships at GlyRs than at
GABAA receptors. Therefore, the development of
high-affinity GlyR-selective derivatives should have
considerable promise for therapy.

L-type Ca2+ channel blockers verapamil and
several dihydropyridines have recently been shown to

block glycine responses in rat spinal neurons [32].
Interestingly, the modest structural changes in
nitrendipine and nicardipine led to potentiation of
GlyR currents elicited by non-saturating glycine
concentrations [32]. Table 1 summarizes data on
several additional compounds that have been
reported to potentiate or inhibit GlyR function.

Tropeines: lead compounds for novel GlyR effectors?

Ionotropic 5-HT3 receptors are antagonized by several
tropeines [33]. Recently, tropeines have been found to
act as allosteric modulators of GlyRs. In spinal
neurons, responses to low concentrations of glycine
are potentiated by submicromolar concentrations of
tropisetron (Fig. 1), bemesetron and LY278584,
whereas inhibition of glycine-mediated currents is
observed at higher micromolar concentrations of
these compounds [34].

In the presence of glycine, several tropeines inhibit
[3H]strychnine binding to GlyRs with high affinity.
These tropeines also increase the displacing potencies
of glycine and have therefore been termed ‘glycine-
positive’agents [35]. By contrast, micromolar
concentrations of ‘glycine-negative’tropeines such as
atropine attenuate the displacement of [3H]strychnine
by glycine [35] and act only as inhibitors of GlyR
function [34,36]. Glycine-positive tropeines with
nanomolar potencies [35] might provide excellent leads
for the development of selective GlyR-potentiating
agents. Interestingly, the potencies of these tropeines
are GlyR-subunit dependent. For example, α1 and α2β
GlyRs, but not α2 GlyRs, are potentiated by tropisetron
[37]. Moreover, the sites of action of the tropeines are
distinct from those of Zn2+, propofol and ethanol, and
thus define novel drug target regions on the GlyR.

Zn2++-mediated modulation of the GlyR

In several regions of the mammalian brain and spinal
cord the divalent cation Zn2+ is highly concentrated 
in the synaptic vesicles of selected neuronal
subpopulations, from which it can be released in an
activity-dependent manner [38]. Different lines of
evidence support the idea that locally released 
Zn2+ modulates postsynaptic responses by binding to
different neurotransmitter receptors [39]. Low
concentrations of Zn2+ (<10 µM) enhance glycine-
mediated currents by increasing the apparent agonist
affinity without changing the maximal inducible
current, whereas higher concentrations of Zn2+

(10 µM – 1 mM) have an opposite inhibitory effect
(Fig. 2a) [40,41]. Both potentiation and inhibition of
GlyR currents by Zn2+ are fully reversible and have also
been observed following application of partial agonists
such as taurine [41,42]. A remarkable difference in the
modulation of glycine- and taurine-gated currents by
Zn2+ is that maximal inducible currents for taurine but
not glycine are increased (Fig. 2b) [43]. Single-channel
analysis of glycine-gated currents suggests that Zn2+

affects both agonist dissociation and the efficacy of
channel opening of the GlyR (Fig. 2c) [43].

Table 1. Agents reported to inhibit and potentiate GlyR function
a

Agent Potency
b

GlyRs

tested
c

Therapeutic

effect

Refs

Inhibition

Indole alkaloids:
��β-spiropyrrolidinoindoles ++d − − [50]
  corymine ++ − Analgetic [49]
Opioids:
  thebaine +++d – Narcotic [50]
  dextromethorphan ++ − Antitussive [68]
ω-Phosphono-α-amino acids ++d − − [50,69]
Colchicine ++ α2 > α1 Antimitotic [70]
Thiocolchicoside ++d − Myorelaxant [71]
Tropeines:
  atropine ++ α2 > α1 Antispastic [36]
  cocaine +d − Anesthetic [72]
Steroids:
  RU5135 +++d − − [50]
  deoxycorticosterone ++ − Mineralo- [29]

  corticoid
  3α/βandrosterone sulfate ++ − − [30]
Isoxazol derivatives:

  isoTHAZ, THIP ++d − − [50]
TAG ++ − − [50]
PTK inhibitors (genistein ++ − − [73]
  and daidzein)
PKC activators (phorbol ester) ++ − − [49]
Benzodiazepines ++d − Sedative, [50]

  anxiolytic
Bicuculline derivatives ++d − Convulsant [50]
Pitrazepine +++d − − [50]
Imipramine ++ − Antidepressant [50]
Furosemide + − Diuretic [74]
Riluzole ++ α1β Anticonvulsant [75]

Potentiation

Alkylbenzene sulfonate ++ α2 > α1 Detergent [76]
Penicillin G ++ − Antibiotic [49]
Chlormethiazole ++ − Anticonvulsant [77]

aAbbreviations: GlyR, glycine receptor; isoTHAZ, 5,6,7,8-tetrahydro-4H-isoxazolo-[3,4-d]azepin-
3-ol; PKC, protein kinase C; PTK, protein tyrosine kinase; TAG, 6–aminomethyl-3-methyl-4H-1,2,4-
benzo-thiadiazine-1,1-dioxide; THIP, 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridin-3-ol.
bIf not otherwise indicated, the potencies were examined in electrophysiological recordings.
cIn cases where recombinant GlyRs were used for evaluation, the respective subunit composition
is indicated.
dPotencies were determined by displacement of [3H]strychnine binding. Receptor affinities
determined in different vertebrate species are summarized in [49,50]. Potency ranking according
to inhibition [M]: +++, <10−6; ++, 10−6–10−4; +, >10−4.



Molecular determinants of GlyR function

Site-directed mutagenesis of recombinant GlyRs and
the analysis of mutations resulting in disease have
identified binding regions and specific amino acid
residues within GlyR subunits that determine both
ligand potency and efficacy (Box 1). Different mutations
in the α1-subunit of the GlyR that all have been shown
to alter GlyR pharmacology are discussed below.

Mutations affecting agonist binding
The aromatic amino acids F159 and Y161 in the
N-terminal extracellular region of the α1-subunit
define the core agonist binding region (Box 1) [44].
Altering the position of the phenolic hydroxyl group in
the double mutant F159Y–Y161F drastically enhances
activation by GABA and serine [44], whereas
substitution of glycine at position 160 by glutamate

reduces strychnine antagonism by >500-fold [45].
Mutations K104A, F108A and T112A in α1 GlyRs
enhance not only the potencies of all agonists but also
allow full channel activation by the partial agonists
taurine and GABA [46]. In addition, residues K200,
Y202 and T204 are crucial for high-affinity binding of
agonists and the competitive antagonist strychnine
[47,48]. These results indicate that the glycine binding
pocket of the α1 GlyR is formed by distinct subdomains
of the N-terminal extracellular region.

Mutations causing hyperekplexia
Human startle disease (hyperekplexia) is a hereditary
neuromotor disorder caused by different mutations in
GlyR structural genes [13,49,50]. To date, several of
these natural mutations have been shown to represent
single amino acid substitutions in the human
α1-subunit of the GlyR. Most of these substitutions are
located at the extracellular end of, or in the loops
flanking, the channel-lining transmembrane segment
M2 (Box 1), and consequently also affect the gating
mechanism. Indeed, partial agonists are no longer
capable of channel activation in these mutated
receptors. Taurine and β-alanine act as antagonists at
α1 I244N, Q266H, R271L/Q, K276E and Y279C mutant
GlyRs, all of which are identified to cause hyperekplexia
[51–55]. Similarly, substitution of alanine at
position 254, located at the intracellular end of M2 of
the α3-subunit, by glycine converts the substituted
butyrolactone α-ethyl-α-methyl-γ-thiobutyrolactone
(αEMBTL) from an antagonist into a low-affinity
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Fig. 2. Allosteric modulation of the inhibitory glycine receptor (GlyR) by Zn2+. (a) Effects of Zn2+ on the
glycine-mediated response of spinal cord neurons. Glycine-induced whole-cell currents of cultured
spinal neurons are potentiated by 10 µM Zn2+, whereas at higher concentrations of Zn2+ (1 mM) the
current is reduced. Glycine was used at a concentration of 20 µM. (b) Dose–response curves of taurine in
the absence (circles) and presence (squares) of 5 µM Zn2+. Zn2+ converts taurine from a partial into a full
GlyR agonist. (c) Single-channel recordings of glycine-mediated currents in the absence and presence
of Zn2+· Outside-out patch recording from HEK293 cells expressing GlyRs in the absence and presence
of 5 µM and 50 µM Zn2+ are shown. 5 µM Zn2+ causes an increase, and 50 µM Zn2+ causes a decrease, in the
apparent probabilities of channel opening [43]. In addition, the frequency and duration of current
bursts are increased by 5 µM Zn2+. Changes in burst durations are indicated (1–3) [43].

Fig. 3. Model of the N-terminal region of the glycine receptor (GlyR)
α1-subunit. Top view of the N-terminal region of the α1 GlyR subunit
modeled after the crystal structure of the pentameric acetylcholine
binding protein of Lymnea stagnalis, as determined at 2.7 Å resolution
by X-ray diffraction studies [64]. Molecular modeling and ligand
docking was performed as described in [78]. Individual subunit
backbones are colored differently. Mutagenesis data predict the glycine
and Zn2+ binding sites to be located in close association at subunit
interfaces. Bound glycine is shown in a space-filling representation,
and bound Zn2+ ions in magenta. Side-chains of residues implicated in
Zn2+ binding are indicated by capped sticks.



potentiating agent [56]. In conclusion, amino acid
exchanges in M2 and adjacent loop regions alter the
balance between agonism and antagonism, suggesting
that agonist binding induces allosteric transitions of
these regions required for channel gating.

Determinants of GlyR modulation
Ser267 within the M2 domain of α1 GlyRs has been
found to play a unique role in the effects of ethanol.
Replacement of this serine by alanine enhances ethanol
potentiation, whereas substitution with bulky amino
acids such as phenylalanine results in ethanol inhibition
[57]. Introduction of isoleucine, an unbranched amino

acid, at this position had no effect on ethanol sensitivity
[58], but alkylation of the cysteine in mutant S267C
caused constitutive activation of α1 GlyRs [59]. These
effects highlight M2 as being crucial for ethanol action.
Moreover, residue A288 in the M3 region of α1 GlyRs
has been reported to be essential for potentiation by
both ethanol and enflurane [60]. Therefore, ethanol
might act via a site formed by transmembrane
segments M2 and M3 of GlyR α-subunits. This site also
seems to be crucial for the action of various
halogenated alcohols, such as trichloroethanol [61].

Heterologous expression experiments have 
shown that the Zn2+ binding sites mediating both
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Box 2.Parameters determining the efficacy of glycine-mediated neurotransmission: considerations for 

drug targeting
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Fig. I. A glycinergic synapse indicating potential non-glycine receptor (GlyR) target sites of drug action. In the terminals of glycine-containing
neurons, glycine is synthesized in mitochondria by serine hydroxymethyltransferase (SHMT), released into the cytosol and concentrated in small clear
synaptic vesicles by the vesicular inhibitory amino acid transporter (VIAAT), which also mediates GABA uptake. Excitation of the terminal causes
Ca2+-triggered glycine (and GABA) release into the synaptic cleft, opens postsynaptic GlyRs and thereby increases Cl− (green) conductance in
response to agonist binding. Transmission is terminated by the reuptake of glycine mediated by Na+- and Cl−-dependent transporters located in the
presynaptic (GlyT2) and glial (GlyT1) plasma membranes. Glycine is then degraded in astroglial mitochondria by the glycine cleavage system (GCS).
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(tubulin). Gephyrin is also associated with synaptic GABAA receptors, presumably via receptor-associated proteins (RAPs). Glycine levels in the
synaptic cleft could be altered by targeting several mechanisms. (1) Release of glycine: agonists of presynaptic GABAB receptors attenuate evoked
glycine-mediated inhibitory postsynaptic currents (IPSCs) [d]; ATP reversibly increases the amplitude of electrically evoked IPSCs via presynaptic
ionotropic P2X receptors [e,f]; activation of presynaptic metabotropic glutamate (mglu) receptors inhibits glycine release by reducing Ca2+ influx (red)
[g]. (2) Modulation of GlyR function: ligands, such as Zn2+ and ethanol, modulate GlyR-mediated responses; there are differential effects on synaptic
versus extrasynaptic GlyRs and thus extrasynaptic receptors might play an important role in the tonic inhibition of neurons and could provide a target
to selectively affect background inhibition [b]; differential effects could be induced on GABAA receptors versus GlyRs at mixed GABAergic and
glycinergic synapses [h]; cotransmission of GABA and glycine results in a complex time-course of IPSCs [h]; compounds that act differentially on
GABAA receptors and GlyRs might reshape inhibitory postsynaptic currents; Ca2+-permeable channels [e.g. voltage-activated Ca2+ channels (VOCC)
and P2X receptors], Ca2+-dependent clustering [i] and Ca2+-induced potentiation of GlyRs [j] are crucial for the maturation and plasticity of glycinergic
synapses. (3) Uptake and degradation of glycine: inhibition of glycine transporters GlyT1 and GlyT2, which are located in presynaptic terminals and
surrounding glial cells, will differentially increase glycine levels in the synaptic cleft [k,l]; primary defects in the GCS within the inner mitochondrial
membrane of astrocytes causes metabolic disorders; inhibitors of the GCS should also increase effective extracellular glycine concentrations.



potentiation and inhibition are localized in the
N-terminal region of the GlyR α-subunits [41–43,62].
Mutational analysis of the α1-subunit indicates that
residues D80 and H107, H109 and T112 are
important determinants of Zn2+ potentiation and
inhibition, respectively (Box 1). Computer-assisted
modeling of the extracellular N-terminal region of the
GlyR α1-subunit predicts that Zn2+ binding to these
residues modifies subunit interactions required for
agonist binding (see below).

The pharmacological properties of GlyRs are also
influenced by incorporation of β-subunits into the
GlyR. As mentioned above, coexpression of the

β-subunit with α2-subunits revealed potentiating
effects of tropisetron in addition to inhibition of α2
GlyRs [37]. Likewise, co-assembly of the β-subunit
with an α3-subunit converts αEMBTL from an
antagonist into a potentiating agent [56].

Molecular model of the GlyR N-terminal

extracellular region

The significant extent of sequence homology between
ligand-gated ion channel family group I members [1]
(Box 1) indicates a common structural organization of
these membrane proteins. Composite ligand binding
sites, conserved throughout the receptor family, are
thought to be located at extracellular subunit
interfaces, and comprise residues assigned by
photoaffinity labeling and site-directed mutagenesis to
distinct subunit loop regions [63]. Recently, the crystal
structure of a soluble acetylcholine binding protein
was determined by X-ray diffraction studies [64].
This protein has high homology to the N-terminal
extracellular domain of the group I receptors. We have
used the structure of this acetylcholine binding
protein to model the extracellular domain of the GlyR
α1-subunit by homology modeling techniques (Fig. 3).
Inspection of this model allows several conclusions.
First, mutational analysis has identified several
residues whose substitution alters agonist and
antagonist binding [44–48,65,66]. Notably, most of
these residues (K104, F159, Y161, K200, Y202 and
T204) are found to be located at or close to the subunit
interfaces. This supports the notion that agonist
binding occurs between subunits (Fig. 3). Second, 
the model explains the importance of distinct residues
for potentiation versus inhibition of GlyRs by 
Zn2+ [41–43,62]. Residue D80 is solvent-exposed and
again located at the subunit interfaces. This
arrangement might explain how Zn2+ binding to this
site exerts a potentiating effect on GlyR function by
affecting subunit interactions. However, Zn2+ binding
to residues H107 and H109, located at the vestibule of
the channel (Fig. 3), might block rotational motion of
neighboring subunits thought to occur upon agonist
binding [67] by forming a H107–Zn2+–H109 ionic
bridge between two subunits. This would impair
channel opening and thereby prevent GlyR activation.
Similar mechanisms might also underlie the effects of
other modulators. Thus, our homology-based model
provides a valid template for rational drug design.

Concluding remarks

Considerable progress has been made in
understanding the structural basis of ligand binding
to postsynaptic GlyRs. Molecular models based on the
three-dimensional structure of the soluble
acetylcholine-binding protein now shed light on the
determinants of agonism, antagonism and allosteric
regulation. The potentiating and inhibitory effects of
Zn2+, alcohol, neurosteroids and tropeines on GlyR
function are well documented. The latter compounds
might serve as suitable leads for the development of
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The efficacy of glycine-mediated inhibition depends crucially on the topology of
individual glycinergic synapses. This puts significant constraints on how
transmission at glycinergic synapses might be modulated. First, during 
synaptic transmission postsynaptic glycine receptors (GlyRs) might be
saturated at some but not all synapses [a], indicating that the amplitude of
glycine-mediated inhibitory postsynaptic currents (IPSCs) might exhibit 
variable sensitivity to modulatory compounds in different neurons. 
Second, extrasynaptic receptors might play an important role in the tonic
inhibition of neurons and therefore represent another potential target for 
drugs that affect glycine-mediated transmission (Fig. I). Notably, tonic 
inhibition is likely to be mediated by GlyRs differing in molecular composition
and response properties from synaptic GlyRs (Box 1). Recently, Flint and
colleagues [b] have found that GlyRs in the developing rodent neocortex are
activated by non-synaptically released taurine, which is stored in immature
cortical neurons. Because fetal taurine deprivation has been linked with cortical
dysgenesis [c], taurine has been proposed to influence cortical development by
activating extrasynaptic α2 GlyRs. In conclusion, their localization might affect
the response properties and functions of GlyRs. Third, the efficacy of
GlyR-mediated neurotransmission will also be influenced by the activity of 
other membrane proteins located either pre- or postsynaptically, or in adjacent
glial cells (Fig. I).
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synapses, thereby altering the response to
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or distal dendritic regions. Second, a large number of
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postsynaptically, or in adjacent glial cells, also affect
the amount of and the response to presynaptic
released glycine (Box 2). Some of these proteins have
recently become additional targets of drug
development. Together, these are exciting prospects
for a broader pharmacology of glycinergic synapses.
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LY278584: 1-methyl-N-(3α-tropanyl)1H-indazole-
3-carboxamide
RU5135: 3α-hydroxy-16-imino-5β-17-
azaandrostan-11-one

Chemical names

The fact that female life expectancy has nearly doubled
in industrialized countries during the past century
means that more and more women are living into old
age. In an attempt to preserve the quality of life for

elderly women, research efforts have focused on
preventing degenerative diseases, such as osteoporosis
and coronary heart disease, that might compromise
their daily functioning. There is increasing recognition
that aspects of cognition also decline with normal
aging in women and that this might impact negatively
on their quality of life. Moreover, the epidemiological
statistic of an ~1.6:1.0 female:male ratio in the
incidence of Alzheimer’s disease (AD) remains, even
when controlling for greater female longevity [1]. The
age-related decline in aspects of cognition observed in
women has led some researchers to investigate
whether changes in the levels of sex hormone in 
aging women might be influential. Here, I review the
most recent evidence on the relationship between
estrogen and cognition. This is preceded by a brief

The steady increase in female life expectancy has attracted attention to the

importance of preventing cognitive aging and Alzheimer’s disease (AD) in

women. Evidence from randomized, controlled trials and from cross-sectional

and longitudinal studies shows that estrogen-replacement therapy

preferentially protects against a decline in verbal memory in healthy

postmenopausal women and decreases the risk of AD. Although results are not

consistent across studies, they indicate that treatment with estrogen during

the postmenopausal years might protect against cognitive aging in women

during the latter part of their life.
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