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The image of a connected set by an upper-semicontinuous (or a lower-semicon- 
tinuous) multifunction whose values are nonempty and connected is connected. We 
prove this theorem in its most general setting and show its usefulness in various 
examples from optimization and nonlinear analysis. 1 19X5 Acddemlc Prr% Inc 

This paper is an outgrowth of a technical note we wrote for graduate 
students some years ago 1171. It is concerned with the generalization of 
two well-known theorems in general topology, namely: 

(i) the continuous image of a compact space is compact; 

(ii) the continuous image of a connected space is connected. 

The concept of continuity can be generalized to multifunctions in various 
ways; we consider here what is customarily called the upper-semicontinuity 
and the lower-semicontinuity of multifunctions. The generalizations of the 
two aforementioned results are: 

(i’) the image of a compact space by an upper-semicontinuous com- 
pact-valued multifunction is compact; 

(ii’) the image of a connected space by an upper-semicontinuous (or 
a lower-semicontinuous) multifunction whose values are nonempty and 
connected is connected. 

The theorem (i’) is known in the context of multifunctions and used in 
applications. In Section II we state the result in its detailed form along with 
a corollary on the compactness of the graph of an upper-semicontinuous 
multifunction. An example illustrating the usefulness of such a result is 
given from Convex Optimization. 

* Written version of the talk at the international conference “Multifunctions and 
Integrands” (Sicily, 7716 June 1983). 
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The theorem (ii’) seems much less known, although it has been noticed 
incidentally from time to time in the literature on multifunctions. The com- 
plete and correct statement of the theorem is given in Section III 
(Theorem 3.1). Actually, the proof is not difficult to derive and we have 
found it a suitable exercise in general topology. However, more interesting 
than the theorem itself are the applications. Although it appears to be less 
important than its “compact” relative, it turns out that a result on the con- 
nectedness of the image of a set by semicontinuous multifunctions may be 
useful in applications. We have collected in Section IV several examples 
from various areas where such a result is shown “at work”: mean value 
theorems in Nonsmooth Analysis, existence theorems in problems of 
Calculus of Variations, connectedness of the set of nondominated outcomes 
in Multicriteria Optimization, qualitative properties of the reachable set 
through the trajectories of a differential inclusion, and structure of the set 
of solutions of nonlinear equations. 

Section I devoted to preliminaries on multifunctions; in particular we fix 
the notations we use since some of them are of our own. 

I. PRELIMINARIES ON MULTIFUNCTIONS 

Let X and Y be two spaces. If with each element x E X one associates a 
(possibly empty) subset T(x) of Y, one say that the correspondence 
x -+ f(x) is a multifunction (or a set-valued mapping) of X into Y. 
Throughout this paper, such mappings will be denoted by “I? X 2 Y.” The 
setdomT={xEXI T(x)#+~}’ is called the domain of 4 and the set gr I-= 
((x, y)~Xx Y 1 YE f(x)} the graph of r. Given a subset S of X, fs will 
denote the restriction of r to S and T(S) the image of S by r, i.e., 
U YES T(x). 

If r is such that T(x) consists of a single element whenever x E S, i.e., 
T(x)= {Y(X)) f or x E S, we say that r is single-valued on S. 

Given I7 X =: Y, two kinds of inverse multifunctions may be defined: 

(1.1) the n-inverse multifunction Cm ‘: Y 3 X which associates with 
Tc Y the n-inverse image of T 

F-‘(T)= {xcXI r(x)n T#q5}; 

( 1.2) the c-inverse multifunction 4 ’ : Y 3 X which associates with 
T c Y the c -inverse image of T 

4- l(T)= {xEX~ I-(x)c T}. 

Note that F’(T) is included in dom r while So- ‘(T) always contains the 
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complementary set of dom f in X. C-i is actually the true inverse mul- 
tifunction and we set 

r-‘(y)=r’({y)) for all y E Y. 

Of course, when r is single-valued on X, T(x) = {y(x)}, both inverse 
images of T c Y reduce to the usual inverse y ~ i(T). 

Algebraic properties of multifunctions (i.e., those with respect to 
operations on sets) are easy to get; they can be found, for example, in 
Berge’s classic reference [4, Chap. II]. As for the topological properties of 
multifunctions (only the topological viewpoint is considered in this paper), 
we confine ourselves to what we believe are the most familiar properties of 
“continuity” of a multifunction, namely, the upper-semicontinuity and the 
lower-semicontinuity. Their definitions will be recalled below. For an 
historical sketch and further variants of the notion of continuity for mul- 
tifunctions as also various examples of their use in mathematical program- 
ming, we refer the reader to the booklet [24]; this reference together with 
lecture notes like [2] or [25] should be a good starting point for anyone 
desiring to have a good command of multifunctions and their applications 
in Optimization or Nonlinear Analysis. Those who approach mul- 
tifunctions for the first time may wonder why one does not consider f as a 
mere mapping from X into p(Y). People from Analysis are more inclined 
to use this approach, by equipping p(Y) with adequate topologies or 
pseudo-topologies. However, the structures on p(Y) are too poor for the 
properties we intend to derive, as will be conspicuous in the next results. 
Let X and Y be two Hausdorff topological spaces and f: X =: Y. We recall 
that f is said to be upper-semicontinuous at x0 E X if, for every open subset 
0 containing T(x,), there exists a neighbourhood N of x0 such that 6 con- 
tains f(x) for all x E N. r will be said to be upper-semicontinuous on X (or 
simply upper-semicontinuous) if it is upper-semicontinuous at each point of 
X. As for continuous functions, an upper-semicontinuous multifunction can 
be characterized in terms of inverse image as follows: 

( 1.1) l7 X 11: Y is upper-semicontinuous if’ and only lf.ftir each open sub- 
set 0 in Y, 4- ‘(0) is an open subset in X (resp. for each closed subset F in 
Y, C- ‘(F) is a closed subset in A’). 

What is a pity in this definition of upper-semicontinuity is that the 
product Z-i x r,: .x 3 T,(x) x T,(x) of two upper-semicontinuous mul- 
tifunctions r,: X 3 Y, and r,: X =: Y, is not upper-semicontinuous. The 
next example is illustrative of that. 
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EXAMPLE 1. Let f? R 2 R be defined as: 

Ux)= 11/1x11 if x#O, Z(O)= R. 

The multifunction I-,: x 2 {x} x T(x) is not upper-semicontinuous at 0. 

If, however, in addition to the upper-semicontinuity, both multifunctions 
f i and r, are compact-valued, then so is r, x f2 [4, p. 1201. 

The multifunction r, built up from the multifunction r in the example 
above will be considered on several occasions in the sequel, since the image 
of X by r, is precisely the graph of r. A multifunction r such that the 
corresponding r, is upper-semicontinuous (at a given point x0 E X) is 
called graphically upper-semicontinuous (at x,,) by Penot [26, Definition 
1.11. As a general rule, r is upper-semicontinuous at .Q whenever it is 
graphically upper-semicontinuous at .yO. However, in the absence of a com- 
pactness property on T(x,), the latter definition turns out to be a more 
restrictive one (cf. the example above). For more on the relationship 
between the graphical upper-semicontinuity and other continuity concepts 
for multifunctions, we refer the reader to Penot’s paper [26]. 

Another very useful topological property of multifunctions is what 
traditionally is called lower-semicontinuity. I? X 3 Y is said to be lower- 
semicontinuous at .Q E X if, for every open subset k meeting Z(x,), there 
exists a neighbourhood N of x,, such that Lr meets r(.y) for all XE N. The 
counterpart of (1 .l ) for lower-semicontinuous r is as follows: 

(1.2) r: X 2 Y is lower-semicontinuous if and only if’for each open suh- 
set Cc in Y, 6- ‘(6) is an open subset in X (resp.,for each closed subset F in Y, 
4-‘(F) is a closed subset in X). 

Although the lower-semicontinuity and the upper-semicontinuity cannot 
be compared, the practice of both concepts shows that it is “easier” for a 
multifunction to be upper-semicontinuous than lower-semicontinuous. As 
often as not, the definition itself of the multifunction r under consideration, 
combined with other properties like the closedness of the graph, suffices to 
secure that f is upper-semicontinuous. 

Unlike for the previous case, the product of two lower-semicontinuous 
multifunctions is lower-semicontinuous. In particular, the lower-semicon- 
tinuity of I? X 2 Y implies that of r,: X 2 Xx Y. 

II. COMPACTNESS OF THE IMAGE, OF THE GRAPH 

Consider a continuous function y: X+ Y and a subset K of X. The next 
statements are familiar ones in general topology: the image y(K) is compact 
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whenever K is compact; K is compact if and only if the graph of yK is com- 
pact. Extending these results has been of first concern for those authors 
who introduced continuity concepts for multifunctions. These extensions 
are as follows: 

THEOREM 2.1. Let l-1 X 3 Y be upper-semicontinuous. Suppose that T(x) 
is compact for all x in a compact subset KC X. Then 

(2.1) the image r(K) is compact; 

(2.2) the graph of rK is compact. 

It is clear that, as it is when r is single-valued on K, K is compact 
whenever the graph of rK is compact. Note that, under the assumptions of 
the theorem above, the n-inverse of a compact subset T of Y by r, is 
indeed compact but that nothing can be claimed concerning S;‘(T). Also 
note that neither (2.1) nor (2.2) holds if one substitutes the upper-semicon- 
tinuity for the lower-semicontinuity of r. The next example illustrates this 
difference. 

EXAMPLE 2. Let R! 3 R be defined as follows: T(x) is the segment with 
end points - l/x and l/x if x # 0 and r(0) = [ - 1, +l]. r is lower- 
semicontinuous and compact-valued but T(K) is unbounded for any com- 
pact subset K containing the origin. 

The results of Theorem 2.1, especially (2.1), are well known in the con- 
text of multifunctions (see [4, p. 1161, for example); they are also widely 
used in applications, more particularly in nondifferentiable optimization 
where multifunctions arise naturally. Let us illustrate the use of Theorem 
2.1 in convex optimization. Given a convex function f: [WP -+ R and E E R + , 
the a-subdifferential off at x E [WJ’ is defined as the set 8, f(x) of x* satisfy- 
ing 

f(X’)2f(X)+(X*,X’-XX)-& for all x’ E Rp. 

An interesting property of the multifunction i3. f(.): R, x Rp 2 RP which 
assigns 8, f(x) to (E, x) is that it is upper-semicontinuous and compact- 
valued. A lot of minimization methods using the s-subdifferential have been 
developed in recent years (the so-called s-subgradient methods). In all these 
procedures, the definition of the next iterate x, + , from x, requires to know 
one or several elements of d,f(x,). We therefore are usually faced with 
three sequences: (6,) c R + , (x,)c IWJ’, (x,*) such that x,* ~8,~ f(x,) for 
all n. 

A common situation is when (E,) is assumed to be bounded (possibly 
converging to 0) and (x,) is secured to be bounded. Now, what about the 
sequence (xx) ? By a direct application of (2.1), we get that (x,*) is a boun- 
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ded sequence. Moreover, the graph of a. j(.) is closed in R, x Rp x Rp. As a 
result, subsequencing if necessary, we may suppose that (E,, x,, x,*) con- 
verges to some (E,, x,, x*,) and therefore x*, E a,J(x,). This way of 
doing it is classical and represents a key step in proving convergence 
theorems. 

III. CONNECTEDNESS OF THE IMAGE,• F THE GRAPH,• F THE INVERSE IMAGES 

Let y: X -+ Y be a continuous function, and let C be a subset of X. It is a 
well-known fact that C is connected if and only if the graph of yc is connec- 
ted; if so, the image of C under y is also connected. The extension of these 
results to multifunctions can be carried out for both lower- and upper- 
semicontinuities. The reason is that, while compactness of K relies on a 
property of coverings of K by open subsets, connectedness of C can be 
defined by means of coverings of C by two open or two closed subsets. 

THEOREM 3.1. Let T: X z$ Y be lower-semicontinuous (or upper-semicon- 
tinuous). Suppose that Cc X is connected and that Z(x) is nonempty and 
connected for all x E C. Then the image of C under f is connected. 

One may wonder whether, under the assumptions above on r, the graph 
of r, is connected. The answer is positive if I- is lower-semicontinuous, 
since Ts is lower-semicontinuous in such a case (recall that T,(C) is 
precisely gr r,). As for upper-semicontinuous r, we know that the answer 
is negative (cf. Example 1). r should be a graphically upper-semicon- 
tinuous multifunction, and a way of securing it is to suppose that r is com- 
pact-valued (see Section I). We summarize these situations in the following 
statements. 

THEOREM 3.2. Let C c X be a connected subset and let fz X 3 Y be such 
that T(x) is nonempty and connected for all XE C. Either of the next 
assumptions ensure that the graph qf Tc is connected: 

(3.1) r is lower-semicontinuous; 

(3.2) r is upper-semicontinuous and compact-valued. 

A set which is both compact and connected is called a continuum. We 
thus have: 

COROLLARY 3.3. Let l-1 X 3 Y be upper-semicontinuous. Assume that 
Kc X is a continuum and that T(x) is a nonempty continuum for all x E K. 
Then the image of K under r as well as the graph of T’K are continua. 

Before proving Theorem 3.1, some remarks are in order especially in 
regard to the historical outline. To our knowledge, the first mention of a 
result on the connectedness of the image T(C) of a connected set C by a 
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semicontinuous multifunction r goes back to Hahn’s book [ 141.’ Hahn’s 
arguing was, however, in metric spaces and T(x) # 0 was implicitly part of 
his definition of a multifunction. Later on, several authors have noticed this 
result or part of it: Smithson [28, Proposition 2.21, Davy [IO, Theorem 
2.31, Valadier [30, Lemme 51, Penot [25, p. 343, and Naccache [22, 
Lemma 2.11. It has not always been observed that the theorem holds true 
for both semicontinuities and, more important, some authors have 
overlooked the fact that T(x) has to be nonempty for all XE C. The 
necessity of this assumption is conspicuous in simple examples as well as in 
the proof of the theorem. 

Proof of Theorem 3.1. By definition, S is a connected subset of a 
topological space Z if and only if, for ail coverings of S by two open sub- 
sets 0, and 4 in Z (or by two closed subsets in Z) such that Sn 0, # @ 
and SnQ#@, one has Sn0,nL”,#@. 

Suppose first that the multifunction r is lower-semicontinuous. Let 9, 
and Q be two open subsets of Y such that 

(i) T(C) c 0, u &‘2; 

(ii) T(C)nO,#@, T(C)nQ#@. 
(3.3) 

We have to prove that T(C) n 0, n 4 is nonempty. For that purpose, let us 
show first that 

CnF”(0,)n5p’(02)=(25 (3.4) 

leads to a contradiction. 
According to the characterization (1.2) of lower-semicontinuous mul- 

tifunctions in terms of n-inverse of open sets, both C-‘(Q) and F- ‘(4) 
are open in X. Moreover, according to (3.3), we have that 

(i’) Cca-~‘(I?I)ua~‘(O~) (because f(x)#@ whenever XEC!), 

(ii’) CniJm’(O,)#O, CnF-‘(&)#12(. 

These relations plus relation (3.4) contradict the fact that C is connected. 
Let now x be in Cn a-‘(@,) n 6-l(@). By definition, 

T(x) n 9, # 0, T(x) n fi2 # 0. 

According to (i) of (3.3), we have that T(x) c O1 u 4. Since T(x) is sup- 
posed to be connected, we therefore have that T(x) n 4 n 4 is nonempty. 
Whence f(C) n 0, n 4 is nonempty. 

The same arguments are valid for an upper-semicontinuous I- by con- 
sidering a covering of T(C) by two closed subsets and the second charac- 
terization of upper-semicontinuous multifunctions given in (1.1). 1 

’ We are indebted to Professor W. Oettli for pointing out this reference. 
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In the realm of continuous functions, we have the following result: if 
y: X -+ Y is continuous on S and if T is a connected component of y(S), 
then y-‘(T) is a union of connected components of S. It turns out that we 
have the same type of properties for the inverse images by a semi-con- 
tinuous multifunction. 

THEOREM 3.4. Let { Si} iel be a partition of SC X into connected com- 
ponents, and let I7 S 2 Y be nonempty valued on S and such that r(Si) is 
connected for each i. Then, the inverse images of a connected component of 
f(S) are unions of connected components of S. 

Sufficient conditions for r(Si) to be connected are precisely given in 
Theorem 3.1. Even if the connectedness of f(x) for x E Sj is not quite 
necessary, it is easy to see that the announced result does not hold if T(x) 
is allowed to be empty on S. 

Proof of Theorem 3.4. Let ( T,},,, be a partition of T(S) into connected 
components and let us consider the n-inverse image of a component T,. 
For each x in 6- ‘(T,), let Si,rj denote the connected component of x in S; 
we thus have 

Clearly, for each x in KP ‘(T,), r(SicX,) n T, is nonempty. Since, by 
hypothesis, Z(S,,,,) is connected, it must lie entirely in T,. Therefore, 

NOW, because r is nonempty valued on Si(l[J, we also have 

Hence, CP’(T,) is nothing other than lJ Si,XJ and the announced result is 
proved for the n-inverse image of T,. 

As for the c-inverse image of T,, the nonemptiness of r on S is used in 
an earlier stage in the proof. For each x in 4- ‘(T,), f(Sic,,) n Tj contains 
f(x) which is assumed nonempty. Whence r(S+,) n T, is nonempty and 
the rest of the proof follows unchanged. 1 

IV. APPLICATIONS 

We have collected in this section several examples from various areas 
where a result like the connectedness of a connected set by a semicon- 
tinuous multifunction is meaningful. To begin with, we consider what has 
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actually motivated our interest in the matter developed in the present 
study, namely, the search for sharp mean value theorems for nondifferen- 
tiable functions. 

IV.l. Mean Value Theorems for Locally Lipschitz Functions 

Let 0 be an open subset of BY’, and let F be a locally Lipschitz function 
from 0 into R”. The generalized Jacobian matrix in Clarke’s sense [S] of F 
at x0 E 0, denoted by %F(x,), is the set of matrices defined by 

$F(x,) = co{ lim JF(x,)}; (4.1) I’ +m 

in this definition, xi converges to x0, F is differentiable at xi for each i, and 
JF(x,) is the Jacobian matrix of Fat xi. 

When f: 0 + R, we denote by Q”(x,) the subset of R” (instead of (UY)*) 
constructed in (4.1) through the gradients of f; Q-(x,) is then called the 
generalized gradient off at x0. If 0 is convex and f: 0 + [w is convex on 0, 
@(x0) reduces to the subdifferential off at x,,. 

As usual, the space A(n, m) of (n, m)-matrices is equipped with a 
matricial norm. As consequences of the definition itself of fF, we have 
that: 

(i) for all XE 0, fF(x) is a nonempty compact convex subset of 
-44 ml; 

(ii) the multifunction 2pF: 0 =: A(n, m) is upper-semicontinuous. 

Thus, according to Theorems 3.1 and 3.2, for all compact connected sets S 
in 0, UXESfF(x) and {1(x, M) I XES, MEYF(x)} are compact and con- 
nected. 

To prove mean value theorems, we begin by the simplest case, that is, 
the one dealing with real-valued functions. 

THEOREM 4.1. Let f: I -+ R be locally Lipschitz on an open interval I qf 
R. Then 

f(b)-f(a) b-a Eaf(la,bC) (4.2) 

for all different a and b in I. 

This theorem may be proved in several ways, the usual one relying on 
the following optimality condition: if c E ]a, b[ is a maximum or a 
minimum of g on [a, b], then OE ag(c). We simply derive the result (4.2) 
from the connectedness of the image of an interval by the generalized 
gradient. 
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Proof of Theorem 4.1. Let g: Z + R be defined by g(x)=f(x)- 
ti(x-a), where fi stands for the mean value (f(h) -f(a))/(b - a). It is 
clear that “g’(c) < 0 for all c in the subset of full measure of ]a, b[ where g’ 
exists” is equivalent to “ag(c) c R _ for all c E ]a, h[“; in such a case, due to 
the integral representation g(b) - g(u) = jS: g’(t) dt (g is indeed absolutely 
continuous on [a, 6]), g is decreasing on [a, b], hence constant on [a, h]. 
Therefore, if g is not constant on [a, 61 (i.e., if f is not afline on [a, b] ), 
ag(]u, b[) meets [w? and rW: ; consequently, ag( ]a, b[ ), which is known to 
be an interval of R, contains 0. Now, according to the definition of the 
generalized gradient, ag( ]a, b [ ) = af( ]a, b [ ) - Cz; hence the result (4.2) is 
proved. u 

As seen in the proof above, @(]a, b[) is either reduced to one point 
(when f is affine on [a, 6-j) or is an interval with the mean value (f(h)- 
f(u))/(b - a) lying in its interior. This can be viewed as an analogue to the 
Darboux property for differentiable functions. In the same vein, the follow- 
ing Dini-like property on the difference quotients off is easy to derive: 

f(d) -f(c) 
A=U d- 

o<c,dCh 
C 

‘ fd 

is an interval and the closure of d and that of af(]u, h[) are the same. 
Generalizing Theorem 4.1 to the case where a, b lie in 0 c KY’ or a more 

general space X is a matter of applying chain rules for generalized 
gradients. If, for example, f: 0 c 58” + R! is locally Lipschitz on an open set 
0 of R” and if the segment [a, b] lies in 0, we have that 

f‘(b) -f(a) E u (W(c), b-a). (4.3) 
‘ E lu.lJ[ 

Passing to the case whare vector-valued functions are involved is more 
subtle. The key idea consists in “scalarizing” the vector-valued function 
F: 0 c R” --) KY by considering 

F,.: t + (F(u+ t(b-a)), x*) for ail x* E R”, 

and then applying aforementioned results to F,*. For more details and 
references, we refer the reader to [ 161. In particular, the following mean 
value theorem is derived. 

THEOREM 4.2. Let F: 0 c R” --f R” be a locally Lipschitz function on an 
open subset 0 of KY”, and let [a, b] be a segment lying in 0. Then 

F(b) - F(u) E co ( u bF(c)~V-4). (4.4) 
ct ]%/I[ 
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At this stage, something in the results seems to be inaccurate. We know 
that for n = 1, lJ,, 30,bc (af(c), b - a ) is an interval so that the convex hull 
operation is unnecessary in (4.4) (see the formula (4.3)). At the same time, 
expressing F(b)-F(a) by means of Carathtodory’s theorem in (4.4) 
requires us to use n + 1 points of lJc E la,bC fQc) (b - a). Thus, for n = 1, 
two points are necessary a priori and one thereby does not retrieve the 
previous result. Here again the connectedness of UC, ,U,bC yF(c). (b - a) 
will be helpful. 

Caratheodory’s theorem states that any x in the convex hull of SC R” 
can be expressed as a convex combination of n + 1 points of S. In general, 
the number n + 1 cannot be replaced by any smaller number. There is, 
however, a theorem initiated by Fenchel (1929) and pursued by Bunt 
(1934) which says that, in some cases, the convex combinations of n terms 
of S yield all of co S (cf. [ 15)). The exact statement is as follows. 

THEOREM (Fenchel-Bunt). If S has at most n connected components in 
R”, then the convex combinations having n terms of S yield all of co S. 

This result, which is very expressive from the geometrical viewpoint 
(draw some sketches in R2 or R3), does not seem to be well known even 
from specialists of convex analysis; it is mentioned with a proof in [ 11, 
Theorem lS(ii)] or [18, Lemma B.2.21. 

In regard to the mean value theorems, everything becomes coherent now 
and we can state: 

THEOREM 4.3. Let F: Q c R” + R” be a locally Lipschitz function on an 
open subset 8 of R”, and let [a, b] be a segment in 0. There then exist real 
numbers Ak, vectors ck, matrices M,, k = I,..., n, such that 

A,kO, c,E]a, b[, MkE2F(ck) for all k, 

i A,=1 
k=l 

and 

F(b)-F(a)= i &M,(b-a). 
k=l 

IV.2. Existence Theorems in Problems of Calculus of Variations 

Consider the following minimization problem: 
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where f: [0, L] x R -+ R is a Caratheodory mapping satisfying the usual 
growth condition, namely: there exist c2 2 c, > 0, cc and b in L’(0, L), such 
that 

for all 5 E R and almost all x in [0, L]. 
To prove the existence of a solution to the problem (P), Aubert and 

Tahraoui [l] have used the fact that the image of an interval by an upper- 
semicontinuous multifunction f: [w 2 R is an interval. Their device con- 
sisted in introducing the following perturbed problem: 

inf 
UE Lq0.L) ii 

L,f(x,~(x))dx-r JoL u(x)dx) 
0 

*. VT) 

The proof is then divided in to three steps: 

1st step. For all r E IR, define a multifunction P R 3 R by 

VrER T(r) = 
i 

jofA u,(x) dx 1 U, solution of (P?) 
I 

. 

For all r E R, T(r) is a nonempty compact interval which can also be writ- 
ten as [Sk u,(x) dx, j$ U,(x) dx], w h ere u, (resp. U,) stands for the smallest 
(resp. the largest) solution of (Pr). r is moreover an upper-semicontinuous 
multifunction. 

2ndstep. There exist rl and r2 such that Ji U,,(X) dx<O and 
sk U,,(x) dx 3 0. In other words, T(R) meets R ~ and R + . Therefore, r(R), 
which is an interval, contains 0. 

3rdstep. According to what has been shown just above, there exists 
r0 E R such that u,, is solution of (Pro) and jk U,,(X) dx = 0. 

It remains to check that u,,: x -+ s; u,& t) dt is indeed a solution of (9) 
which is an easy matter. 

IV.3. Connectedness of the Set of Nondominated outcomes in Multicriteria 
Optimization 

Let the following be given: 

(i) Xc R”, called the set of feasible decisions; 

(ii) F= ( fl ,..., f,): R” --) R”, called the criterion function; the image 
Y = F(X) is called the set of feasible outcomes; 

(iii) the cone Kc IR” used to order outcomes: y,, y, E Y, y, 
dominates y, if and only if y, - y, E K. 

The set of maximal elements under this relation is called the set of non- 
dominated outcomes and is denoted by b( Y, K). 
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Naccache [22] and Bitran and Magnanti [5] have proved connected- 
ness results pertaining to a( Y, K); these results were partly generalized by 
Nieuwenhuis [23]. In the first two references, especially in the first one, the 
connectedness of b( Y, K) is attained by showing that there is some connec- 
ted set S for which S c &( Y, K) c S. More precisely, S is the image of a 
convex cone (in fact the interior of the dual of K) by the multifunction 

I-: x* 3 r(x*) = { jE Y I (x*, j) = sup(x*, y)}. 
.vt Y 

r is known to be the subdifferential of the support function of Y; it is 
therefore upper-semicontinuous. The connectedness of S then follows. 

IV.4. Structure of the Set of Solutions of Nonlinear Equations 

Consider an ordinary differential equation 

-t(t) =f(t, x(t)) 

x(to) =x0> 

for all t E [a, b], 
(O.D.E.) 

where (to, X~)E [a, b] x K?” and f: [a, b] x iw” + Iw” is a bounded and con- 
tinuous function. Peano’s classical theorem states that there exists a 
solutions to (0.D.E). It is also well known that the set S(x,) of solutions is 
compact and connected in %‘( [a, b], W); in short, S(x,) is a nonempty 
continuum of %?( [a, b], W). This kind of theorem is a prototype for 
answers to questions on the topological properties of solutions of abstract 
nonlinear equations T(x) = y. Peano’s result as a substitute for the uni- 
queness of solutions of O.D.E. gave rise to the appellation Peano 
phenomenon. Its abstract formulation, due to Stampacchia (1949), is as 
follows: a continuous map T: X -+ Y, X and Y being Banach spaces, is said 
to have Peano phenomenon at y E Y if T-‘(y) is a nonempty continuum 
(cf. [31, 321). Given a nonlinear equation T(x) = y, what are the 
topological properties of {x E X, T(x) E C}? Clearly, the answer depends on 
the structure of T- ‘(y) for all y E C and on properties of semicontinuity of 
the multifunction T-‘. Such properties of T-’ are evidently deduced from 
those of T. Recall, for example, that T: X+ Y is said to be open (resp. 
closed) if T(A) is an open (resp. a closed) subset of Y whenever A is an 
open (resp. a closed) subset of X. Translated into properties of T-‘, we 
have: T is closed (resp. open) if and only if T- ’ : Y =: X is upper-semicon- 
tinuous (resp. lower-semicontinuous). Further definitions combine the 
above-mentioned properties of T with the requirement that T-‘(y) is con- 
nected for all y E Y [32]. For instance, a mapping T of X onto Y is called 
quasi-invertible (resp. semi-invertible) if T-‘(y) is connected for each ye T 
and T is open (resp. closed). The following, already observed by Vidossich 
[32, Sect. 23, is now an easy consequence of our Theorem 3.1. 
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PROPOSITION 4.4. Quasi-invertible and semi-invertible maps both have the 

property that inverse images by them of connected sets are connected. 

The set S(x,) of solutions to (O.D.E.) actually enjoys a stronger 
property than connectedness, namely, acyclicity.’ This kind of result, 
initiated by Aronszajn (1942), has been extended to various contexts like 
that of differential inclusions with delays, integral equations [27], 
functional differential inclusions [ 133, etc. Roughly speaking, acyclicity is 
expected when the problem lies on the “boundary of uniqueness,” in the 
sense that it can be approximated by a sequence of problems for which 
conditions for the uniqueness of solution are secured. 

The multifunction x,, z S(x,) which associates to each x,, the set of tra- 
jectories of (O.D.E.) issued from this point as well as the multifunction 
.gT: [w” 3 [w” which assigns to .‘I(, the reachable set at time TE [a, b], i.e., 

.dr(x,,) = {x(T) 1 x E S(X”)} 

are upper-semicontinuous. Several authors have put in perspective this 
property, among others in the context of differential inclusions (see 
[ 10, 19, 30,27,20, 31). To help the reader in this jungle, we go through an 
example. 

Let F: Iw x [w” 3 88” be an upper-semicontinuous multifunction taking 
nonempty compact convex values and let [a, b] be an interval of iw. We 
consider the following differential inclusion: find an absolutely continuous 
mapping x: [a, b] + iw” satisfying 

.i(t)e F(t, x(t)) for almost all t E [a, b], 
(D.I.) 

x(a) = .Yg. 

We assume, for the sake of simplicity, that F( [a, b] x [w”) is bounded. 
Under these conditions, it has been proved (cf. the above-referenced 
papers) that the mult{fimction 

s: KY’ rg W [a, bl, R”) 

which assigns to x0 the set of solutions of (D.I.) issuedfrom x,, as well as the 
multifunction 

x0 =: BT(xo) = {x(T) I x E S(x,) } 

which associates to x0 the reachable set at time T E [a, b] fLom x0 are upper- 

2 Without going into details, let us say that acyclicity is a concept stronger than connected- 
ness but weaker than convexity; it is a substitute for convexity in fixed point theorems. 
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semicontinuous. Both take nonempty compact connected values in their 
respective image spaces. 

We thus have: 

PROPOSITION 4.5. Under the assumptions displayed above, assume that 
the initial point x0 lies in a compact connected set X0. Then the set of 
reachable points at time T by following a trajectory of (D.I.) issued from 
x0 E X0 is a (compact) connected set. 

An interesting application of the connectedness of BT(x,) is a Hukuhara- 
type theorem: let x, be on the boundary bd 9&-(x0) of STT(xO); there then 
exists a solution X of (D.I.) such that X(T) =x1 and i(t) E bd 8,(x0) for all 
t E [a, b]. For more details and developments, we refer the reader to [3, 
Chap. 2-J. 
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