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a large subsemigroup of S . It is well known that if T has a finite
complete rewriting system, then so does S . In this paper, we will
prove the converse, that is, if S has a finite complete rewriting
system, then so does T . Our proof is purely combinatorial and also
constructive.
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1. Introduction

Let S be a semigroup and T be a subsemigroup of finite index in S (that is, the set S \ T is finite).
Then T is called a large subsemigroup of S , and S is called a small extension of T . In [4], Ruškuc asked
if S is a small extension of T , whether S has a finite complete rewriting system if and only if T has
a finite complete rewriting system (see [4, Problem 11.1(iii)] and [6, Remark 4.2]). This problem was
partially solved by Wang in [5, Theorem 1], who proved that if T has a finite complete rewriting
system, then so does S . However it is still not known whether T has a finite complete rewriting
system or not, when S has a finite complete rewriting system. In this paper we shall prove that this
is true, i.e., we shall prove the following:

Theorem 1.1. Suppose S is a small extension of T . If S has a finite complete rewriting system, then so does T .

* Corresponding author.
E-mail addresses: kbwong@um.edu.my (K.B. Wong), wongpc@um.edu.my (P.C. Wong).
0021-8693/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2011.08.022

https://core.ac.uk/display/81960604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jalgebra.2011.08.022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jalgebra
mailto:kbwong@um.edu.my
mailto:wongpc@um.edu.my
http://dx.doi.org/10.1016/j.jalgebra.2011.08.022


K.B. Wong, P.C. Wong / Journal of Algebra 345 (2011) 242–256 243
By Theorem 1.1 and the result of Wang [5, Theorem 1], we have completely answered the problem
posed by Ruškuc (see [4, Problem 11.1(iii)]).

Corollary 1.2. Suppose S is a small extension of T . Then S has a finite complete rewriting system if and only if
T has a finite complete rewriting system.

Let A be a non-empty set. This set A is called the alphabet and the elements of A are called
letters. We shall denote the free semigroup and free monoid on A by A+ and A∗ , respectively. The
elements of A+ and A∗ are called words. Note that A∗ = A+ ∪ {ε}, where ε is the empty word. Given
a word W ∈ A∗ , we shall denote its length by ‖W ‖, defined as the numbers of letters in W .

A rewriting system R over A is a set of rules U → V , which are elements of A+ × A+ . A word
W1 ∈ A+ is said to be rewritten to another word W2 ∈ A+ by a one-step reduction induced by R , if
W1 = Z1 X Z2 and W2 = Z1Y Z2 for some rule X → Y in R . In this situation we write W1 →R W2. The
reflexive transitive closure and the reflexive symmetric transitive closure of →R are denoted by →∗

R
and ↔∗

R , respectively. The relation ↔∗
R is defined to be the congruence on A+ generated by R and it

defines the quotient semigroup S = A+/↔∗
R . S is said to be presented by the semigroup presentation

[A ; R]. If both A and R are finite, we say the semigroup presentation is finitely presented. For
U ∈ A+ , [U ]R shall denote the class of U modulo ↔∗

R .
Let Left(R) = {X ∈ A+: X → Y ∈ R} and Irr(R) = A+ \ A∗ Left(R)A∗ . Obviously, Irr(R) is the set of

all words in A+ that cannot be reduced by any rule in R . A word W ∈ A+ is called an irreducible word
if W ∈ Irr(R).

We say R is Noetherian if there is no infinite reduction sequence,

W1 →R W2 →R W3 →R · · · .

R is said to be confluent if whenever U →∗
R V and U →∗

R W , then there is an X ∈ A+ such that
V →∗

R X and W →∗
R X . If R is both Noetherian and confluent, we say that R is a complete rewriting

system.
The following fact is well known.

Theorem 1.3. Suppose R is a complete rewriting system. Then for each W ∈ A+ , there is a unique W ′ ∈ Irr(R)

such that W →∗
R W ′ .

Theorem 1.3 will be used implicitly in many parts of the paper. Let R be a complete rewriting
system on A+ . Then given any word W ∈ A+ , by Theorem 1.3, there is a U ∈ Irr(R) such that

W →R W1 →R W2 →R · · · →R Wn = U .

The length of the above reduction sequence starting with W and ends with U is n. The disorder
of W , denoted by dR(W ), is the maximum of the lengths of all of the reduction sequences starting
with W and ends with U . Note that dR(W ) is finite. Suppose it is not. Then there is a V 1 ∈ A+ such
that W →R V 1 and dR(V 1) is infinite, for the number of subwords of W that are contained in Left(R)

is finite. Then again there is a V 2 ∈ A+ such that V 1 →R V 2 and dR(V 2) is infinite, and this process
can go on indefinitely. So W →R V 1 →R V 2 →R · · · is an infinite reduction sequence, a contradiction.
Note also that W ∈ Irr(R) if and only if dR(W ) = 0 (see [2] and [3]).

The following useful lemma is obvious.

Lemma 1.4. If U →R V , then dR(U ) > dR(V ). Furthermore if W is a subword of U , then dR(U ) � dR(W ).

A semigroup is said to have a finite complete rewriting system if it has a finitely presented semigroup
presentation for which the rewriting system is complete.
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2. A criterion

Let [A ; R] be a finitely presented semigroup presentation for S for which R is complete. Let T
be a subsemigroup of S . In this section we first prove a criterion for [B ; R T ] to be a semigroup
presentation for T where B is any non-empty set and RT is a complete rewriting system over B . This
will be done in Theorem 2.2. Then by replacing T with S we can get [B ; R S ] to be a semigroup
presentation for S and R S is a complete rewriting system over B . This will be done in Corollary 2.3.

Let A(T ) be a subset of A+ such that

{
W ∈ Irr(R): [W ]R ∈ T

} ⊆ A(T ) ⊆ {
W ∈ A+: [W ]R ∈ T

}
.

Let (B, RT , A(T ),φ,ρ) be a 5-tuple where B is a non-empty set, RT is a rewriting system over B ,
φ : B+ → A+ is a homomorphism with [φ(U ′)]R ∈ T for all U ′ ∈ B+ , and ρ : A(T ) → B+ is a function.
We say the 5-tuple (B, RT , A(T ),φ,ρ) has Property R relative to [A ; R], if it satisfies the following:

(P1) for any U ∈ A(T ) and V 1 ∈ A+ with U →R V 1, there is a U ′ ∈ B+ such that U →R V 1 →∗
R φ(U ′)

and ρ(U ) →RT U ′ ,
(P2) for any U ′, V ′ ∈ B+ with U ′ →∗

RT
V ′ , we have φ(U ′) →∗

R φ(V ′),
(P3) there does not exist an infinite reduction sequence

U ′
1 →RT U ′

2 →RT U ′
3 →RT · · · ,

of words from B+ such that φ(U ′
1) = φ(U ′

2) = φ(U ′
3) = · · · ,

(P4) for each U ′ ∈ B+ there is a U ′′ ∈ B+ such that φ(U ′′) ∈ A(T ) and U ′ →∗
RT

U ′′ ,
(P5) φ(ρ(U )) = U for all U ∈ A(T ),
(P6) U ′ →∗

RT
ρ(φ(U ′)) for all U ′ ∈ B+ with φ(U ′) ∈ A(T ).

Lemma 2.1. Suppose (P1), (P2), (P4), and (P6) hold. Then for any U ∈ A(T ) and V ∈ Irr(R) with U →∗
R V , we

have V ∈ A(T ) and ρ(U ) →∗
RT

ρ(V ).

Proof. By the definition of A(T ), clearly V ∈ A(T ). We shall prove by induction on dR(U ) that
ρ(U ) →∗

RT
ρ(V ).

Suppose dR(U ) = 0 then U = V . Thus ρ(U ) = ρ(V ) and ρ(U ) →∗
RT

ρ(V ). Suppose dR(U ) > 0.
Assume that it is true for all U1 with dR(U1) < dR(U ).

Let U →R V 1 →∗
R V . By (P1), there is a U ′ ∈ B+ such that U →R V 1 →∗

R φ(U ′) and ρ(U ) →RT U ′ .
By (P4), there is a U ′′ ∈ B+ such that φ(U ′′) ∈ A(T ) and U ′ →∗

RT
U ′′ . By (P2), φ(U ′) →∗

R φ(U ′′).
Therefore U →∗

R φ(U ′′) and ρ(U ) →∗
RT

U ′′ . Since V ∈ Irr(R), we have φ(U ′′) →∗
R V . Furthermore

dR(φ(U ′′)) < dR(U ) (by Lemma 1.4). Therefore by induction ρ(φ(U ′′)) →∗
RT

ρ(V ). Now by (P6),
U ′′ →∗

RT
ρ(φ(U ′′)). Hence ρ(U ) →∗

RT
ρ(V ).

The proof of this lemma is complete. �
Theorem 2.2. If (B, RT , A(T ),φ,ρ) has Property R relative to [A ; R], then [B ; RT ] is a semigroup presen-
tation for T and RT is complete.

Proof. We will first prove that [B ; RT ] is a semigroup presentation for T . Let ψ : [B ; RT ] → T be
defined by ψ([U ′]RT ) = [φ(U ′)]R for all U ′ ∈ B+ . Now we show that ψ is well defined. It is sufficient
to prove U ′ →RT V ′ for V ′ ∈ B+ implies that φ(U ′) →∗

R φ(V ′). This fact follows from (P2), so ψ is
well defined.

Now we show that ψ is a homomorphism. Let U ′, V ′ ∈ B+ . Then ψ([U ′V ′]RT ) = [φ(U ′V ′)]R =
[φ(U ′)φ(V ′)]R = [φ(U ′)]R [φ(V ′)]R = ψ([U ′]RT )ψ([V ′]RT ), where the second equality follows from the
fact that φ is a homomorphism.
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Now we show that ψ is surjective. Let [W ]R ∈ T for some W ∈ A+ . Since R is complete, we
may assume W ∈ Irr(R). Note that W ∈ A(T ), so ψ([ρ(W )]RT ) = [φ(ρ(W ))]R = [W ]R , where the last
equality follows from (P5). Hence ψ is surjective.

Now we show that ψ is injective. Let U ′, V ′ ∈ B+ with ψ([U ′]RT ) = ψ([V ′]RT ). Then [φ(U ′)]R =
[φ(V ′)]R . By (P4), there are U ′′, V ′′ ∈ B+ such that φ(U ′′),φ(V ′′) ∈ A(T ), U ′ →∗

RT
U ′′ , V ′ →∗

RT
V ′′ .

By (P2), φ(U ′) →∗
R φ(U ′′) and φ(V ′) →∗

R φ(V ′′). So [φ(U ′′)]R = [φ(V ′′)]R . Since R is complete, there
is a V 1 ∈ Irr(R) such that φ(U ′′) →∗

R V 1 and φ(V ′′) →∗
R V 1. By Lemma 2.1, ρ(φ(U ′′)) →∗

RT
ρ(V 1),

and then by (P6), U ′′ →∗
RT

ρ(V 1). Therefore U ′ →∗
RT

ρ(V 1). Similarly, we have V ′ →∗
RT

ρ(V 1). Hence
[U ′]RT = [ρ(V 1)]RT = [V ′]RT and ψ is injective.

Now we have shown that [B ; RT ] is a semigroup presentation for T , via ψ . We will now proceed
to prove that RT is complete.

Suppose RT is not Noetherian. Then there exists an infinite reduction sequence

U ′
1 →RT U ′

2 →RT U ′
3 →RT · · · ,

of words from B+ . By (P2), φ(U ′
i) →∗

R φ(U ′
i+1) for all i. Since R is Noetherian, there is an integer i0

such that for all i � i0, φ(U ′
i) = φ(U ′

i+1), but this contradicts (P3). Hence RT is Noetherian.
Now we prove that RT is confluent. Suppose U ′ →∗

RT
V ′

1 and U ′ →∗
RT

V ′
2 with U ′, V ′

1, V ′
2 ∈ B+ .

By (P4), we may assume φ(V ′
1),φ(V ′

2) ∈ A(T ). Since R is complete, there is a V 3 ∈ Irr(R) with
φ(V ′

1) →∗
R V 3 and φ(V ′

2) →∗
R V 3. By Lemma 2.1, ρ(φ(V ′

1)) →∗
RT

ρ(V 3), and then by (P6) V ′
1 →∗

RT

ρ(V 3). Similarly V ′
2 →∗

RT
ρ(V 3). Hence RT is confluent and is complete. �

In the case when T = S and there is a 5-tuple (B, R S , A(S),φ,ρ) that has Property R relative to
[A ; R], we have the following corollary:

Corollary 2.3. [B ; R S ] is a semigroup presentation for S and R S is complete.

3. Changing the semigroup presentation for S

Let [A ; R] be a finitely presented semigroup presentation for S for which R is complete. Let
W0 ∈ A+ be such that ‖W0‖ > 1 and W0 ∈ Irr(R). Now let s be a letter that does not appear in A
and set B = A ∪ {s}. We wish to find a complete rewriting system R S such that [B ; R S ] is a finitely
presented semigroup presentation for S and W0 →∗

R S
s.

By Corollary 2.3, we need to find a 5-tuple (B, R S , A(S),φ,ρ) that has Property R relative to
[A ; R]. Note that B has been defined and is finite.

Let A(S) = A+ . Let φ1 : B → A+ be defined by φ1(a) = a for all a ∈ A and φ1(s) = W0. Clearly
φ1 can be extended to a homomorphism φ : B+ → A+ by defining φ(U ′) = φ1(b1) . . . φ1(bl) for all
U ′ = b1 . . .bl ∈ B+ . For convenience, we may define φ(εB) = εA where εB and εA are empty words in
B∗ and A∗ , respectively.

Recall that we have set A(S) = A+ . We define ρ : A(S) → B+ as follows:
Let W ∈ A(S).

(a) If W ends with the subword W0, say W = X1W0 for some X1 ∈ A∗ (we use A∗ instead of A+
because we allow X1 to be the empty word), then ρ(W ) = ρ(X1)s (in the event X1 = εA , set
ρ(W ) = s).

(b) Suppose W does not end with the subword W0. Let W = X2a for some X2 ∈ A∗ and a ∈ A. Set
ρ(W ) = ρ(X2)a (in the event X2 = εA , set ρ(W ) = a).

As for the homomorphism φ, we may define ρ(εA) = εB .

Lemma 3.1. Let X1, X2, X3 ∈ A(S). If ρ(X1 X2 X3) = ρ(X1 X2)ρ(X3), then ρ(X2 X3) = ρ(X2)ρ(X3).
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Proof. We prove by induction on ‖X3‖. Clearly it holds if ‖X3‖ = 0, i.e., X3 is the empty word.
Suppose ‖X3‖ > 0. Assume that it holds for all X4 with ‖X4‖ < ‖X3‖.

Case 1. Suppose X3 ends with the subword W0, say X3 = X4W0 for some X4 ∈ A∗ . Then ρ(X1 X2 X3) =
ρ(X1 X2 X4)s, ρ(X2 X3) = ρ(X2 X4)s and ρ(X3) = ρ(X4)s. Since ρ(X1 X2 X3) = ρ(X1 X2)ρ(X3), we
have ρ(X1 X2 X4) = ρ(X1 X2)ρ(X4). By induction, ρ(X2 X4) = ρ(X2)ρ(X4). Therefore ρ(X2 X3) =
ρ(X2 X4)s = ρ(X2)ρ(X4)s = ρ(X2)ρ(X3).

Case 2. Suppose X3 does not end with the subword W0. Let X3 = X4a for some a ∈ A and X4 ∈ A∗ .
Then ρ(X3) = ρ(X4)a. Now ρ(X1 X2 X3) = ρ(X1 X2)ρ(X3) = ρ(X1 X2)ρ(X4)a. So ρ(X1 X2 X3) is a word
in B+ that ends with the letter a.

We claim that X1 X2 X3 does not end with the subword W0. Suppose the contrary. Then X1 X2 X3 =
Z1W0 for some Z1 ∈ A∗ and ρ(X1 X2 X3) = ρ(Z1)s. So ρ(X1 X2 X3) is a word in B+ that ends with
the letter s. But this contradicts the last sentence of the previous paragraph. Thus our claim has
been established. Therefore X1 X2 X3 = X1 X2 X4a and ρ(X1 X2 X3) = ρ(X1 X2 X4)a. This implies that
ρ(X1 X2 X4) = ρ(X1 X2)ρ(X4), and by induction ρ(X2 X4) = ρ(X2)ρ(X4).

Note also that X2 X3 does not end with the subword W0, for otherwise X1 X2 X3 would end with
the subword W0. Therefore X2 X3 = X2 X4a and ρ(X2 X3) = ρ(X2 X4)a. Since ρ(X2 X4) = ρ(X2)ρ(X4)

and ρ(X3) = ρ(X4)a, we conclude that ρ(X2 X3) = ρ(X2)ρ(X3). �
Lemma 3.2. Let X1, X2 ∈ A(S). Then either

(a) ρ(X1 X2) = ρ(X1)ρ(X2), or
(b) ρ(X1 X2) = ρ(Z1)sρ(Z4) where X1 = Z1 Z2 , X2 = Z3 Z4 and Z2 Z3 = W0 (Z1, Z4 ∈ A∗ and Z2, Z3 ∈

A+).

Proof. We prove by induction on ‖X2‖. Clearly it holds if ‖X2‖ = 0, i.e., X2 is the empty word.
Suppose ‖X2‖ > 0. Assume that it holds for all X3 with ‖X3‖ < ‖X2‖.

Case 1. Suppose X2 ends with the subword W0, say X2 = X3W0 for some X3 ∈ A∗ . Then ρ(X1 X2) =
ρ(X1 X3)s. If X3 is the empty word, then ρ(X1 X2) = ρ(X1)s = ρ(X1)ρ(X2), we are done. If X3 is
not the empty word, then ρ(X1 X2) = ρ(X1 X3)s, and by induction (‖X3‖ < ‖X2‖), either ρ(X1 X3) =
ρ(X1)ρ(X3) or ρ(X1 X3) = ρ(Z1)sρ(Z4), where X1 = Z1 Z2, X3 = Z3 Z4 and Z2 Z3 = W0 (Z1, Z4 ∈
A∗ and Z2, Z3 ∈ A+). Suppose the former holds. Then ρ(X2) = ρ(X3W0) = ρ(X3)s and ρ(X1 X2) =
ρ(X1 X3)s = ρ(X1)ρ(X3)s = ρ(X1)ρ(X2).

Suppose the latter holds. Then X2 = Z3 Z4W0 = Z3 Z5 (Z5 = Z4W0) and ρ(X1 X2) = ρ(X1 X3)s =
ρ(Z1)sρ(Z4)s = ρ(Z1)sρ(Z4W0) = ρ(Z1)sρ(Z5). Thus the lemma holds.

Case 2. Suppose X2 does not end with the subword W0 but X1 X2 ends with the subword W0, say
X1 X2 = X3W0 for some X3 ∈ A∗ . Then ‖W0‖ > ‖X2‖ and X1 = X3 X4 where X4 X2 = W0 (X4 ∈ A+).
Note that ρ(X1 X2) = ρ(X3)s and the lemma holds.

Case 3. Suppose X1 X2 does not end with the subword W0. Let X2 = X3a where a ∈ A and X3 ∈ A∗ .
Then ρ(X1 X2) = ρ(X1 X3)a. Since ‖X3‖ < ‖X2‖, by induction and using an argument similar to Case 1,
we conclude that the lemma holds. �
Lemma 3.3. φ(ρ(U )) = U for all U ∈ A(S). (Property (P5).)

Proof. Let U ∈ A(S). We shall prove by induction on ‖U‖ that φ(ρ(U )) = U . If ‖U‖ = 1, then U = a
for some a ∈ A and clearly φ(ρ(U )) = a = U . Suppose ‖U‖ > 1. Assume the lemma holds for all
U1 ∈ A(S) with ‖U1‖ < ‖U‖.
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Suppose U ends with the subword W0, say U = X1W0 for some X1 ∈ A∗ . Then ρ(U ) = ρ(X1)s and
φ(ρ(U )) = φ(ρ(X1))φ(s) = φ(ρ(X1))W0 = X1W0 = U , where the first equality follows from the fact
that φ is a homomorphism, and the second last equality follows from induction (clearly ‖X1‖ < ‖U‖).

Suppose U does not end with the subword W0. Let U = X2a for some X2 ∈ A∗ and a ∈ A. Now
ρ(U ) = ρ(X2)a and similarly by induction φ(ρ(U )) = φ(ρ(X2))φ(a) = φ(ρ(X2))a = X2a = U . Hence
the lemma holds. �

Now we define the rules in R S . Recall that W0 ∈ Irr(R) and ‖W0‖ > 1.

(C 1) for each X → Y ∈ R put ρ(X) → ρ(Y ) in R S ;
(C 2) put W0 → s in R S ;
(C 3) if there is a rule X1 X2 → Y1 ∈ R such that W0 = Z1 X1 (X1, Y1 ∈ A+ and X2, Z1 ∈ A∗), put

ρ(Z1 X1 X2) → ρ(Y ′) in R S where Z1 X1 X2 →∗
R Y ′ and Y ′ ∈ Irr(R);

(C 4) if there is a rule X2 X1 → Y1 ∈ R such that W0 = X1 Z1 (X1, Y1 ∈ A+ and X2, Z1 ∈ A∗), put
ρ(X2 X1 Z1) → ρ(Y ′) in R S where X2 X1 Z1 →∗

R Y ′ and Y ′ ∈ Irr(R);
(C 5) if there is a rule X2 X3 X4 → Y1 ∈ R such that W0 = X4 X5 = X1 X2 (X2, X4, Y1 ∈ A+ and

X3, X5, X1 ∈ A∗), put ρ(X1(X2 X3 X4)X5) → ρ(Y ′) in R S where X1(X2 X3 X4)X5 →∗
R Y ′ and Y ′ ∈

Irr(R);
(C 6) if there are X1, X2, X3 ∈ A+ such that W0 = X1 X2 = X2 X3, put sX3 → X1s in R S (in the event

of this we must have ‖X1‖ = ‖X3‖).

Note that the number of rules of the form C 1 and C 2 that we put in R S is finite. The number of rules
of the form C 3 that we put in R S is also finite because R is finite and W0 is a fixed word. Similarly
for the number of rules of the form C 4 up to C 6. Therefore R S is a finite rewriting system.

Remark. Note that one can subsume the rules (C 1), (C 3), and (C 4) all within (C 5) by just allowing
X1 X2 and X4 X5 be empty, as well as equal to W0.

Since A(S) = A+ , the condition φ(U ′) ∈ A(S) for U ′ ∈ B+ is vacuously always true. So Property (P6)
takes the following form.

Lemma 3.4. U ′ →∗
R S

ρ(φ(U ′)) for all U ′ ∈ B+ . (Property (P6).)

Proof. Let U ′ ∈ B+ . We shall prove by induction on ‖U ′‖ that U ′ →∗
R S

ρ(φ(U ′)). Suppose ‖U ′‖ = 1.
Then U ′ = a for some a ∈ A or U ′ = s (recall that B = A ∪{s}). In either cases, we have ρ(φ(U ′)) = U ′ .
So U ′ →∗

R S
ρ(φ(U ′)).

Suppose ‖U ′‖ > 1. Assume the lemma holds for all U ′
1 ∈ B+ with ‖U ′

1‖ < ‖U ′‖.

Case 1. Suppose U ′ ∈ A+ . Then φ(U ′) = U ′ . If U ′ ends with the subword W0, say U ′ = X1W0 for
some X1 ∈ A∗ , then ρ(U ′) = ρ(X1)s = ρ(φ(X1))s. Since W0 → s ∈ R S (the rule of the form (C 2)), we
see that U ′ →R S X1s. Clearly ‖X1‖ < ‖U ′‖. So by induction, X1 →∗

R S
ρ(φ(X1)). Thus U ′ = X1W0 →R S

X1s →∗
R S

ρ(φ(X1))s = ρ(φ(U ′)).
If U ′ does not end with the subword W0, then U ′ = X2a for some X2 ∈ A+ and a ∈ A. Note that

ρ(U ′) = ρ(X2)a = ρ(φ(X2))a. By induction, X2 →∗
R S

ρ(φ(X2)). Thus U ′ →∗
R S

ρ(φ(U ′)).

Case 2. Suppose U ′ = U ′
1sU ′

2 for some U ′
2 ∈ A+ and U ′

1 ∈ B∗ . Note that φ(U ′) = φ(U ′
1)W0U ′

2. If U ′
2

ends with the subword W0, say U ′
2 = X1W0 for some X1 ∈ A∗ , then ρ(φ(U ′)) = ρ(φ(U ′

1)W0 X1W0) =
ρ(φ(U ′

1)W0 X1)s = ρ(φ(U ′
1sX1))s. By induction, U ′

1sX1 →∗
R S

ρ(φ(U ′
1sX1)). Also U ′ →R S U ′

1sX1s by
the rule W0 → s ∈ R S (rule (C 2)). Thus U ′ →∗

R S
ρ(φ(U ′)).

Suppose U ′
2 does not end with the subword W0, but W0U ′

2 ends with the subword W0, say
W0U ′

2 = X2W0 for some X2 ∈ A+ . Then there is an X3 ∈ A+ such that W0 = X2 X3 = X3U ′
2. So

sU ′
2 → X2s ∈ R S (a rule of the form (C 6)) and U ′ →R S U ′

1 X2s. On the other hand, ρ(φ(U ′)) =
ρ(φ(U ′

1)X2W0) = ρ(φ(U ′
1)X2)s = ρ(φ(U ′

1 X2))s, and also ‖U ′
1 X2‖ = ‖U ′

1‖ + ‖X2‖ = ‖U ′
1‖ + ‖U ′

2‖ <
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‖U ′‖. Therefore by induction, U ′
1 X2 →∗

R S
ρ(φ(U ′

1 X2)). Thus U ′ →R S U ′
1 X2s →∗

R S
ρ(φ(U ′

1 X2))s =
ρ(φ(U ′)).

Suppose W0U ′
2 does not end with the subword W0. Let U ′

2 = U ′
3a for some a ∈ A and U ′

3 ∈ A∗ .
Note that ρ(φ(U ′)) = ρ(φ(U ′

1)W0U ′
3a) = ρ(φ(U ′

1)W0U ′
3)a = ρ(φ(U ′

1sU ′
3))a. By induction U ′

1sU ′
3 →∗

R S

ρ(φ(U ′
1sU ′

3)). Thus U ′ →∗
R S

ρ(φ(U ′)).

Case 3. Suppose U ′ = U ′
1s for some U ′

1 ∈ B+ . Note that φ(U ′) = φ(U ′
1)W0 and ρ(φ(U ′)) = ρ(φ(U ′

1))s.
By induction, U ′

1 →∗
R S

ρ(φ(U ′
1)), and thus U ′ →∗

R S
ρ(φ(U ′)).

The proof of this lemma is complete. �
Since A(S) = A+ , we have φ(U ′) ∈ A(S) for all U ′ ∈ B+ . Therefore the following lemma holds by

choosing U ′′ = U ′ .

Lemma 3.5. For each U ′ ∈ B+ there is a U ′′ ∈ B+ such that φ(U ′′) ∈ A(S) and U ′ →∗
R S

U ′′ . (Property (P4).)

Lemma 3.6. Suppose U ′ →R S V ′ by one of the rules of the form (C 1), (C 3), (C 4) or (C 5). Then φ(U ′) 
= φ(V ′).

Proof. Note that all the rules (C 1), (C 3), (C 4) or (C 5) have the form ρ(X) → ρ(Y ) where X 
= Y and
X →∗

R Y .
Let U ′ = Z ′

1ρ(X)Z ′
2 with Z ′

1, Z ′
2 ∈ B∗ . Then V ′ = Z ′

1ρ(Y )Z ′
2. Note that φ(U ′) = φ(Z ′

1)Xφ(Z ′
2) and

φ(V ′) = φ(Z ′
1)Y φ(Z ′

2) (by Lemma 3.3 and the fact that φ is a homomorphism). If φ(U ′) = φ(V ′), then
X = Y and

X →R Y →R X →R Y →R · · · ,
would be an infinite reduction sequence, contrary to the fact that R is complete. Hence φ(U ′) 
=
φ(V ′). �
Lemma 3.7. There does not exist an infinite reduction sequence

U ′
1 →R S U ′

2 →R S U ′
3 →R S · · · ,

of words from B+ such that φ(U ′
1) = φ(U ′

2) = φ(U ′
3) = · · · . (Property (P3).)

Proof. Suppose that such a sequence exists. Since φ(U ′
i) = φ(U ′

i+1), by Lemma 3.6, we conclude that
U ′

i →R S U ′
i+1 by one of the rules of the form (C 2) or (C 6). Note that if a rule of the form (C 2) is

applied to U ′
i →R S U ′

i+1, then ‖U ′
i+1‖ < ‖U ′

i‖. If a rule of the form (C 6) is applied to U ′
i →R S U ′

i+1,
then ‖U ′

i+1‖ = ‖U ′
i‖ and one of the letter s in U ′

i+1 will be further to the right than it is in U ′
i . Thus

‖U ′
i‖ � ‖U ′

i+1‖ for all i.
There is an integer i0 such that for all i � i0, ‖U ′

i‖ = ‖U ′
i+1‖. So the only rule that can be applied

on U ′
i →R S U ′

i+1 is a rule of the form (C 6). Since one of the letter s in U ′
i+1 will be further to the

right than it is in U ′
i , this process cannot go on indefinitely. We have obtained a contradiction. Hence

the lemma holds. �
Lemma 3.8. For any U ′, V ′ ∈ B+ with U ′ →∗

R S
V ′ , we have φ(U ′) →∗

R φ(V ′). (Property (P2).)

Proof. It is sufficient to show U ′ →R S V ′ with U ′, V ′ ∈ B+ implies that φ(U ′) →∗
R φ(V ′).

Suppose U ′ →R S V ′ by a rule of the form (C 1), say ρ(X) → ρ(Y ) ∈ R S where X → Y ∈ R . Let
U ′ = Z ′

1ρ(X)Z ′
2 with Z ′

1, Z ′
2 ∈ B∗ . Then V ′ = Z ′

1ρ(Y )Z ′
2. By Lemma 3.3, φ(U ′) = φ(Z ′

1)Xφ(Z ′
2) and

φ(V ′) = φ(Z ′
1)Y φ(Z ′

2). Clearly φ(U ′) →R φ(V ′) by the rule X → Y .
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Suppose U ′ →R S V ′ by a rule of the form (C 2). Let U ′ = Z ′
1W0 Z ′

2 with Z ′
1, Z ′

2 ∈ B∗ . Then V ′ =
Z ′

1sZ ′
2. By Lemma 3.3, φ(U ′) = φ(Z ′

1)W0φ(Z ′
2) = φ(V ′). Clearly φ(U ′) →∗

R φ(V ′).
Suppose U ′ →R S V ′ by a rule of the form (C 3), say ρ(Z1 X1 X2) → ρ(Y ′), where X1 X2 → Y1 ∈ R ,

W0 = Z1 X1 and Z1 X1 X2 →∗
R Y ′ (X1, Y1 ∈ A+ , X2, Z1 ∈ A∗ and Y ′ ∈ Irr(R)). Let U ′ = Z ′

3ρ(Z1 X1 X2)Z ′
4

with Z ′
3, Z ′

4 ∈ B∗ . Then V ′ = Z ′
3ρ(Y ′)Z ′

4. By Lemma 3.3, φ(U ′) = φ(Z ′
3)Z1 X1 X2φ(Z ′

4) and φ(V ′) =
φ(Z ′

3)Y ′φ(Z ′
4). So φ(U ′) →∗

R φ(V ′), for Z1 X1 X2 →∗
R Y ′ .

Similarly we can show that if U ′ →R S V ′ by a rule of the form (C 4), (C 5) or (C 6), then φ(U ′) →∗
R

φ(V ′). The proof of this lemma is complete. �
Lemma 3.9. For any U ∈ A(S) and V 1 ∈ A+ with U →R V 1 , there is a U ′ ∈ B+ such that U →R V 1 →∗

R
φ(U ′) and ρ(U ) →R S U ′ . (Property (P1).)

Proof. Let U →R V 1 by a rule X2 → Y2 ∈ R . Let U = X1 X2 X3 where X1, X3 ∈ A∗ . Then V 1 = X1Y2 X3.

Case 1. Suppose ρ(X1 X2 X3) = ρ(X1 X2)ρ(X3).

SubCase 1.1. Suppose ρ(X1 X2) = ρ(X1)ρ(X2). Then ρ(U ) = ρ(X1)ρ(X2)ρ(X3) and also ρ(U ) →R S

ρ(X1)ρ(Y2)ρ(X3) by the rule ρ(X2) → ρ(Y2) ∈ R S (a rule of the form (C 1)). Let U ′ = ρ(X1)×
ρ(Y2)ρ(X3). By Lemma 3.3, φ(U ′) = X1Y2 X3 = V 1 and thus the lemma holds.

SubCase 1.2. Suppose ρ(X1 X2) 
= ρ(X1)ρ(X2). By Lemma 3.2, there are Z1, Z4 ∈ A∗ and Z2, Z3 ∈ A+
with X1 = Z1 Z2, X2 = Z3 Z4 and Z2 Z3 = W0 such that ρ(X1 X2) = ρ(Z1)sρ(Z4). Note that
ρ(Z2 Z3 Z4) → ρ(Y ′) ∈ R S where Z2 Z3 Z4 →∗

R Y ′ and Y ′ ∈ Irr(R) (a rule of the form (C 3)). Further-
more ρ(Z1 Z2 Z3 Z4) = ρ(X1 X2) = ρ(Z1)sρ(Z4) = ρ(Z1 Z2 Z3)ρ(Z4). So by Lemma 3.1, ρ(Z2 Z3 Z4) =
ρ(Z2 Z3)ρ(Z4) = sρ(Z4). Therefore ρ(X1 X2) = ρ(Z1)sρ(Z4) →R S ρ(Z1)ρ(Y ′) and

ρ(U ) = ρ(X1 X2)ρ(X3) →R S ρ(Z1)ρ
(
Y ′)ρ(X3).

Let U ′ = ρ(Z1)ρ(Y ′)ρ(X3). Then by Lemma 3.3, φ(U ′) = Z1Y ′ X3. Note that Z2 Z3 Z4 →R Z2Y2 →∗
R

Y ′ (for Y ′ ∈ Irr(R)). Therefore

U = (Z1 Z2)(Z3 Z4)X3 →R V 1 = (Z1 Z2)Y2 X3 →∗
R φ

(
U ′),

and thus the lemma holds.

Case 2. Suppose ρ(X1 X2 X3) 
= ρ(X1 X2)ρ(X3). By Lemma 3.2, there are Z1, Z4 ∈ A∗ and Z2, Z3 ∈ A+
with X1 X2 = Z1 Z2, X3 = Z3 Z4 and Z2 Z3 = W0 such that ρ(X1 X2 X3) = ρ(Z1)sρ(Z4). Since W0 ∈
Irr(R), we must have ‖Z2‖ < ‖X2‖ (if not, then X2 would be a subword of W0 and W0 /∈ Irr(R)

because X2 → Y2 ∈ R). Let X2 = X4 Z2 for some X4 ∈ A+ . Then Z1 = X1 X4.

SubCase 2.1. Suppose that ρ(X1 X4) = ρ(X1)ρ(X4). Note that ρ(X4 Z2 Z3) → ρ(Y ′) ∈ R S where
X4 Z2 Z3 →∗

R Y ′ and Y ′ ∈ Irr(R) (a rule of the form (C 4)). Furthermore ρ(X4 Z2 Z3) = ρ(X4)s and
ρ(U ) = ρ(X1 X2 X3) = ρ(Z1)sρ(Z4) = ρ(X1 X4)sρ(Z4) = ρ(X1)ρ(X4)sρ(Z4) →R S ρ(X1)ρ(Y ′)ρ(Z4).
Let U ′ = ρ(X1)ρ(Y ′)ρ(Z4). Then by Lemma 3.3, φ(U ′) = X1Y ′ Z4. As before X4 Z2 Z3 →R Y2 Z3 →∗

R Y ′
(recall that X2 = X4 Z2) and

U = (Z1 Z2)(Z3 Z4) = (X1 X4 Z2)(Z3 Z4) →R X1Y2 Z3 Z4 = V 1 →∗
R φ

(
U ′).

So the lemma holds.
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SubCase 2.2. Suppose ρ(X1 X4) 
= ρ(X1)ρ(X4). By Lemma 3.2, there are Z5, Z8 ∈ A∗ and Z6, Z7 ∈ A+
with X1 = Z5 Z6, X4 = Z7 Z8 and Z6 Z7 = W0 such that ρ(X1 X4) = ρ(Z5)sρ(Z8). Note that

U = X1 X2 X3 = Z5 Z6(Z7 Z8 Z2)Z3 Z4,

and X2 = Z7 Z8 Z2. Also ρ(Z6(Z7 Z8 Z2)Z3) → ρ(Y ′) ∈ R S where Z6(Z7 Z8 Z2)Z3 →∗
R Y ′ and Y ′ ∈ Irr(R)

(a rule of the form (C 5)). Since ρ(Z5 Z6 Z7 Z8) = ρ(X1 X4) = ρ(Z5)sρ(Z8) = ρ(Z5 Z6 Z7)ρ(Z8), by
Lemma 3.1, ρ(Z6 Z7 Z8) = ρ(Z6 Z7)ρ(Z8) = sρ(Z8). So ρ(Z6(Z7 Z8 Z2)Z3) = ρ(Z6 Z7 Z8)s = sρ(Z8)s and
sρ(Z8)s → ρ(Y ′) ∈ R S .

Recall that

ρ
(

Z5 Z6(Z7 Z8 Z2)Z3 Z4
) = ρ(U ) = ρ(X1 X2 X3)

= ρ(Z1)sρ(Z4)

= ρ(X1 X4)sρ(Z4)

= ρ(Z5)sρ(Z8)sρ(Z4).

Therefore ρ(U ) = ρ(Z5)sρ(Z8)sρ(Z4) →R S ρ(Z5)ρ(Y ′)ρ(Z4). Let U ′ = ρ(Z5)ρ(Y ′)ρ(Z4). Then by
Lemma 3.3, φ(U ′) = Z5Y ′ Z4. As before Z6(Z7 Z8 Z2)Z3 →R Z6Y2 Z3 →∗

R Y ′ (recall that X2 = X4 Z2 =
Z7 Z8 Z2) and

U = Z5 Z6(Z7 Z8 Z2)Z3 Z4 →R Z5 Z6Y2 Z3 Z4 = V 1 →∗
R φ

(
U ′).

The proof of this lemma is complete. �
By Corollary 2.3, Lemmas 3.9, 3.8, 3.7, 3.5, 3.3 and 3.4, we have shown that [B ; R S ] is a semigroup

presentation for S , R S is a finite complete rewriting system and W0 →∗
R S

s. Now note that if U ′ →
V ′ ∈ R S is a rule of the form (C 2), (C 3), (C 4), (C 5) or (C 6), then ‖U ′‖ > 1. From this we conclude that
s ∈ Irr(R S ). Note also that if X ∈ A+ , X 
= W0 and ‖X‖ > 1, then ‖ρ(X)‖ > 1. Therefore if X → Y ∈ R
with ‖X‖ > 1, then ρ(X) → ρ(Y ) ∈ R S and ‖ρ(X)‖ > 1 (a rule of the form (C 1)). This implies that if
a ∈ A ∩ Irr(R), then a ∈ Irr(R S ).

Thus we have proved the following theorem.

Theorem 3.10. Let [A ; R] be a finitely presented semigroup presentation for S for which R is complete. Let
W0 ∈ A+ be such that ‖W0‖ > 1 and W0 ∈ Irr(R). Now let s be a symbol that does not appear in A and set
B = A ∪ {s}. Then there is complete rewriting system R S such that [B ; R S ] is a finitely presented semigroup
presentation for S and W0 →∗

R S
s. Furthermore s ∈ Irr(R S ), and a ∈ Irr(R S ) for all a ∈ A ∩ Irr(R).

4. Reduction process

In this section we will make further refinements and improvements (we call them reductions)
to Theorem 3.10. The reason for such reductions is that we need a finitely presented semigroup
presentation for S , which can be handled easily.

Let S be a semigroup and T be a large subsemigroup of S . Let [A ; R] be a finitely presented
semigroup presentation for S for which R is complete. Let S \ T = {[W1]R , [W2]R , . . . , [Wn]R} with
W i ∈ Irr(R) and ‖W1‖ � ‖W2‖ � · · · � ‖Wn‖. Suppose that ‖W1‖ = ‖W2‖ = · · · = ‖W i0−1‖ = 1 and
‖W i0‖ > 1. By Theorem 3.10, there is a finitely presented semigroup presentation [Bi0 ; Ri0 ] for S
such that B = A ∪ {si0 } for some symbol si0 that does not appear in A, Ri0 is complete, W i0 →∗

Ri0
si0

and W1, W2, . . . , W i0−1, si0 ∈ Irr(Ri0 ).
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Now in this new semigroup presentation [Bi0 ; Ri0 ], we see that

S \ T = {[W1]Ri0
, [W2]Ri0

, . . . , [W i0−1]Ri0
, [si0 ]Ri0

,
[
W ′

i0+1

]
Ri0

, . . . ,
[
W ′

n

]
Ri0

}
,

with W1, . . . , W i0−1, si0 , W ′
i0+1, . . . , W ′

n ∈ Irr(Ri0 ).
Note that this process can be continued (in at most n steps) until we obtain a finitely presented

semigroup presentation [Bn ; Rn] for S such that Rn is complete and S \ T = {[s1]Rn , [s2]Rn , . . . , [sn]Rn }
with s1, . . . , sn ∈ Irr(Rn) ∩ Bn .

In fact by a standard procedure described in [1, Section 2.2], we may further assume that for each
X → Y ∈ Rn , we have Y ∈ Irr(R), and for each X → Y ∈ Rn , there is no X ′ ∈ B+

n for which X →Rn X ′
by any rule in Rn \ {X → Y }. This is the form of the presentation that we will use.

5. The main result

Let S be a semigroup and T be a large subsemigroup of S . As stated in Section 4, we may assume
that [A ; R] is a finitely presented semigroup presentation for S for which R is complete and

(Q1) S \ T = {[s1]R , [s2]R , . . . , [sn]R} with s1, . . . , sn ∈ Irr(R) ∩ A,
(Q2) for each X → Y ∈ R , we have Y ∈ Irr(R),
(Q3) for each X → Y ∈ R , there is no X ′ ∈ A+ for which X →R X ′ by any rule in R \ {X → Y }.

In order to show that T has a finite complete rewriting system, we shall find a 5-tuple
(B, RT , A(T ),φ,ρ) that has Property R relative to [A ; R] and apply Theorem 2.2.

Let A1 = {a ∈ A: [a]R ∈ T } and A S = {s1, s2, . . . , sn}. Note that in general the union of A S and A1
is not necessary equal to A. This is because there might exist an element b ∈ A such that [b]R ∈ S \ T .
If this happens, we would have b →∗

R si for some i.

Lemma 5.1. Let X → Y ∈ R with [X]R ∈ T . Then

(a) if W ∈ A+ is a subword of X and [W ]R ∈ S \ T , then W = si for some i,
(b) if W ∈ A+ is a subword of Y and [W ]R ∈ S \ T , then W = si for some i.

Proof. (a) Suppose W /∈ A S . Then by (Q1) W →∗
R si for some i. To be precise there is a W1 ∈ A+

such that W →R W1 →∗
R si . Let W →R W1 by the rule X1 → Y1. Since [X]R ∈ T , we cannot have

W = X . Therefore X1 
= X and X1 → Y1 ∈ R \ {X → Y }. Let X = Z1W Z2 where Z1, Z2 ∈ A∗ . Then
X →R Z1W1 Z2 by the rule X1 → Y1, contrary to (Q3). Hence W = si for some i.

(b) can be proved similarly using the fact that Y ∈ Irr(R) (see (Q2)). �
We now begin to define the 5-tuple (B, RT , A(T ),φ,ρ). Let A(T )(0) be the set of all W ∈ A+ , such

that [W ]R ∈ T , and if X1 is a subword W with [X1]R ∈ S \ T , then ‖X1‖ = 1 and X1 ∈ A S . In other
word,

A(T )(0) = {
W ∈ (A1 ∪ As)

+: [W ]R ∈ T , and W does not contain any subword

X1 with [X1]R ∈ S \ T and ‖X1‖ > 1
}
.

The following lemma is clear from the definition of A(T )(0).

Lemma 5.2. Let W ∈ A(T )(0) and W ′ be a subword of W . If [W ′]R ∈ T , then W ′ ∈ A(T )(0).
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Next let

F1 = A1,

F2 = {
sb: s ∈ A S , b ∈ A1 ∪ A S and [sb]R ∈ T

}
,

F3 = {
as: a ∈ A1, s ∈ A S and [as]R ∈ T

}
,

F4 = {
sbs′: s, s′ ∈ A S , b ∈ A1 ∪ A S and [sb]R ,

[
bs′]

R ,
[
sbs′]

R ∈ T
}
.

It is not hard to see that if W ∈ F1 ∪ F2 ∪ F3 ∪ F4, then [W ]R ∈ T . Furthermore F1 ∪ F2 ∪ F3 ∪ F4 ⊆
A(T )(0). For convenience, for each G ⊆ A+ and X ∈ A+ , we set XG = {X W : W ∈ G}.

Now we shall define A(T ). Let A(T )(1) = F1 ∪ F2 ∪ F3 ∪ F4 and for each i � 1, let

A(T )(i + 1) =
( ⋃

a∈A1

((
aA(T )(i)

) ∩ A(T )(0)
)) ∪

( ⋃
X∈F2

((
X A(T )(i)

) ∩ A(T )(0)
))

.

Set A(T ) = ⋃
i�1 A(T )(i). In the following lemma we shall prove some properties of A(T ).

Lemma 5.3.

(a) A(T ) = A(T )(0).
(b) A(T ) contains the set {W ∈ Irr(R): [W ]R ∈ T }.
(c) Let X → Y ∈ R with [X]R ∈ T . Then X, Y ∈ A(T ).

Proof. (a) Clearly A(T ) ⊆ A(T )(0). Let W ∈ A(T )(0). We shall prove by induction on ‖W ‖ that W ∈
A(T ).

Suppose ‖W ‖ = 1. Since [W ]R ∈ T , we must have W ∈ A1. So W ∈ A(T )(1) ⊆ A(T ).
Suppose ‖W ‖ = 2. Then W = a′a, or W = as, or W = sa, or W = ss′ (a,a′ ∈ A1, s, s′ ∈ A S ). If W =

a′a, then W ∈ (a′ A(T )(1)) ∩ A(T )(0) ⊆ A(T )(2) ⊆ A(T ). If W = as, then W ∈ F3 ⊆ A(T )(1) ⊆ A(T ). If
W = sa or W = ss′ , then W ∈ F2 ⊆ A(T )(1) ⊆ A(T ).

Suppose ‖W ‖ � 3. Assume that it is true for all W ′ ∈ A(T )(0) with ‖W ′‖ < ‖W ‖.
If W begins with a letter a ∈ A1, say W = aW ′ where W ′ ∈ A+ , then ‖W ′‖ � 2. Note that

[W ′]R ∈ T , for if [W ′]R ∈ S \ T , then by the definition of A(T )(0), W ′ ∈ A S and ‖W ′‖ = 1, con-
trary to the fact that ‖W ′‖ � 2. Therefore by Lemma 5.2, W ′ ∈ A(T )(0). By induction, W ′ ∈ A(T ). Let
W ′ ∈ A(T )(i) for some i � 1. Then W ∈ (aA(T )(i)) ∩ A(T )(0) ⊆ A(T )(i + 1) ⊆ A(T ).

If W begins with a letter s ∈ A S , say W = sbW ′ where b ∈ A1 ∪ A S and W ′ ∈ A+ , then ‖W ′‖ � 1. If
[W ′]R ∈ S \ T , then by the definition of A(T )(0), W ′ = s′ for some s′ ∈ A S , and W = sbs′ . Since W ∈
A(T )(0), we have [sb]R , [bs′]R , [sbs′]R ∈ T (definition of A(T )(0)). This means W ∈ F4 ⊆ A(T )(1) ⊆
A(T ).

If [W ′]R ∈ T , then by Lemma 5.2, W ′ ∈ A(T )(0). By induction, W ′ ∈ A(T ). Let W ′ ∈ A(T )(i) for
some i � 1. Then W ∈ (sb A(T )(i)) ∩ A(T )(0) ⊆ A(T )(i + 1) ⊆ A(T ).

The proof of part (a) of the lemma is complete.
Part (b) follows from part (a) and the fact that A(T )(0) contains the set {W ∈ Irr(R): [W ]R ∈ T }.
(c) By part (a) of Lemma 5.1, we conclude that X does not contain any subword X1 with [X1]R ∈

S \ T and X1 /∈ A S . So X ∈ A(T )(0) = A(T ). Similarly by part (b) of Lemma 5.1, Y ∈ A(T ). �
Now we shall define the set B and the homomorphism φ. Let

C R = {
cas: [as]R ∈ T with a ∈ A1 and s ∈ A S

}
,

CL1 = {
csa: [sa]R ∈ T with a ∈ A1 and s ∈ A S

}
,
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CL2 = {
css′ :

[
ss′]

R ∈ T with s, s′ ∈ A S
}
,

CM1 = {
cs′as:

[
s′as

]
R ,

[
s′a

]
R , [as]R ∈ T with a ∈ A1 and s, s′ ∈ A S

}
,

CM2 = {
css′s′′ :

[
ss′s′′]

R ,
[
ss′]

R ,
[
s′s′′]

R ∈ T with s, s′, s′′ ∈ A S
}
.

Set C = C R ∪ CL1 ∪ CL2 ∪ CM1 ∪ CM2 and B = A1 ∪ C . Since A1 and A S are finite, it is not hard
to see that B is finite. Let φ1 : B → A+ be defined by φ1(a) = a for all a ∈ A1 and φ1(cu) = u for
all cu ∈ C (for example φ1(cas) = as for cas ∈ C R ). Clearly φ1 can be extended to a homomorphism
φ : B+ → A+ by defining φ(U ′) = φ1(b1) . . . φ1(bl) for all U ′ = b1 . . .bl ∈ B+ . Furthermore [φ(U ′)]R ∈ T
for all U ′ ∈ B+ . For convenience, we may define φ(εB) = εA where εB and εA are empty words in B∗
and A∗ , respectively. The following lemma is obvious.

Lemma 5.4. For all U ′ ∈ B+ , ‖φ(U ′)‖ � ‖U ′‖.

We define ρ : A(T ) → B+ as follows:
Let W ∈ A(T ).

(a) Suppose W ∈ A(T )(1). If W ∈ F1, then set ρ(W ) = W . If W ∈ F2 ∪ F3 ∪ F4, set ρ(W ) = cW (for
example if W = as ∈ F3, then ρ(W ) = cas).

(b) Suppose W ∈ A(T )(i + 1) for some i � 1. Then W = aW1 or W = sbW1 (a ∈ A1, s ∈ A S , b ∈
A1 ∪ A S and W1 ∈ A(T )(i)). If the former holds, set ρ(W ) = aρ(W1). If the latter holds, set
ρ(W ) = csbρ(W1).

The function ρ is well-defined can be easily proved by observing that a word from A(T )(i + 1) is
obtained in a unique way from a unique word from A(T )(i). As for the homomorphism φ, we may
define ρ(εA) = εB .

Lemma 5.5. Let U ∈ A(T )(l) for some l � 1. Then ρ(U ) = b′
1 . . .b′

l where b′
i ∈ B. Furthermore if l > 1, then

b′
i ∈ A1 ∪ CL1 ∪ CL2 for all 1 � i � l − 1.

Proof. We prove by induction on l. Suppose l = 1. Then ρ(U ) = b′
1 by the definition of ρ . Suppose

l > 1. Assume that it is true for all l′ with l′ < l.
Since U ∈ A(T )(l), we have either U = aU1 or U = sbU1 (a ∈ A1, sb ∈ F2 and U1 ∈ A(T )(l − 1)).

Suppose U = aU1. Then ρ(U ) = aρ(U1). This means b′
1 = a ∈ A1. By induction ρ(U1) = b′

2 . . .b′
l . Fur-

thermore if l − 1 > 1 (i.e. l > 2), then b′
2, . . . ,b′

l−1 ∈ A1 ∪ CL1 ∪ CL2 .
Suppose U = sbU1. Then ρ(U ) = csbρ(U1). This means b′

1 = csb ∈ CL1 ∪ CL2 . By induction ρ(U1) =
b′

2 . . .b′
l . Furthermore if l − 1 > 1 (i.e. l > 2), then b′

2, . . . ,b′
l−1 ∈ A1 ∪ CL1 ∪ CL2 .

Hence in either cases the lemma holds. �
Lemma 5.6. φ(ρ(U )) = U for all U ∈ A(T ). (Property (P5).)

Proof. We just need to show that for all i � 1, if U ∈ A(T )(i), then φ(ρ(U )) = U .
Suppose U ∈ A(T )(1). If U ∈ F1, then ρ(U ) = U and φ(ρ(U )) = U . If U ∈ F2 ∪ F3 ∪ F4, then ρ(U ) =

cU and φ(ρ(U )) = φ(cU ) = U . Assume that it is true for all U ′ ∈ A(T )(i).
Let U ∈ A(T )(i + 1). Then U = aU1 or U = sbU1 where a ∈ A1, sb ∈ F2 and U1 ∈ A(T )(i). If the

former holds, then ρ(U ) = aρ(U1) and by induction φ(ρ(U )) = aφ(ρ(U1)) = aU1 = U . If the latter
holds, then ρ(U ) = csbρ(U1), and by induction φ(ρ(U )) = φ(csb)φ(ρ(U1)) = sbU1 = U . Hence the
lemma holds. �
Lemma 5.7. Let U ′ = b′

1 . . .b′
l ∈ B+ where b′

i ∈ A1 ∪CL1 ∪CL2 for all 1 � i � l−1 and b′
l ∈ B. If φ(U ′) ∈ A(T ),

then φ(U ′) ∈ A(T )(l) and ρ(φ(U ′)) = U ′ .
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Proof. We prove by induction on l. Suppose l = 1. If b′
1 = a ∈ A1, then φ(b′

1) = a, and ρ(φ(b′
1)) = b′

1.
If b′

1 = cz ∈ C , then φ(b′
1) = z ∈ A(T )(1), and ρ(φ(b′

1)) = b′
1.

Suppose l > 1. Assume that it is true for all l′ with l′ < l. Let U ′ = b′
1U ′

1 where U ′
1 = b′

2 . . .b′
l . By

induction, φ(U ′
1) ∈ A(T )(l −1) and ρ(φ(U ′

1)) = U ′
1. Since b′

1 ∈ A1 ∪ CL1 ∪ CL2 , we have φ(b′
1) ∈ A1 ∪ F2.

Therefore φ(U ′) = φ(b′
1)φ(U ′

1) ∈ A(T )(l), and ρ(φ(U ′)) = b′
1ρ(φ(U ′

1)) = b′
1U ′

1 = U ′ . Hence the lemma
holds. �

We are now ready to define the rules in RT . Let us begin by recalling some of the results of
Lemma 5.3. For each X → Y ∈ R with [X]R ∈ T , we have X, Y ∈ A(T ) (part (c) of Lemma 5.3).
Furthermore if Y ∈ Irr(R) and [Y ]R ∈ T , then Y ∈ A(T ) (part (b) of Lemma 5.3). Recall that C =
C R ∪ CL1 ∪ CL2 ∪ CM1 ∪ CM2 , εA is the empty word in A∗ , φ is a homomorphism of B+ into A+ (fur-
thermore [φ(U ′)]R ∈ T for all U ′ ∈ B+), and ρ is a function of A(T ) into B+ . As R is a finite complete
rewriting system, Left(R) = {X ∈ A+: X → Y ∈ R} is finite. Let N = (maxX∈Left(R) ‖X‖) + 4. The rules
are grouped into two forms, (D1) and (D2):

(D1) for each U ′ ∈ B+ with ‖φ(U ′)‖ � N and φ(U ′) /∈ Irr(R), put U ′ → ρ(φ(U ′)) in RT where
φ(U ′) →∗

R φ(U ′) and φ(U ′) ∈ Irr(R);
(D2) for each U ′ ∈ B+ with ‖U ′‖ = 2, φ(U ′) ∈ A(T ) and U ′ 
= ρ(φ(U ′)), put U ′ → ρ(φ(U ′)) in RT .

Note that the number of rules of the form (D1) that we put in RT is finite, for by Lemma 5.4 the
length of U ′ is bounded and B is finite. Similarly the number of rules of the form (D2) that we put
in RT is also finite. Therefore RT is finite and [B ; RT ] is finitely presented. Note that by the main
result in [4, Theorem 6.1], one can get a finite presentation for T by taking N sufficiently large.

Lemma 5.8. Let U ′, V ′ ∈ B+ . If U ′ →RT V ′ by a rule of the form (D2), then φ(U ′) = φ(V ′). Furthermore
either

(i) the number of elements in C R ∪ CM1 ∪ CM2 which appear as letters in the word V ′ is less than that in the
word U ′ , or

(ii) the number of elements in C R ∪ CM1 ∪ CM2 which appear as letters in the word V ′ is the same as that in
the word U ′ , ‖U ′‖ = ‖V ′‖, and there is an element in C R ∪ CM1 ∪ CM2 in which it “moves” further right
in the resulting word V ′ than it is in the word U ′ (the element may have changed).

Proof. Let U ′ →RT V ′ by the rule X ′ → ρ(φ(X ′)) where X ′ ∈ B+ , ‖X ′‖ = 2, φ(X ′) ∈ A(T ) and X ′ 
=
ρ(φ(X ′)). By Lemma 5.6, φ(ρ(φ(X ′))) = φ(X ′). Since φ is a homomorphism, we have φ(U ′) = φ(V ′).
Now we will show that either (i) or (ii) holds.

If the first letter that appears in X ′ is not from C R ∪ CM1 ∪ CM2 , then by Lemma 5.7, ρ(φ(X ′)) = X ′ ,
a contradiction. So we may assume that the first letter that appears in X ′ is from C R ∪ CM1 ∪ CM2 .

By Lemma 5.5, ρ(φ(X ′)) has at most one letter from C R ∪ CM1 ∪ CM2 , which is then the last letter.
If ρ(φ(X ′)) has no letter from C R ∪ CM1 ∪ CM2 , then (i) holds.

Suppose ρ(φ(X ′)) has a letter from C R ∪ CM1 ∪ CM2 . Then φ(X ′) = φ(ρ(φ(X ′))) ends with a letter
from A S . Let X ′ = cy where c ∈ C R ∪ CM1 ∪ CM2 and y ∈ B . Then y /∈ A1 ∪ CL1 . If y ∈ C R ∪ CM1 ∪
CM2 , then (i) holds. So we may assume that y ∈ CL2 . Let y = cs′′′s′′′′ . If c = cas , then ρ(φ(X ′)) =
acss′′′s′′′′ , if c = csas′ , then ρ(φ(X ′)) = csacs′s′′′s′′′′ , and if c = css′s′′ , then ρ(φ(X ′)) = css′ cs′′s′′′s′′′′ . Therefore
‖ρ(φ(X ′))‖ = ‖X ′‖ and (ii) holds. �
Lemma 5.9. U ′ →∗

RT
ρ(φ(U ′)) for all U ′ ∈ B+ with φ(U ′) ∈ A(T ). (Property (P6).)

Proof. Let U ′ = b′
1 . . .b′

l ∈ B+ where b′
i ∈ B for all i. If b′

i ∈ A1 ∪ CL1 ∪ CL2 for all 1 � i � l − 1, then by
Lemma 5.7, ρ(φ(U ′)) = U ′ . Hence U ′ →∗

RT
ρ(φ(U ′)).

So we may assume that b′
i ∈ C R ∪ CM1 ∪ CM2 for some 1 � i � l − 1. By Lemma 5.2 and part (a) of

Lemma 5.3, φ(b′
ib

′
i+1) ∈ A(T ). By Lemma 5.5, b′

ib
′
i+1 
= ρ(φ(b′

ib
′
i+1)). Therefore b′

ib
′
i+1 → ρ(φ(b′

ib
′
i+1))

is a rule of the form (D2) in RT .
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Let V ′ = b′
1 . . .b′

i−1ρ(φ(b′
ib

′
i+1))b

′
i+2 . . .b′

l . Then U ′ →RT V ′ , and by Lemma 5.6, φ(U ′) =
φ(b′

1 . . .b′
l) = φ(V ′). By Lemma 5.8, we conclude that after applying rules of the form (D2) a fi-

nite number of times, there is a U ′′ = d′
1 . . .d′

r ∈ B+ with d′
i ∈ A1 ∪ CL1 ∪ CL2 for all 1 � i � r − 1

and d′
r ∈ B , such that U ′ →∗

RT
U ′′ and φ(U ′) = φ(U ′′). Again by Lemma 5.7, ρ(φ(U ′′)) = U ′′ . So

U ′ →∗
RT

ρ(φ(U ′′)) = ρ(φ(U ′)). �
Lemma 5.10. Let U ′ ∈ B+ and V ∈ A+ . If φ(U ′) →R V , then there is a V ′ ∈ B+ such that U ′ →RT V ′ by a
rule of the form (D1), and V →∗

R φ(V ′).

Proof. Let U ′ = b′
1 . . .b′

l where b′
i ∈ B , and φ(U ′) →R V by a rule X → Y in R . Then for some

non-negative integers j1, j2, X is a subword of φ(b′
j1

. . .b′
j1+ j2

). We may assume that X is not
a subword of φ(b′

j1+1 . . .b′
j1+ j2

) or φ(b′
j1

. . .b′
j1+ j2−1). Since φ(b′

j1
) and φ(b′

j1+ j2
) are at most of

length 3, we deduce that ‖φ(b′
j1

. . .b′
j1+ j2

)‖ � ‖X‖ + 4 � N . So b′
j1

. . .b′
j1+ j2

→ ρ(φ(b′
j1

. . .b′
j1+ j2

))

is a rule of the form (D1) in RT , where φ(b′
j1

. . .b′
j1+ j2

) →∗
R φ(b′

j1
. . .b′

j1+ j2
), φ(b′

j1
. . .b′

j1+ j2
) /∈ Irr(R)

and φ(b′
j1

. . .b′
j1+ j2

) ∈ Irr(R). Set V ′ = b′
1 . . .b′

j1−1ρ(φ(b′
j1

. . .b′
j1+ j2

))b′
j1+ j2+1 . . .b′

l . Then U ′ →RT V ′ .
By Lemma 5.6, φ(V ′) = φ(b′

1 . . .b′
j1−1)(φ(b′

j1
. . .b′

j1+ j2
))φ(b′

j1+ j2+1 . . .b′
l). Let φ(b′

j1
. . .b′

j1+ j2
) =

W1 X W2 where W1, W2 ∈ A∗ (we allow W1, W2 to be empty word). Then φ(b′
j1

. . .b′
j1+ j2

) →R

W1Y W2 →∗
R φ(b′

j1
. . .b′

j1+ j2
). Hence V = φ(b′

1 . . .b′
j1−1)(W1Y W2)φ(b′

j1+ j2+1 . . .b′
l) →∗

R φ(V ′). �
Lemma 5.11. For each U ′ ∈ B+ there is a U ′′ ∈ B+ such that φ(U ′′) ∈ A(T ) and U ′ →∗

RT
U ′′ . (Property (P4).)

Proof. We shall prove by induction on dR(φ(U ′)). Suppose dR(φ(U ′)) = 0. Then φ(U ′) ∈ A(T ) (part (b)
of Lemma 5.3). So we may choose U ′′ = U ′ . Suppose dR(φ(U ′)) > 0. Assume that it is true for all
U ′

1 ∈ B+ with dR(φ(U ′
1)) < dR(φ(U ′)).

Since dR(φ(U ′)) > 0, there is a V ∈ A+ such that φ(U ′) →R V . By Lemma 5.10, there is a V ′ ∈ B+
such that U ′ →RT V ′ and V →∗

R φ(V ′). Therefore φ(U ′) →∗
R φ(V ′), and dR(φ(V ′)) < dR(φ(U ′)). By

induction, there is a U ′′ ∈ B+ such that φ(U ′′) ∈ A(T ) and V ′ →∗
RT

U ′′ . Hence U ′ →∗
RT

U ′′ . �
Lemma 5.12. Suppose U ′ →RT V ′ by one of the rules of the form (D1). Then φ(U ′) 
= φ(V ′) and φ(U ′) →∗

R
φ(V ′).

Proof. Suppose U ′ →RT V ′ by a rule of the form (D1), say X ′ → Y ′ . Then ‖φ(X ′)‖ � N , φ(X ′) /∈ Irr(R),
and Y ′ = ρ(φ(X ′)), where φ(X ′) →∗

R φ(X ′) and φ(X ′) ∈ Irr(R).
Let U ′ = W ′

1 X ′W ′
2 where W ′

1, W ′
2 ∈ B∗ (we allow W ′

1 and W ′
2 to be empty word). Note that

V ′ = W ′
1ρ(φ(X ′))W ′

2. By Lemma 5.6 and the fact that φ is a homomorphism, we must have φ(V ′) =
φ(W ′

1)φ(X ′)φ(W ′
2) 
= φ(U ′), for otherwise we would have φ(X ′) = φ(X ′). Furthermore φ(U ′) →∗

R
φ(V ′). �
Lemma 5.13. There does not exist an infinite reduction sequence

U ′
1 →RT U ′

2 →RT U ′
3 →RT · · · ,

of words from B+ such that φ(U ′
1) = φ(U ′

2) = φ(U ′
3) = · · · . (Property (P3).)

Proof. Suppose that such a sequence exists.
Since φ(U ′

i) = φ(U ′
i+1), by Lemma 5.12, we conclude that U ′

i →RT U ′
i+1 by a rule of the form (D2).

By Lemma 5.8, the number of elements in C R ∪ CM1 ∪ CM2 which appear as letters in the word U ′
i+1

is either less than that in the word U ′
i , or the number are the same and ‖U ′

i‖ = ‖U ′
i+1‖, but it ‘moves’

to the right. So we deduce that there is an integer i0 such that for all i � i0, the number of elements
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in C R ∪ CM1 ∪ CM2 which appear as letters in the word U ′
i is the same as in the word U ′

i+1, and
‖U ′

i‖ = ‖U ′
i+1‖. So a letter (an element in C R ∪ CM1 ∪ CM2 ) in the word U ′

i will ‘move’ further right in
the word U ′

i+1. But this process cannot be continued indefinitely as ‖U ′
i‖ = ‖U ′

i+1‖. We have obtained
a contradiction. �
Lemma 5.14. For any U ′, V ′ ∈ B+ with U ′ →∗

RT
V ′ , we have φ(U ′) →∗

R φ(V ′). (Property (P2).)

Proof. It is sufficient to show U ′ →RT V ′ with U ′, V ′ ∈ B+ implies that φ(U ′) →∗
R φ(V ′).

Suppose U ′ →RT V ′ by a rule of the form (D1). By Lemma 5.12, φ(U ′) →∗
R φ(V ′). Suppose U ′ →RT

V ′ by a rule of the form (D2). By Lemma 5.8, φ(U ′) = φ(V ′), and thus φ(U ′) →∗
R φ(V ′). �

Lemma 5.15. For any U ∈ A(T ) and V 1 ∈ A+ with U →R V 1 , there is a U ′ ∈ B+ such that U →R V 1 →∗
R

φ(U ′) and ρ(U ) →RT U ′ . (Property (P1).)

Proof. By Lemma 5.6, U = φ(ρ(U )). By Lemma 5.10, there is a U ′ ∈ B+ such that ρ(U ) →RT U ′ by a
rule of the form (D1), and V 1 →∗

R φ(U ′). The lemma follows. �
Proof of Theorem 1.1. Let [A ; R] be a finitely presented semigroup presentation for S for which R is
complete. By the reduction process described in Section 4, we may assume that (Q1), (Q2) and (Q3)
hold. Now the 5-tuple (B, RT , A(T ),φ,ρ) has been defined. By Theorem 2.2, it is sufficient to show
that (B, RT , A(T ),φ,ρ) has Property R relative to [A ; R]. This has been done in Lemmas 5.6, 5.9,
5.11, 5.13, 5.14 and 5.15. �
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