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Clinical Trials: Viewpoint

reclinical Restenosis Models and Drug-Eluting Stents
till Important, Still Much to Learn
obert S. Schwartz, MD, FACC,*† Nicolas A. Chronos, MBBS,‡ Renu Virmani, MD§
inneapolis, Minnesota; Atlanta, Georgia; and Bethesda, Maryland

Percutaneous coronary intervention continues to revolutionize the treatment of coronary
atherosclerosis. Restenosis remains a significant problem but may at last be yielding to
technologic advances. The examination of neointimal hyperplasia in injured animal artery
models has helped in our understanding of angioplasty and stenting mechanisms, and as
drug-eluting stent (DES) technologies have arrived, they too have been advanced through the
study of animal models. These models are useful for predicting adverse clinical outcomes in
patients with DESs because suboptimal animal model studies typically lead to problematic
human trials. Similarly, stent thrombosis in animal models suggests stent thrombogenicity in
human patients. Equivocal animal model results at six or nine months occasionally have been
mirrored by excellent clinical outcomes in patients. The causes of such disparities are unclear
but may result from differing methods, including less injury severity than originally described
in the models. Ongoing research into animal models will reconcile apparent differences with
clinical trials and advance our understanding of how to apply animal models to clinical
stenting in the era of DESs. (J Am Coll Cardiol 2004;44:1373–85) © 2004 by the
American College of Cardiology Foundation
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ercutaneous coronary intervention continues to revolution-
ze atherosclerosis treatments. The understanding of angio-
lasty mechanisms came after these technologies were
lready in clinical use through the comparison animal model
esearch with clinical pathologic specimens. An early un-
erstanding of balloon angioplasty suggested that athero-
clerotic plaque was “compressed” or “stretched”—concepts
hat eventually yielded to a comprehensive understanding
hat both plaque and normal artery are severely fractured in
any successful cases (good clinical percutaneous translu-
inal coronary angioplasty or stent result). Animal models

ssumed a central position in understanding coronary artery
njury and healing. Neointimal formation results from vessel
aceration, which is a response to injury during revascular-
zation. Rare but valuable human necropsy material has
onfirmed animal model results showing that plaque that
as fractured or lacerated by coronary angioplasty induced

evere arterial injury and that restenosis resulted from this
njury (1,2).

Much of what is known about restenosis and neointimal
ormation comes from intense study of animal injury models
nd comparison with human material, which usually is
erived from autopsy. What is referred to as “restenosis” in
ormal animal arteries is not truly such; rather, it is
eointima resulting from controlled injury that is induced in

From the *Minneapolis Heart Institute and †Minnesota Cardiovascular Research
nstitute, Minneapolis, Minnesota; ‡American Cardiovascular Research Institute,
tlanta, Georgia; and §Armed Forces Institute of Pathology, Bethesda, Maryland.
his manuscript summarizes three lectures presented at a “Meet the Experts” session
eld at the U.S. Food and Drug Administration entitled “Animal Restenosis Models,
hat Have We Learned?”
Manuscript received January 26, 2004; revised manuscript received March 28,
t004, accepted April 6, 2004.
ormal vessels. Stenosis in these models results from thick
nd sometimes occlusive neointima forming after severe
alloon or stent injury and also from vessel shrinkage
remodeling) due to scar formation. As injured normal
nimal arteries (rat, pig, mouse, dog, rabbit, primate)
ecame the standard for understanding neointima and
emodeling, they rapidly evolved into a new role, that of
esting novel restenosis therapies (3,4). Many parallels
merged between human restenosis and its animal model
ounterparts. Each has strongly impacted our understanding
f restenosis and its treatment.

NIMAL RESTENOSIS MODELS: A BRIEF OVERVIEW

at carotid artery model. The rat carotid artery model was
eveloped in the 1960s, and from it derived the foundations
f vascular biology. Although first used to gain insight into
uman atherosclerosis, it was adapted to understand reste-
osis and to test restenosis therapy. This model became a
tandard for studying smooth muscle cell proliferation after
ndothelial denudation (5–11). One advantage of the model
s that it provides one with the ability to study molecular
iology (11–14).
This model assumed less importance after several early

tudies of angiotensin-converting enzyme inhibitors. These
gents were very effective at inhibiting neointimal thicken-
ng, suggesting the importance of angiotensin II to neoin-
imal growth (15,16). However, two subsequent clinical
tudies failed to show inhibitory effects (17–19). Angioten-
in II has been the subject of ongoing interest (20–22),
owever, the failure of this model to predict negative clinical

rial results has caused it to lose favor among investigators.
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ouse arterial injury model. The mouse arterial injury as
restenosis model developed from the availability of the
ouse genome and molecular methods to study events after

rterial injury (23,24). The mouse has very small vessels;
herefore, traditional injury methods by balloon or stent are
ot practical. Injury may instead be performed by rotating a
mall guidewire in the vessel (25–28) or electrical injury.
ither of these methods causes endothelial loss and focal
edial cell damage of 25% to 50%. The internal elastic

amina often is disrupted by these injury procedures. Vari-
ble neointimal thickening forms focally at injury sites in
roportion to the amount of injury, and little thrombus
ccurs in this model.
Wound healing in the mouse model partially replicates

ther models because its features include mural thrombus
esorption through inflammatory cell infiltration. A thin
eointima (roughly 0.03 mm2) forms by three weeks.
ecause most or all arterial cells (in media and adventitia)
re killed uniformly, these lesions heal from the borders.
he power of molecular biology and genetics in these mouse
odels will permit substantial advances in understanding of

he interactions among cell proliferation, cell migration,
hrombus formation, and remodeling.

ypercholesterolemic rabbit iliac model. The rabbit iliac
estenosis model also has been studied extensively to test
estenosis therapies and to understand cellular and molec-
lar mechanisms (29–31). Blood cholesterol levels are
ypically �1,000 mg/dl and cause biochemical arterial in-
ury, which is supplemented by mechanical injury.

These models add initial injury by air desiccation to
ypercholesterolemic diets and finally balloon inflation to
urther injure the vessel. Unlike rat carotid arteries, macro-
copic and hemodynamically significant stenoses similar to
uman restenosis develop reliably in the rabbit models.
istopathology in this model shows foam cells (macro-

hages that have ingested excessive lipid) and voluminous
xtracellular matrix. One criticism of this model is that foam
ells are rare in human restenotic neointima. However,
alloon angioplasty in this model does cause histopathologic
njury comparable with that of human angioplasty, with

edial dissection and plaque fracture.
Platelet deposition occurs rapidly at sites of a balloon-

nduced plaque fracture. Thus, antiplatelet agents were
tudied early in the history of this model as a potential
herapy (32,33) and showed efficacy in reducing neointimal
hickness. A wide variety of other agents have been studied

Abbreviations and Acronyms
DES � drug-eluting stent
IVUS � intravascular ultrasonography
MLD � minimum lumen diameter
PRESTO � Prevention of REStenosis with Tranilast

and its Outcomes trial
n this model and are discussed later. i
orcine coronary injury model. The coronary arteries of
omestic crossbred pigs respond similar to human coronary
rteries after injury (34–36). A hypercholesterolemic diet
roduces lesions more severe in nature than standard labo-
atory diets (37,38). In this model, injury causes thick
eointima within 28 days. The neointima is identical to
uman restenotic neointima. When a balloon-only injury is
erformed, a typical medial laceration occurs and is filled at
8 days by neointima. The amount of neointimal thickening
s directly proportional to injury. This permits the creation
f an injury-response regression relationship that quanti-
ates the response to potential therapies (39–41).

elevance to human coronary intervention. The porcine
oronary models using injuries caused by either stenting or
verstretching injury alone are now accepted standards by
hich potential restenosis therapies are studied, in large part
ecause the stages of neointimal growth described in the
orcine model follow those now known in humans. Empiric
orrelation with clinical trials suggests this may be true.
egative trials using the porcine model correspond well to

egative clinical trials, suggesting that this model has good
pecificity. Fewer therapies have had positive results and,
herefore, model sensitivity is less certain. Paclitaxel- and
apamycin-eluting stent studies suggest that positive results
n these models are predictive of positive results in clinical
rials. Interestingly, ionizing radiation to the coronary ar-
eries in the pig model demonstrated neointimal stimulation
ather than inhibition when gamma radiation was delivered
xternally (42). However, many studies of intravascular
amma and beta radiation show neointimal inhibition in
igs when examined at 28 days after therapy. Longer-term
ata are less conclusive and suggest little efficacy at longer
ime points.

Human coronary arteries develop radiation-induced cor-
nary artery disease, although this is achieved typically with
igh doses of radiation that are given for many years. Several
linical studies in patients receiving vascular brachytherapy
or in-stent restenosis show neointimal stimulation at the
dges of radiated regions, where radiation doses are falling
ff. Moreover, several reports are emerging that suggest a
catch-up” phenomenon in patients receiving vascular
rachytherapy. Six-month data in pigs showing lack of
fficacy might have predicted this clinical finding; further
ong-term patient analysis is underway to determine poten-
ial relationships to the pig model. Continued observation
ver time will determine whether intravascular brachyther-
py will stimulate accelerated coronary artery disease in
atients.
Sensitivity for efficacy will be better assessed as additional

trategies that are efficacious are developed. The data
uggest that the porcine model is best for establishing safety,
lthough efficacy remains less certain as discussed in detail
elow. Table 1 compares several human trials with preclin-
cal results. This table includes references for brachytherapy
43–62), statins (63–67), angiotensin-converting enzyme

nhibitors (18,19,21,68–72), anticoagulants (39,73–87),
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robucol (88–97), rapamycin (98–105), paclitaxel (106–115),
alcium channel blockade (116–119), antisense (120–123),
examethasone (124–128), and heparin (74,80,81,129–133).

HE PROPORTIONALITY BETWEEN
NJURY AND NEOINTIMAL THICKENING

undamentally, mature neointima is a repaired artery and
hus is desirable. Problems arise in only a minority of cases

able 1. Comparison Between Clinical Trials and Porcine
reclinical Data

Porcine Model
Safety/Efficacy

Human Data
Safety/Efficacy

rachytherapy �/�
(43–51)

�/�
(52–62)

tatins �/�
(63)

�/�
(64–67)

ngiotensin-converting
enzyme inhibitors

�/�
(21,69–71)

�/�
(18,19,68,72)

nticoagulants �/�
(39,73–81)

�/�
(82–87)

robucol �/�
(88–94)

�/�
(95–97)

apamycin/analogs �/�
(98–100)

�/�
(101–105)

aclitaxel �/�
(106–110)

�/�
(111–115,177)

alcium channel blockers �/�
(116)

�/�
(117–119)

-myc antisense �/�
(120,121)

�/�
(122,123)

examethasone �/�
(124,125)

(126–128)

eparin (73,80,81,129,130) (131–133)

ata in parentheses are reference numbers.

igure 1. Stent-induced arterial injury in patients generates a proportional n
amina becomes more severely disrupted by the stent and as the proportion o

eointimal growth becomes progressively more severe.
hen exuberant neointima impinges on luminal blood flow.
arly studies in the porcine coronary artery injury model

uggested that deeper arterial injury results in greater
eointimal thickening (35). This proportionality in the pig
odel was subsequently sought and validated in patients

Fig. 1). A practical outcome of this phenomenon was
mproved stent design, which sought to induce less arterial
njury (134,135). Early wire stents could cause substantial
njury if they were overexpanded; slotted tubular designs
reated fewer injuries and have prevailed in modern stent
esigns (36). Other stent concepts have attempted to limit

njury even more but have been less successful, likely because
90% stenosis when properly dilated undergoes 10-fold

xpansion. This expansion induces significant, unavoidable
rterial injury by necessity and occurs both with angioplasty
lone and with stenting. Drug-eluting stents (DESs) also
nduce such injury but rely on local drug effects to moderate
he neointimal response.

Overstretch injury to pig coronary arteries holds impor-
ant lessons for neointimal response to injury. Simple
verstretch without stent implant usually causes medial
racture and laceration, with frequent dissections. A typical
alloon:artery ratio is 1.2:1 or 1.3:1, which is visually
stimated by the operator. These ratios generally create
nough injury for satisfactory neointimal thickness without
he risk of large dissections. Larger balloon:artery ratios
ield a high likelihood of severe dissection with resulting
hrombosis, coronary occlusion, and ensuing death from
yocardial infarction and ventricular fibrillation. These

alloon:artery ratios are finding use in DES efficacy studies.
When stents are implanted, dissections usually are con-

rolled except at the stent margins. However, stent:artery

imal response. Panels from left to right indicate that as the internal elastic
ial fracture transitions from �30% to �30% (middle and right columns),
eoint
f med
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atios of �1.3:1 often cause chronic vessel injury as the stent
truts migrate through the vessel wall, including through the
xternal elastic lamina and adventitia. Marked inflammation
ccompanies the stent struts when such oversizing is per-
ormed. This inflammation is highly undesirable because
rug elution cannot overcome such severe and chronic

njury, making stent/drug efficacy assessment not possible. It
s for this reason that in preclinical DES testing, a more
ommon practice is to use the balloon:artery ratio of 1.1:1,
ith the resulting data applied to safety analysis but not

fficacy because neointimal generation at these low injury
evels is minimal to mild. The relation of safety and efficacy
tudies with stented and overstretching alone remains to be
etermined. Figure 2 summarizes the time course of neo-

ntimal hyperplasia after stenting in patients. The important
teps are summarized in the following text, as learned from
nimal models and translated to patients (136,137).
hrombus and restenosis. Mural thrombus in porcine
odels is an early response to balloon dilation and stenting.

t occurs less often in injured rat and dog arteries (138). A
irect relationship between thrombus volume and neointi-
al volume is unproven but is thought likely.
Fibrin- and platelet-rich thrombus form on stent struts in

orcine arteries within hours of implantation. It progres-

igure 2. Diagram illustrating the time course of events leading to neointim
therosclerotic artery is depicted before stent placement. NC � non-cel
latelets/fibrin and neutrophils accumulate at the stent site. At 14 to 30 d
brin is visible. Smooth muscle cells also are beginning to appear within t
ersists. Proteoglycan and matrix deposition occurs. At 6 to 12 mont
ndothelialization generally is complete. A neointima rich in smooth musc
irmani et al. (136).
ively resolves during the course of weeks, principally T
hrough resorption by macrophages (139). Thrombus reso-
ution and healing in porcine arteries closely reflect the
ealing in humans after stent implant. Near-total fibrin and
hrombus resorption is a feature of complete arterial healing.
roven restenosis therapies such as vascular brachytherapy
nd DESs impede healing, and treated arteries often show
nresolved fibrin thrombus (microscopic or sometimes
ross) at times much later than found in untreated arteries.
nflammation. Thrombus resolves by inflammatory cells
2,140,141). Macrophages secrete a variety of thrombolytic
nzymes that digest thrombus as the macrophage tunnels
nto thrombus surrounding stent strut sites. Inflammation
lso may occur without thrombus, stimulated by local
ytokines. Platelets and their contents appear in thrombus
fter degranulation and provide major chemokines for
nflammation. These include P-selectin and integrins such
s beta2 integrin Mac-1 (CD11b/CD18) (142). This inte-
rin, located on the monocyte cell surface, is important
ecause it is prominent in adhesion. Heterotopic platelet
ggregation, a process where platelets aggregate on the
onocyte surface and stimulate additional platelet activa-

ion, also plays an important role. The chemokines also are
ey for inflammation at vascular injury sites. Monocyte
hemoattractant protein-1 attracts monocytes and activated

perplasia in atherosclerotic human coronary arteries. In the first stage, the
region of the plaque. Within the first three days after stent placement,
hronic inflammation develops (macrophages, lymphocytes) and persistent
nt. At three months, chronic inflammation remains, and fibrin frequently
ere often is persistent, chronic inflammation close to the struts, and

ls, with a proteoglycan and collagen matrix, has developed. Adapted from
al hy
lular
ays, c
he ste
hs, th
le cel
cells to vessel injury sites.
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Inflammation is a potent and direct stimulus for neoin-
imal thickening, in part through stimulating cell prolifer-
tion (143). Several animal models exhibit inflammation
monocytes/macrophages, lymphocytes, neutrophils) from
tent coatings and drug-releasing polymers. These models
uggest that biomedical polymers in DES applications cause
nflammation to variable degree in proportion to the poly-

er mass on the stent. A major challenge in DES technol-
gy has been to find polymers that can control drug elution
ver the course of time yet incite minimal inflammation.
inor inflammation is presently acceptable, as evidenced in

uidelines for testing DESs. The “perfect” polymer remains
nknown, and all polymers in use today induce some degree
f inflammation. It is for this reason that DESs tested in
nimal models should include quantitative inflammation
easurements. A commonly used quantitative assessment

f inflammation method is by Kornowski et al. (143).
ell migration and proliferation. Cell migration and
roliferation remain ill-defined in both animal models and
n human neointimal hyperplasia. Although cell prolifera-
ion is implicated universally in neointimal hyperplasia, its
uantitative role remains unclear. Early controversies about the
ole played by proliferation remain unresolved (144,145).

Both ionizing radiation and drugs effective against reste-
osis inhibit cell proliferation but have many additional
ellular effects, including inhibiting migration, cell signal-
ng, activation, and secretion, and may impair other impor-
ant reparative features such as angiogenesis (146). These
trategies are effective against neointima in multiple animal
tudies (147,148).

Therapies that are more specifically targeted at prolifer-
tion show less clear results. Gene therapy has been used in
his strategy, for example, to express cell-cycle inhibitors
p21, p27, p53, and Rb) (149–151) or by halting cell cycle
rogression by inhibiting CDK2, cdc2, E2F, PCNA, myc,
nd myb (152–157). These gene-based strategies are mar-
inally successful in animal models and have not been tested
n clinical studies. Current DES success using rapamycin
nd paclitaxel rely on a multitude of cellular targets in
ddition to proliferation (158,159). The relative contribu-
ion of alternative effects is unknown but under investiga-
ion.

IME COURSE OF CORONARY
RTERY HEALING AFTER STENTING

oronary artery healing after stenting is reported for both
he porcine model and in patients. Table 2 summarizes this
nformation. Stent healing in pigs compared with patients
uggests a time comparability of approximately 1:6 porcine:
uman, with pigs healing more rapidly. Reasons for the
ore rapid process in pigs are unclear but may include the

oung age of pigs, normal arteries compared with diseased
uman vessels, and other, as-yet-undetermined factors.
In the porcine model, coronary arteries typically are
tudied at 1, 3, 6, and 12 months. Although these times are M
ow standard, the reasons for time points after one month
rincipally relate to safety because few changes occur in the
ig model beyond this time, with the exception that
eointima thins slightly later in the course of time. An
nproven concept is that safety requires longer follow-up in
igs (presuming good results at one month) and that this
heory might translate to long-term patient safety. The key
o a safety evaluation in pigs is complete arterial healing,
ith thrombus resorption, minimal residual inflammation,

nd complete or near-complete endothelialization.

NGIOGENESIS

nimal models exhibit angiogenesis at arterial lesion loca-
ions (Fig. 3). Marked disorganized angiogenesis occurs at
tented sites in normal, non-diseased arteries for ill-defined
easons. Vascular hypoxia may be one cause and may result
rom the compression of adventitial vasa vasorum. Several
ngiogenic cytokines are upregulated in hypoxia, the most
ell known being hypoxia-inducible factor-1 alpha. Human

therosclerotic lesions are similarly angiogenic, especially in
hronic total occlusions (146,160).

able 2. Time Course Comparison of Events in Porcine and
uman Coronary Stenting

Porcine
Coronary

Model

Human
Stent

Implantation

hrombus 0–14 days 0–30 days
nflammation 1–14 days 0–30 days
ndothelialization and
granulation tissue

4–16 days 14–90 days

mooth muscle cells and matrix
formation

14–28 days 2–6 months

igure 3. Microscopic computed tomography examination of normal (left)
nd stented (middle and right) porcine coronary arteries. Massive angio-
enesis results in a highly vascular but disorganized array of vessels after the
tenting of a normal porcine coronary artery. (Image courtesy Dr. Hyuck
oon Kwon.)
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ESSONS FROM ANIMAL MODELS:
YSTEMIC RESTENOSIS THERAPIES

ost systemic restenosis treatments have failed and the
iterature contains many review articles on this topic (161–
63). The Prevention of REStenosis with Tranilast and its
utcomes (PRESTO) trial, which tested oral tranilast to

imit restenosis, is the most recent. Several animal studies
howed neointimal hyperplasia was reduced in drug-treated
nimals and suggested oral tranilast efficacy. In one study,
abbits fed cholesterol showed inhibition of neointimal area
y tranilast (300 mg/kg) (164). Another study in over-
tretched porcine coronary arteries showed a 37% reduction
n neointimal area normalized to fracture length (147).
hese and several other preclinical studies preceded the
RESTO trial (147,164–166).
Early small clinical trials showed tranilast could inhibit

estenosis, prompting the large, randomized double-blind
RESTO trial of 11,484 patients (167). Primary end points
ere death, myocardial infarction, and ischemia-driven

arget vessel revascularization at nine months. Results
howed a 15.8% event rate for placebo and 15.5% for
ranilast (p � NS). The quantitative coronary angiography
ubstudy comprised 2,018 patients and found that follow-up
inimum lumen diameter (MLD) was 1.76 � 0.77 mm in

he placebo group compared with 1.78 � 0.76 mm (p �
S). Intravascular ultrasonography showed no difference in

laque volume across tranilast doses. Thus, the PRESTO
rial was analogous to events 10 years earlier in the Multi-
enter European Research Trial with Cilazapril after An-
ioplasty to Prevent Transluminal Coronary Obstruction
nd Restenosis (MERCATOR) and Multicenter American
esearch Trial with Cilazapril After Angioplasty to Prevent
oronary Obstruction and Restenosis (MARCATOR) tri-

ls (68). Each of these clinical trials was based on early
reclinical data that were reported to show efficacy of the
rug in question. Subsequent large, randomized clinical
rials failed to show any efficacy.

The literature has many reports of preclinical systemic
herapies that suggest efficacy of various pharmacologic
gents. However, before beginning clinical trials, several
mportant questions must be evaluated. Preclinical studies

ust use comparable drug doses and obtain comparable
rug levels to those planned for clinical trials. Preclinical
tudies should use the same end points as used in clinical
rials, which should include angiographic percent stenosis,
bsolute lumen MLD, late loss, or intravascular ultrasonog-
aphy (IVUS)-based, lumen or neointimal parameters
3,145,168,169). An important reason for false-positive
reclinical results may arise from histopathologic measure-
ents differing from clinical indices. Such preclinical his-

opathologic measurements not available or not used in
linical trials include the intima:media ratio, percent neoin-
imal reduction, or microscopic (but statistically significant)
eointimal area inhibition. Animal model efficacy reports

ay yield different conclusions if angiographic or IVUS Q
arameters were standard. The best animal model metric to
orrelate with clinical data is an area of active investigation.

ESSONS FROM RESTENOSIS MODELS

afety. Animal models play an instrumental role in devel-
ping and improving DES technology, a role that continues
o evolve. Safety is the principal concern for any stent
echnology, and animal models appear useful in its assess-
ent. The critical failure mode for stents is acute, subacute,

r late closure because stent thrombosis nearly always has
atastrophic implications. The porcine coronary stent model
ppears predictive for stent thrombosis. Several early studies
f brachytherapy in pigs suggested that stent thrombosis
ight be a problem. Kaluza and Raizner (170) performed

alloon and stent injury in healthy porcine coronary arteries,
ollowed by intracoronary beta radiation. Five of 10 pigs
iven radiation died (50%) of stent thrombosis, whereas
one died in the control (non-radiated) group. Stent throm-
osis in the porcine coronary model is distinctly unusual,
nd subsequent patient studies of gamma brachytherapy
howed subacute thromboses of up to 14% before the
nderstanding that new stents should not be placed at
rachytherapy sites (171–174). The relationship of porcine
eointima after brachytherapy to comparable human studies

s unclear. Several models show stimulation of neointimal
yperplasia by radiation, whereas clinical studies to date
how no evidence of similar problems, at least in the near
erm.

Neointimal stimulation, rather than its suppression, is a
econd concern for stent safety, especially with DESs.
oxicity induced by high local drug concentration remains

n ongoing concern and can show significant arterial
hanges. Although rabbit iliac arteries implanted with
ctinomycin-D showed good results (Fig. 4), the porcine
oronary model appears to have predicted enhanced neoin-
ima in patients receiving actinomycin-D releasing stents by
howing poor healing and neointimal stimulation (Fig. 5).
hese model studies showed incomplete stent healing,
icrothrombus, incomplete endothelialization, and late
edial necrosis with marked neointimal thickening. The
ctinomycin Eluting Stent Improves Outcomes by Reduc-

ng Neointimal Hyperplasia (ACTION) trial tested
ctinomycin-D elution in a randomized study. The trial was
alted after 90 of 360 planned patients were enrolled and
estenosis rates reached 28% in the highest dose group,
uggesting neointimal stimulation (data shown at ESC
002, Berlin, Germany). High restenosis rates also occurred
n lower-dose groups; 25% and 17% for 2.5 �g and 10 �g
ctinomycin-D, respectively, versus 11% in controls.

Similarly predictive results from animal models were
ound using very high-dose taxane released from a subop-
imal polymer, where the porcine model (Fig. 6) predicted
orse clinical restenosis at 12 months. The Study to
Ompare REstenosis rate between QueST and QuaDS-

P2 (SCORE) trial was stopped after enrolling 266 of 400
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lanned patients because of late events and increased 12-
onth restenosis rates (175).
These combined data suggest the porcine model can

etermine stent safety from both thrombosis and neoin-
imal stimulation perspectives. Increased stent thrombo-
is in porcine coronary arteries should warn investigators
bout increased clinical thrombosis risk. Adverse vascular
athologies showing poor healing, vessel toxicity (for

igure 4. Actinomycin-D studies in rabbit iliac arteries. These images sho
olumns), respectively, compared with control (left column). Lower rows a
ealing present.

igure 5. Porcine coronary arteries at 28 days (top) and 90 days (bottom)
esidual fibrin, inadequate vascular healing, but little mature neointima. At 9
hich occurred over time. The graph at lower right shows neointimal thi
ctinomycin-D elution was stopped prematurely because of elevated major adve
xample, medial necrosis or cell death), absent endothe-
ialization, or neointimal stimulation should be of major
oncern.

ES efficacy. The accuracy of efficacy assessment for
ESs in preclinical testing remains less clear than their

afety. Because restenosis in the stent era is virtually all
eointimal thickening, limiting neointima should translate
irectly from animal models to patients. Unfortunately, this

cellent neointimal inhibition at 8 �g and 25 �g doses (middle and right
her power views, showing that the 25-�g dose appears cytotoxic with poor

ctinomycin-D eluting stent placement. The 28-day data show substantial
s, there is a marked increase in neointimal thickening, greater than control,
s measures for 90-day control and 10-�g datasets. The ACTION trial of
w ex
re hig
after a
0 day
cknes
rse clinical event rates due in part to abnormally high late loss.
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ranslation may not be as direct as desired, and the quanti-
ative relationship between neointima in the porcine model
nd in patients remains poorly defined.

At least two DESs (rapamycin and paclitaxel) show
onvincing restenosis efficacy in patients. Both use a com-
atible polymer for controlled drug release. Suzuki et al.
100) examined rapamycin-eluting stents and compared
hem with bare stents, dexamethasone-eluting, and both
apamycin-eluting and dexamethasone-eluting devices. The
apamycin-eluting stents reduced in-stent neointimal hy-
erplasia at 28 days with a mean neointimal area of 2.47
m2 (rapamycin alone), 2.42 mm2 (rapamycin and dexa-
ethasone), 5.06 mm2 (bare stent), and 4.31 mm2 (dexa-
ethasone alone). Gallo et al. (150) examined intramuscu-

ar rapamycin given to pigs for 14 days after balloon-
nduced injury. The animals were studied 28 days after
ercutaneous transluminal coronary angioplasty and showed
oronary stenoses of 63% and 36%, respectively (lumen area
.74 mm2 vs. 3.3 mm2; control vs. rapamycin). These two
reclinical studies suggest that rapamycin has efficacy
gainst neointimal formation in the porcine artery injury

igure 6. Photomicrographs of porcine coronary arteries at 28 days afte
alifornia) stents. These images show neointimal stimulation by high-dose
ower histomorphometry of mid-stent cross-section shows marked vess
nflammation at sites of the polymer-drug combination in these vessels
nflammation was likely a major cause of the neointimal thickening. (E) C
odel, a suggestion that was confirmed by clinical trials. c
Drachman et al. (176) compared paclitaxel-eluting stents
ith controls in rabbit iliac arteries after balloon denuda-

ion. These investigators found that paclitaxel-eluting stents
arkedly inhibited neointimal thickening at all late time

oints and concluded this technology was effective against
eointima beyond the time of paclitaxel elution.
Preclinical porcine data used for regulatory submission of

he TAXUS stent (Boston Scientific, Natick, Massachusetts)
howed the device was safe but also showed no significant
fficacy reducing neointima at 28 or 90 days compared with
are metal stents. TAXUS stent clinical data show excellent
esults at nine months for limiting restenosis (177). Earlier
tudies of the TAXUS stent are now in their third year and
how major adverse clinical event rates of 3% compared with
0% in bare-metal stents. The comparable porcine model data
how no change at 180 days from 90 days (unpublished data,
ersonal communications). These crude comparisons suggest
hat safety, but not efficacy, can be predicted from low-level
tent injury (balloon:artery ratio 1.1:1 or less) in the porcine
odel. Further analysis of paclitaxel animal model data and

ossibly new models may find application in better predicting

implantation of Quannum-DS (Quanam Medical Corp., Santa Clara,
e in these stents. Similar results occurred in the SCORE clinical trial. Low

en narrowing from neointimal hyperplasia. (B, C, and D) Rampant
own. Several areas of granuloma and hemorrhage (B) are present. The
lm frame of Quannum stent showing marked in-stent restenosis.
r the
taxan
el lum
is sh
linical efficacy.
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UMMARY

hat have we learned from animal restenosis models?
everal important principles summarize restenosis models
or evaluating DES technologies. These are as follows:

. Arterial and vascular injuries remain major determinants
of neointimal thickening, and mechanical stent designs
should limit arterial injury as best as possible.

. Neointimal formation on DESs develops the same as in
bare-metal stents. Thrombus and inflammation play key
roles in forming human neointimal hyperplasia, and the
polymers used in drug eluting stents incite mild inflam-
mation. Optimal polymer selection may help to mini-
mize this inflammation, and healing within DESs
should be documented.

. Although DESs limit neointimal formation, they may
also delay or cause incomplete healing to a greater
degree than in bare-metal stents. This is manifested
clinically as incomplete endothelialization, unresorbed
fibrin deposits, and drug effects typically consisting of
hypocellular tissue near the drug-eluting struts. Because
neointimal hyperplasia is a normal healing response,
some degree of neointima, not obstructive to the lumen,
is a desirable outcome for DESs.

. Animal models, specifically the porcine coronary and
rabbit iliac arteries, provide useful information regarding
stent thrombosis risk in clinical trials and are thus a
measure of safety. All animal studies should carefully
determine causes of unexpected preclinical animal
deaths, and tabulate stent thrombotic events.

. Lumen loss in animal models results from several causes.
These include medial or arterial cell death, inflamma-
tion, and neointimal thickening, results that have cor-
relation in clinical trials. Poor preclinical results man-
date strong caution in initiating clinical trials.

. Efficacy testing in preclinical models has proven difficult
to establish. It is unclear whether this is because current
animal models do not accurately reflect the human
coronary artery response to such stents or whether other
causes need be sought. Prior preclinical studies with
positive results that did not translate to patients may be
due to improper or biased variable selection, or con-
founding effects of vascular injury.

hat must yet be learned from animal restenosis models?
he science of preclinical restenosis models is a rapidly
eveloping field and is undergoing intense study. What
ollows are several key but unanswered questions concerning
estenosis models.

Incompletely healed vessels occur in the preclinical DES
odels. The importance of healing, with incomplete or

bsent endothelialization, unresorbed fibrin deposits, low-
evel inflammation, and medial cell dropout is not well
nderstood. For example, the porcine coronary artery safety
ppears predictive of clinical safety. Actinomycin-D-eluting

tents showed nonhealing to a large degree, stimulating m
orcine neointima. It is uncertain whether improved-yet-
ncomplete healing will similarly enhance neointimal for-

ation.
The best variables to correlate preclinical models with

linical trials are unknown. Correlative research must be
erformed to determine which preclinical variables best
ranslate quantitatively to clinical trials. Clarification of
hether quantitative measurements of MLD, late loss/loss

ndex, and IVUS-based measurements of neointima in the
orcine model will translate well, or if at all, to clinical data.
areful preclinical studies should be conducted for compar-

son with clinical trials. It is suggested in the interim that
ngiographic and IVUS end points may best for study in
atients, and these combined with histomorphometric data
n animal trials should be the best obtainable.

The relative utility of different species is uncertain.
ifferences between rabbit and pig models must be exam-

ned to determine which best translate to patients. This
oint is key in the prediction of human clinical data from
reclinical studies, and we must better understand whether
afety (thrombosis and neointimal stimulation) translate for
ach model to clinical trials.

The optimal time point for termination in animal studies
eeds clarification to best predict human clinical results.
tandard times for animal models are 28, 90, 180, or 365
ays, and early positive animal data may become negative at

ater time points. The time course of arterial healing in
nimal models bears an uncertain relationship to patients
nd also must be better understood so that preclinical
bservations will yield accurate prediction for clinical trials
ith patient data. Model data at two-year to three-year time
oints may need examination and correlation with clinical
esults for accuracy. Additional time points may be impor-
ant, but presently no clear answer is forthcoming. The time
o endothelial recovery for different drug/polymer/stent
onfigurations in injured vessels remains unknown and
eeds determination.
Several preclinical model enhancements are needed.
ore rapid turnaround time would be of substantial benefit

ecause current preclinical data can take nine months or
onger to process and evaluate. It may be possible that
reclinical histomorphometric data (neointimal thickness,
istopathologic percent stenosis, lumen size) can be pre-
icted from preclinical quantitative coronary angiography
nd IVUS in the same animal premortem or postmortem.
hese parameters might provide a link with human data,

nd if true would be a major contribution to research and
evelopment in drug eluting stents.
Preclinical models are important but imperfect standards,

aving served the interventional community well for many
ears. Substantially more remains to be learned, especially
egarding the positive predictive results in such models. Active
esearch is aimed at developing a simple, inexpensive, rapid,
nd accurate preclinical model for human restenosis. This goal
s achievable but will require thoughtful direction. Such a
odel will see rapid adoption for testing, evaluating, and
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rediction and will continue to teach the interventional com-
unity important lessons about revascularization therapy.

eprint requests and correspondence: Dr. Robert S. Schwartz,
inneapolis Heart Institute, Minnesota Cardiovascular Research

nstitute, 920 East 28th Street, Suite 300, Minneapolis, Minnesota
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