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Ureteral obstruction as a model of renal interstitial

fibrosis and obstructive nephropathy
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Renal fibrosis is the hallmark of progressive renal disease of
virtually any etiology. The model of unilateral ureteral
obstruction (UUO) in the rodent generates progressive renal
fibrosis. Surgically created UUO can be experimentally
manipulated with respect to timing, severity, and duration,
while reversal of the obstruction permits the study of
recovery. The use of genetically engineered mice has greatly
expanded the utility of the model in studying molecular
mechanisms underlying the renal response to UUO. Ureteral
obstruction results in marked renal hemodynamic and
metabolic changes, followed by tubular injury and cell death
by apoptosis or necrosis, with interstitial macrophage
infiltration. Proliferation of interstitial fibroblasts with
myofibroblast transformation leads to excess deposition

of the extracellular matrix and renal fibrosis. Phenotypic
transition of resident renal tubular cells, endothelial cells,
and pericytes has also been implicated in this process.
Technical aspects of the UUO model are discussed in this
review, including the importance of rodent species or strain,
the age of the animal, surgical procedures, and histological
methods. The UUO model is likely to reveal useful biomarkers
of progression of renal disease, as well as new therapies,
which are desperately needed to allow intervention before
the establishment of irreversible renal injury.
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Renal fibrosis is regarded as the final common pathway for
most forms of progressive renal disease, and involves
glomerular sclerosis and/or interstitial fibrosis. Because most
renal disorders (whether glomerular or interstitial, congenital
or acquired) lead to renal fibrosis, there is great interest in
identifying underlying factors to prevent or reverse the
changes. For over 50 years, surgical renal ablation in a
variety of animal species has been used to model progressive
renal disorders. A seminal paper published in 1981
emphasized the role of glomerular hyperfiltration in the
initiation of lesions in remnant glomeruli in rats.!
Subsequent studies showed that while renal ablation leads
to glomerulosclerosis in rats, there is little apparent
glomerular injury in C57BL/6 mice (the most commonly
used ‘wild-type’ experimental mice).? However, other mouse
strains (129/Sv and Swiss-Webster mice) develop significant
glomerular sclerosis,” underscoring the effect of genetic
background on the renal response to renal ablation. While
the focus of investigation remained centered on the
glomerulus for many years, attention turned also to tubular
and interstitial injury, with models of ischemia/reperfusion,
immune injury, and nephrotoxins.’ Clinical studies have also
demonstrated that progression of renal insufficiency is much
better correlated with renal interstitial fibrosis than with
glomerular pathology.*

In the 1970s, unilateral ureteral obstruction (UUQ) in the
rabbit was shown to result in proliferation of renal interstitial
fibroblasts and their transformation into myofibroblasts.’
Subsequent studies in the rabbit showed increased interstitial
collagens I, III and IV, fibronectin, and heparin sulfate
proteoglycan.® Since then, animal models of UUO have been
expanded and refined to elucidate the pathogenesis of
obstructive nephropathy as well as mechanisms responsible
for progressive renal fibrosis.”® In contrast to adults, in
whom diabetes and hypertension are the major etiologies of
renal failure, congenital urinary tract obstruction is the most
important identifiable cause of renal failure in infants and
children.’

The development of animal models of renal fibrosis
presumes an understanding of the disorder under investiga-
tion. Unfortunately, there is no general agreement regarding a
strict definition of renal fibrosis, which underscores the need
for ongoing investigation of a process central to most
progressive renal disease. A number of terms have been
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applied to the pathological process of renal accumulation of
collagen or extracellular matrix: fibrosis, sclerosis, and
scarring.'® This process appears to represent a maladaptive
response to injury, which optimally should result in healing
of the wound.>"" If the insult is prolonged (as with chronic
UUO), the outcome is irreversible renal injury. If the insult is
removed (by relief of obstruction), or if the fibrotic response
is blocked (by inhibition of gene expression, protein
production, or receptor response), renal injury may be
prevented or reversed.

Variables in the development of models of UUO

As early studies of the renal consequences of UUO were
performed in the rabbit and dog, the preponderance of
current studies are based on the rat and mouse. Since 1950,
there have been over 10,000 publications involving ureteral
obstruction, nearly 1000 of which address fibrosis (Medline).
The advantages of using UUO as a model of renal fibrosis
include the absence of an exogenous toxin, the lack of a
‘uremic’ environment, and the availability of the contralateral
kidney as a control. Using the contralateral kidney as a
control, however, does not take into account its cellular,
metabolic, and functional renal compensatory changes in
response to UUO.'* For this reason, comparison of renal
changes resulting from UUO should be compared with those
in sham-operated animals (unless comparing a therapeutic
intervention on the obstructed kidney). Contralateral
nephrectomy in animals subjected to partial UUO reveals
the effects of reduced renal mass superimposed on the
obstructive injury. Surgical models of UUO have the added
advantage of allowing variation in the severity, timing, and
duration of obstruction, as well as the opportunity to study
recovery following relief of the obstruction.

Complete UUO initiates a rapid sequence of events in the
obstructed kidney, leading within 24 h to reduced renal blood
flow and glomerular filtration rate.® This is followed within
several days by hydronephrosis, interstitial inflammatory
infiltration (macrophages), and tubular cell death attribu-
table to apoptosis and necrosis. Tubular epithelial cell death
is caused by a number of stressors resulting from UUO,
including ischemia, hypoxia, oxidant injury, and axial strain
caused by tubular dilatation. There appears to be a close
association between progressive fibrosis and tubular cell
death." Following complete UUO in the rat or mouse, the
progression to a severely hydronephrotic kidney with marked
loss of renal parenchyma takes place over 1-2 weeks, with
more severe fibrosis in the neonate than the adult (J] Minor,
KA Gordon, MSF, BAT, RLC, unpublished data).

Because most cases of clinical congenital obstructive
nephropathy involve partial, rather than complete obstruc-
tion, models of partial UUO have been developed in the
neonatal rat and mouse.'®"> These models are also useful in
the study of the pathogenesis of renal fibrosis, because the
lesions develop more slowly and may be better suited to the
study of therapeutic manipulations.'®
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Technical considerations

The surgical procedure for creating an animal model of UUO
is relatively straightforward, if performed as a single
operation in an adult rat. Morbidity and mortality will be
reduced by using a temperature-controlled operating table
heated to body temperature, with the animal anesthetized
with isoflurane/oxygen and with the use of a high-quality
binocular microscope to visualize the operating field. This
approach is particularly important in mice (especially in the
neonatal period), or if the obstruction is to be relieved or
reversed by a subsequent operation. If this be the case,
meticulous technique is essential to avoid adhesions and
tissue damage, and establishment of ureteral patency must be
documented at the time of study.'*'> Ligation of the ureter is
the technique used most frequently. However, fistulae can
form around the ligature, allowing urine to bypass the
obstruction (unpublished observations). Adhesions forming
around the ligature can increase the difficulty in removing
the ligature if recovery is to be examined: this is a greater
problem with adult than neonatal animals. Small vascular
clips can be placed around the ureter, but this approach can
injure the ureter, or allow urine to pass if not closed correctly.
A piece of silastic tubing can be folded perpendicularly across
the ureter to create an obstruction, or the tubing can be slit
and fitted around the ureter longitudinally, forming a sleeve
and creating partial obstruction. Partial UUO can also be
created by inserting the ureter in a surgically created slit in
the underlying psoas muscle. However, this technique leads
to variable (often very mild) degrees of partial obstruction.'”
A more reproducible method of creating variable, reversible
partial UUO has been developed in the neonatal mouse.'’
This involves the placement of a fine ligature around the
ureter and a piece of stainless steel wire of known diameter,
which has been placed parallel to the ureter. After ligation,
the wire is slipped out, leaving a partial obstruction with the
desired luminal diameter. This ligature can be removed at
various intervals, allowing the study of recovery of the
lesions.

Glomerular filtrate rate can be measured following relief
of UUO in the rat or mouse, using standard clearance
techniques.'®'? A novel model of UUO has been described in
the adult mouse subjected to contralateral nephrectomy at
the time of ureteral reimplantation following 10 days of
complete UUO.*® While this model allows serial measure-
ment of blood urea nitrogen as a reflection of glomerular
filitrate rate in the postobstructed kidney, the development of
significant proteinuria suggests that secondary glomerular
injury contributes to the lesions. Tubular function can be
measured in rats following the release of UUO or bilateral
ureteral obstruction, and can be correlated with the
expression of renal epithelial sodium channel or aquapor-
ins.2b?2 As described below, the UUO model is well suited to
the discovery of new biomarkers which predate irreversible
injury and functional changes.

The development of reproducible animal models of UUO,
particularly in mice, requires an experienced animal surgeon.
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The use of mutant strains of mice increases the possibility of
greater susceptibility to intraoperative or postoperative
mortality compared with wild-type controls. Operation on
neonatal animals requires that the pups be accepted by the
mother, and nursed successfully. It is important to monitor
the daily weight gain of each animal, to assure that overall
growth is adequate; kidneys should also be weighed at the
time of harvest, to document parenchymal growth.

Renal fibrosis can be quantitated by digital morphometry
of renal collagen distribution using tissue sections stained
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with Mallory trichrome (Figure 1a) or picrosirius red (Figure
1b). Types L, 111, and IV collagen fibrils are identified by these
methods,”” with Type IV constituting the majority of tubular
basement membrane. The aniline blue of Mallory trichrome
may also stain tubular casts, however (Figure la), and
picrosirius red is better discriminated by image analysis
software programs (Figure 1b). Moreover, the correlation
with tissue hydroxyproline content of collagen identified by
picrosirius is superior to collagen stained with trichrome.> It
is important to use an unbiased sampling approach: image
analysis software can be used to measure randomly selected
fields on the tissue section. In addition, total renal collagen
content can be quantitated, although this does not directly
address its distribution among renal compartments.

Because of the importance of the number of glomeruli per
kidney as a determinant of progression of renal disease, an
unbiased rigorous approach has been developed: the disector
technique.”* Comparison of this time-consuming approach
with simply counting all glomeruli in a single mid-polar
planar section of a whole kidney showed excellent correlation
in both rats and mice.”>*® The latter technique is therefore
more practical for most rodent models of UUO.

<

Figure 1|Representative histologic sections of kidneys from
mice subjected to unilateral ureteral obstruction (UUO). (a, b)
Comparison of serial 3-um paraffin sections of adult mouse kidney
after 7 days of UUO, showing histochemical stains for collagen.
(@), Mallory trichrome; (b), picrosirius red). Although there is general
agreement between the aniline blue staining of the trichrome

and the red of the picrosirius stain, the trichrome may also stain
structures such as cast material (arrow); furthermore, the distinct
color of the picrosirius stain, is better recognized by image-analysis
software. Scale bar= 100 um for (a) and (b). (c) Adult mouse kidney
after 7 days of UUO, showing macrophages identified by F4/80
immunostaining, which is restricted to cells in the interstitium.

(d) Adult mouse kidney after 7 days of UUO, showing TUNEL
staining. A degenerating proximal tubule is undergoing both
apoptosis (single arrow) and necrosis (double-headed arrow);

both categories of cell death are detected by this procedure.
Apoptosis is characterized by cell contraction, blebs, and condensed
nuclear material, while necrotic cells are swollen with diffuse TUNEL-
positive staining. (e) a-Smooth muscle actin (-SMA) staining in a
section serial to the field shown in panel (c). Immunostaining is
extensive in interstitial cells, and only in a few instances (arrows) is
there evidence of colocalization of macrophage- and myofibroblast-
specific staining. (f) Six-week-old mouse kidney with partial UUO
applied at birth; section stained for fibroblast-specific protein-1
(FSP-1, also known as S100A4, a protein associated with intermediate
filaments). Although numerous interstitial cells stain positively
(arrows), vascular profiles within glomeruli and in arterioles (asterisk)
are also stained. (g) Three-week-old mouse kidney with partial UUO
applied at birth. Staining with Lotus tetragonolobus-derived lectin
shows proximal tubules. At this stage of obstruction many tubules
are normal, but some are beginning to attenuate at their junction
with the glomerulus (between arrows). (h) Six-week-old mouse
kidney with partial UUO applied at birth. Crowded atubular
glomeruli surround Lotus lectin-staining fragmented remnants of the
original proximal tubules, which have become detached from their
glomeruli. Scale bar =100 um for panels ¢, e, f, g, and h. (i, j)
Neonatal mouse kidneys after 14 days of UUO (i, contralateral kidney;
j, obstructed kidney). Selective staining of the vascular endothelium
with PECAM-1 antibody shows diminished microvessel density in the
obstructed kidney. Scale bar= 100 pm.
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As discussed below, animal models have revealed an
extraordinary complexity in the renal cellular response to
UUO, and there is significant disagreement regarding the
pathogenic implications of fibrosis. On one hand, renal
interstitial matrix accumulation is regarded as a primary
cause of peritubular capillary obliteration, tubular atrophy,
and progressive renal insufficiency.”” The alternate view is
that renal inflammation leads to glomerular and tubular
damage of some nephrons, which in turn leads to injury to
remaining nephrons, with interstitial fibrosis representing a
secondary manifestation of disease."”

Recent studies have revealed major pathways leading to
the development of renal interstitial fibrosis following UUO
(Figure 2): (1) interstitial infiltration by macrophages (Figure
lc), which produce cytokines responsible for tubular
apoptosis and fibroblast proliferation and activation; (2)
tubular cell death by apoptosis and necrosis (Figure 1d),

Alternatively activated

leading to the formation of atubular glomeruli and tubular
atrophy; (3) phenotypic transition of resident renal cells.
Chronic UUO activates the renin-angiotensin system, with
production of reactive oxygen species and nuclear factor-x B,
which promotes macrophage infiltration®® and renal tubular
apoptosis and interstitial fibrosis in rats.*® Classically
activated macrophages can generate tumor necrosis factor-
o, which mediates proapoptotic signaling and renal tubular
cell apoptosis following UUO.”® By contrast, alternatively
activated macrophages generate anti-inflammatory cytokines,
and induce cell survival and proliferation.”®

In addition to the differentiation of infiltrating hemato-
poietic stem cells and proliferation of resident interstitial
fibroblasts, tubular cells can undergo epithelial-mesenchymal
transition,”> by which process epithelial cells acquire
mesenchymal characteristics and invade the interstitium to
contribute to the deposition of extracellular matrix (Figure 2).
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Figure 2 |Renal cellular interactions in the rodent kidney subjected to unilateral ureteral obstruction (UUO). The interstitium is
infiltrated by monocytes, which are ‘classically’ activated to macrophages that release cytokines such as TGF-1 and tumor necrosis factor-o
(TNF-a). In turn, TGFB1 promotes a phenotypic response of tubular epithelial cells either to undergo apoptosis (leading to tubular atrophy)
or to undergo epithelial-mesenchymal transition (EMT), becoming fibroblasts that migrate to the interstitium. Angiotensin Il (ANG II),
produced by the activation of monocytes, stimulates the production of nuclear factor-k B (NF-kB), which leads to the recruitment of more
macrophages, as well as to the production of reactive oxygen species (ROS), which aggravates renal tubular injury. In contrast, alternatively
activated macrophages can enhance tubular cell survival and proliferation. Endothelial cells can undergo endothelial-mesenchymal
transition (EndMT) or apoptosis, which leads to capillary loss and secondary renal ischemia and hypoxia. Resident pericytes and infiltrating
hematopoietic stem cells can also differentiate into fibroblasts. Under the stimulus of cytokines, such as TGF-B1 produced by macrophages
or other cells, fibroblasts synthesize stress fibers and undergo further differentiation to become myofibroblasts. The myofibroblasts are
contractile and augment the deposition of the extracellular matrix (ECM), leading to progressive interstitial fibrosis. This process is augmented
by a decrease in ECM degradation, mediated by plasminogen-activator inhibitor-1 (PAI-1) and tissue-type plasminogen activator (tPA).
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Similarly, endothelial cells can undergo endothelial-mesen-
chymal transition,” or can undergo apoptosis, leading to
capillary loss and consequent renal ischemia and hypoxia.**
In addition to tubular cells and endothelial cells, pericytes
can also differentiate into myoﬁbroblasts,35 which express
a-smooth muscle actin (Figure le), and are major contri-
butors to interstitial extracellular matrix. The importance of
endothelial cells and pericytes as a major source of renal
collagen-producing cells following UUQO has only recently
been recognized, which shifts attention from the tubular
epithelial cell to the renal vasculature as a focus for renal
fibrotic injury.”>** Significant advances in understanding the
process of epithelial-mesenchymal transition followed the
development of an antibody to fibroblast-specific protein-1
(Figure 1f), which permitted the tracking of the lineage of
cells undergoing phenotypic transition.’® However, it should
be recognized that this antibody binds also to a number of
cell types, including endothelial cells (Figure 1f) and
macrophages.” This problem can be addressed with the
application of molecular lineage tracing techniques.’>”> The
use of immunohistochemistry to localize individual cell types
can be combined with digital morphometry to quantitate the
parameters and to make statistical comparisons. In addition,
lectins (or other segment-specific markers) can be used to
identify tubular segments, permitting further refinement of
localization of cell types. Certain lectins, such as derived from
Lotus tetragonolobus (which labels mouse proximal tubules)
(Figure 1g), permit identification of tubular cell remnants
after significant tubular injury and fragmentation resulting
from UUO (Figure 1h)."® However, Lotus lectin can also bind
to intercalated cells of collecting ducts and elastic tissue of
arterioles.’” Thus, as with the tissue identification of collagen,
apoptosis, and fibroblasts, the accurate identification of
tubular segments requires an experienced microscopist to
interpret the localization of the marker in the context of renal
morphology. Peritubular capillaries can be identified by
immunohistochemistry using antibody to platelet endothelial
cell adhesion molecule-1. As shown in Figures 1i and j, UUO
in the neonatal mouse leads to decreased peritubular
capillary density in the renal medulla.

Use of genetically engineered mice subjected to UUO

In the past decade, many important pathways responsible for
renal fibrosis have been elucidated, using mice subjected to
gene deletion or increased expression (either transgenic or
delivery of the gene). These have been reviewed recently,
summarizing the data leading to the elucidation of molecular
pathways.®*° A number of studies point to endogenous
renal angiotensin II as a central mediator of the renal
response to UUO, including inflammation, apoptosis, and
interstitial fibrosis.*® In neonatal mice with 0, 1, 2, or 4
functional copies of the angiotensinogen gene subjected to
UUO, a linear relationship existed between the number of
gene copies and the severity of renal fibrosis.*' This effect is
independent of systemic hemodynamic changes. At the
present time, angiotensin inhibition represents the principal
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clinical therapeutic approach to slowing or preventing the
progression of most forms of renal disorders.

For each of these pathways, factors contributing to
progressive renal fibrosis are balanced by counteracting
factors. Thus, heme oxygenase-1 suppresses monocyte
chemoattractant protein-1,> a stimulator of interstitial
macrophage accumulation; the oncoprotein bcl-2 counters
caspase-induced tubular apoptosis;*’ and bone morphoge-
netic protein-7 opposes epithelial-mesenchymal transition
stimulated by transforming growth factor-B1.**** Similarly,
factors promoting collagen degradation offset those promot-
ing its synthesis and deposition (Figure 2).*> Improved
understanding of these interrelationships should lead to new
methods of limiting or reversing fibrotic injury,' as well as to
the identification of urinary biomarkers that result from renal
injury or response to therapy.”® Several important lessons
have been learned from these studies, underscoring the
complexity of the interactions. While as described above,
angiotensin II plays a central role in the increase of fibrosis
due to UUO, these effects are driven by stimulation of the
renal angiotensin Type 1 receptors: stimulation of Type 2
receptors actually suppresses fibrosis.*® Also of note, while
most macrophages infiltrating the obstructed kidney appear
to be injurious (‘classical activation’), other macrophage
populations may attenuate inflammation (‘alternative activa-
tion’).”"*” Furthermore, factors having a salutary effect on
one renal compartment can also have an injurious effect on
another.*® While the glycoprotein osteopontin stimulates the
accumulation of macrophages in the obstructed kidney and
contributes to renal fibrosis, osteopontin also suppresses
renal tubular apoptosis, which reduces tubular injury.*>*° In
contrast, death-associated protein kinase contributes to
tubular apoptosis in mice with UUO, but attenuates the
progression of fibrotic injury.”’ These findings highlight the
need for caution in the interpretation of experimental results.

In addition to the known counteracting factors described
above, unidentified counteracting factors can confound
interpretation in studies of gene knockout mice that have
been subjected to UUO. An effect of deletion of a gene seen at
an early time point following UUO may disappear later.*®
Thus, suppression of a specific molecule may impair or retard
fibrosis early in the process, but overlapping pathways can
erase the effects over time. As renal fibrosis may not develop
until late in the disease process, these other pathways may
actually be of greater therapeutic importance. For these
reasons, both early and late observation points should be
included in such studies. The selection of time points of
study using models of UUO depends largely on the model
and the question being addressed. Complete UUO leads to
rapid destruction of the renal parenchyma, such that most of
the renal cellular changes have taken place by 2-3 weeks.
Partial UUO has the advantage of better reflecting clinical
obstructive nephropathy, as renal cellular responses progress
over a number of weeks. Relief of either complete or partial
UUO, furthermore, allows the study of recovery at various
intervals. In a report of temporary complete UUO in the
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neonatal rat, renal functional recovery was complete after 1
month, but after 1 year 80% of function was lost, at which
time fibrotic changes also appeared in the contralateral
kidney.”>>> The latter are presumably the result of gradual
deterioration of the postobstructed kidney, and hyperfiltra-
tion by the contralateral kidney.

Effect of species

The use of animal models of human disease should take into
account the possibility of species-specific signaling pathways.
A number of studies have shown a reduction in the renal
production of epidermal growth factor following UUO in
the rat or mouse,”*>® as well as a reduction in urinary epi-
dermal growth factor in human obstructive nephropathy.””>®
Administration of exogenous epidermal growth factor to
neonatal rats with UUO reduces tubular apoptosis and inter-
stitial fibrosis, and has a salutary effect 1 month following
release of obstruction.” This effect is mediated in the rat by
maintaining phosphorylation of BAD, a proapoptotic mole-
cule.®® However, administration of epidermal growth factor
potentiates renal injury due to UUO in the neonatal mouse, a
response mediated by elevated Src activity in mouse tubular
cells, and not detected in rat or human tubular cells.”>®!

Effect of age
As noted above, the study of neonatal models of UUO is
important because obstructive nephropathy is a clinically
important cause of renal failure in infants and children. In
contrast to the consequences of UUO in the adult animal,
obstruction to urine flow in the embryonic kidney can
interfere with morphogenesis of kidneys and urinary tract,
although obstruction later in fetal life or in the neonate can
prevent renal growth and maturation. A number of animal
models of congenital obstructive nephropathy have been
developed, including the chick embryo, fetal rabbit, and
opossum.®* Use of the opossum represents a novel approach
to fetal research, as the postnatal marsupial is essentially an
extrauterine fetus, in which ureteral obstruction can be
accomplished by withdrawing the animal from its mother’s
pouch.®’ Renal maturation in the fetal sheep is more similar
to that of the human, in which nephrogenesis is complete
before birth. A number of studies have been performed in
this model, showing that recovery following relief of
obstruction is directly proportional to the duration of
intrauterine decompression, and inversely proportional to
the duration of obstruction.”* Notably, UUO early in
gestation leads to compensatory growth of the contralateral
kidney in the fetal lamb.®* This indicates that compensatory
growth is not necessarily dependent on functional demand,
as excretory function in the fetus is accomplished by the
placenta. Experimental UUO in the fetal monkey reveals
glomerular as well as tubulointerstitial changes, similar to
those found in human fetal obstruction.®>®°

In contrast to the primate, sheep, and guinea pig, in which
nephrogenesis is complete before birth, only 10% of nephrons
are functional at birth in the rat or mouse, with the remainder
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maturing postnatally.”” The early postnatal period in these
species parallels that of the midtrimester human fetus, and
allows the study of the effects of UUO during the period of
most rapid nephrogenesis. Chronic UUO in the neonatal rat
increases renal interstitial accumulation of collagen types I, III,
and V, with increased type IV in tubular basement membrane.*®
Although surgical models of UUO in the neonatal mouse reveal
the effects of obstruction without intrinsic defects in renal
development, the use of genetically altered strains reveals mole-
cular mechanisms involved in the response of the developing
kidney to surgical obstructive injury.”®

In human studies and animal models, fetal and neonatal
UUO results in reduced nephron number, with the
magnitude of reduction being dependent on the severity
and duration of obstruction.'**> The mechanisms of
nephron loss include glomerulosclerosis, phenotypic transi-
tion of glomerular cells with disappearance of glomeruli, and
glomerulotubular disconnection leading to the formation of
atubular glomeruli.'*'>>> Chronic UUO in the neonatal rat
markedly increases renal renin production, with persistence
of the fetal renal pattern of renin distribution along afferent
arterioles.”> This is reversed by relief of obstruction.>
Similarly, markers of renal tubular and interstitial maturation
retain a fetal pattern in neonatal rats subjected to chronic
UUO.” The use of the neonatal UUO model can shed light
on the obstructive lesion in the adult: neonatal renal pericytes
express NG2 and a-smooth muscle actin (pericyte markers),
which disappear with normal maturation, but persist in
response to neonatal UUO.>

In investigating mechanisms of obstructive injury in the
immature kidney, it is important to recognize the role(s), in
normal renal development, of factors deemed injurious to the
obstructed adult kidney. Thus, while angiotensin inhibition
has been shown to ameliorate renal lesions due to UUO in
adult animals,” the administration of angiotensin-converting
enzyme inhibitors to neonatal rats with UUO can actually
exacerbate the renal lesions and augment renal fibrosis.'®
Similar considerations arise in the examination of other
factors, such as transforming growth factor-B1 or endothelial
nitric oxide synthase.”*”!

In conclusion, the use of animal models of UUO has pro-
vided many new insights into the pathogenesis of obstructive
nephropathy, and of progressive renal fibrosis in general.
The promising biomarkers of disease severity, progression,
and response to therapy have already been revealed by the
model,”® and it is likely that application of emerging tech-
nologies will ensure its usefulness well into the future.
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