
Physics Letters B 756 (2016) 170–179

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Phase transition of holographic entanglement entropy in massive 

gravity

Xiao-Xiong Zeng a,b, Hongbao Zhang c,d, Li-Fang Li e,∗
a School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
b Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
c Department of Physics, Beijing Normal University, Beijing 100875, China
d Theoretische Natuurkunde, Vrije Universiteit Brussel, and The International Solvay Institutes, Pleinlaan 2, B-1050 Brussels, Belgium
e State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 December 2015
Received in revised form 2 March 2016
Accepted 3 March 2016
Available online 7 March 2016
Editor: M. Cvetič

The phase structure of holographic entanglement entropy is studied in massive gravity for the quantum 
systems with finite and infinite volumes, which in the bulk is dual to calculating the minimal surface 
area for a black hole and black brane respectively. In the entanglement entropy–temperature plane, we 
find for both the black hole and black brane there is a Van der Waals-like phase transition as the case 
in thermal entropy–temperature plane. That is, there is a first order phase transition for the small charge 
and a second order phase transition at the critical charge. For the first order phase transition, the equal 
area law is checked and for the second order phase transition, the critical exponent of the heat capacity 
is obtained. All the results show that the phase structure of holographic entanglement entropy is the 
same as that of thermal entropy regardless of the volume of the spacetime on the boundary.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

As any ordinary thermodynamic system, black holes have en-
tropy as well as temperature, and obey the thermodynamical laws 
[1–3]. But differently from the thermal entropy for the ordinary 
system, which is proportional to the volume, the entropy of a 
black hole is proportional to its area of horizon. Among others, 
AdS/CFT correspondence offers us a natural explanation for such a 
seemingly bizarre behavior because it maps a gravitational system 
to an ordinary system on the boundary with one less dimension 
[4–6]. Moreover, in the context of AdS/CFT, not only can the area 
of black hole horizon be understood as the thermal entropy for its 
dual boundary system, but also the area of the bulk co-dimension 
2 minimal surface anchored onto the entangling surface on the 
boundary can be used to calculate the corresponding entanglement 
entropy for the boundary system [7].

Since the entanglement entropy acquires a similar geometric 
description to the thermal entropy in the bulk by holography, it is 
of interest to see whether the entanglement entropy demonstrates 
the similar behavior as the thermal entropy. Especially in the re-
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cent work [8], the authors showed that like the black hole entropy, 
the entanglement entropy also undergoes a Van der Waals-like 
phase transition at the same critical temperature in both the fixed 
charge ensemble and chemical potential ensemble. They also found 
the second order phase transition occurring for the entanglement 
entropy at the same critical point as the thermal entropy with 
nearly the same value as that from thermal phase transition.

In light of these interesting results, this work was then general-
ized to the extended phase space where the cosmological constant 
is considered as a thermodynamical variable, and it was found that 
the entanglement entropy has the similar phase structure as that 
of the black hole entropy too [9]. Very recently, Nguyen has inves-
tigated exclusively the equal area law of holographic entanglement 
entropy and his result showed that, as black hole entropy, the 
equal area law also holds for the entanglement entropy regardless 
of the size of the entangling surface [10]. All of these works re-
inforce the viewpoint that thermal phase transition can also been 
captured by the entanglement entropy somehow.

In this paper, we intend to study the phase transition of holo-
graphic entanglement entropy in massive gravity. The main moti-
vation of this paper is to explore whether the thermal phase tran-
sition in an infinite volume can also be described by holographic 
entanglement entropy, which has not been reported in the liter-
ature until now. Massive gravity, where the graviton is endowed 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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with mass, is one of the gravity theory that attends to modify gen-
eral relativity for it is not UV complete. An important black hole 
solution that is ghost-free in massive gravity has been presented 
recently in [11]. It was found that the graviton plays the same 
role as the lattice in the holographic conductor model. In light 
of this interesting property, Ref. [12] generalized this solution to 
more general cases and studied the corresponding thermal phase 
transition in the grand canonical ensemble and canonical ensem-
ble. The P − V criticality was also investigated in the extended 
phase space [13]. The result shows that the phase transition de-
pends not only on the curvature parameter k but also the graviton 
mass m. In particular, even for the case k = 0, the Van der Waals-
like phase transition may also occur provided a proper parameter 
related to the graviton mass is given. This interesting character is 
the main motivation for us to study phase transition of holographic 
entanglement entropy in this spacetime because it provides a back-
ground with infinite volume on the boundary in which the Van der 
Waals-like phase transition can take place.

The organization of this paper is as follows. In the next sec-
tion, after a brief review of the black hole solution in massive 
gravity, we will study the thermal phase transitions and critical 
phenomena for a black hole and black brane in the fixed charge 
ensemble,respectively. In both spacetimes, the equal area laws are 
checked and the critical exponents are calculated. In Section 3, 
we will concentrate mainly on studying the phase transition of 
holographic entanglement entropy in the entanglement entropy–
temperature plane. For both the black hole and black brane, we 
find the equal area law is valid and the critical exponent of the 
heat capacity in the neighborhood of the critical point is the same 
as that obtained from the thermal phase transition. The last sec-
tion is devoted to our conclusions and discussions.

2. Black hole solutions in massive gravity and thermal phase 
transition

The action for an (n + 2)-dimensional massive gravity is given 
by [11]

S = 1

16πGn+2

∫
dn+2x

√−g[R + n(n + 1)

l2
− 1

4
Fμν F μν

+ m2
4∑
i

ciUi(g, f )]. (2.1)

Here Gn+2 is the Newton’s gravitational constant, which will be 
set to 1 later on. In addition, m is the graviton mass, l is the 
AdS radius, f is the reference metric. Here the reference metric 
is given by fμνdxμdxν = hijdxidx j , where hijdxidx j is the line el-
ement for a 2-dimensional Einstein space with constant curvature 
2k, k = −1, 0, 1 corresponds to a sphere, flat, or hyperbolic horizon 
for the spacetime, individually. Fμν = ∂μ Aν − ∂ν Aμ , ci are con-
stants and Ui are symmetric polynomials of the eigenvalues of the 
(n + 2) × (n + 2) matrix Kμ

ν ≡ √
gμα fαν , i.e.,

U1 = [K],
U2 = [K]2 − [K2],
U3 = [K]3 − 3[K][K2] + 2[K3],
U4 = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4], (2.2)

in which [K] = Kμ
μ . Starting from the action in (2.1), Ref. [12] has 

recently got the solution of black holes in such a massive gravity 
as

ds2 = − f (r)dt2 + f −1(r)dr2 + r2hijdxidx j, i, j = 1,2,3, · · · ,n

(2.3)
with a chemical potential

μ = Q

(n − 1)rn−1+
, (2.4)

in which

f (r) = k + r2

l2
− M

rn−1
+ Q 2

2n(n − 1)r2(n−1)
+ c0c1m2

n
r + c2

0c2m2

+ (n − 1)c3
0c3m2

r
+ (n − 1)(n − 2)c4

0c4m2

r2
, (2.5)

r+ is the event horizon which satisfies f (r+) = 0, M is the black 
hole mass, and Q is the black hole charge. In this paper, we 
only consider the four-dimensional spacetime, namely c3 = c4 = 0
as shown in [12]. For convenience, we will relabel the remanent 
graviton mass dependent parameters, c0c1m2/2, c2

0c2m2, as a, b
respectively later in this paper.

The thermal phase structure of the spacetime in (2.3) has been 
investigated extensively [12,13]. In this paper, we are interested in 
the Van der Waals-like phase transition.1 To compare the thermal 
entropy phase transition with entanglement entropy phase transi-
tion directly, we focus only on the phase transition taking place at 
the T –S plane. In particular we will discuss the phase structure of 
the thermal entropy and entanglement entropy for both the black 
hole and black brane, namely k = 1 and k = 0 in (2.5).2

2.1. The case of k = 1

In this case, the metric in (2.5) can be simplified as

f (r) = 1 − 2M

r
+ Q 2

4r2
+ r2

l2
+ ar + b. (2.6)

The temperature and entropy of the black hole are

Tbh = f (r)′

4π
|r+= 12r4+ + l2

(−Q 2 + 4r2+(1 + b + 2ar+)
)

16l2πr3+
, (2.7)

S = πr2+. (2.8)

Substituting (2.8) into (2.7) and eliminating the parameter r+ , we 
can get the relation between the temperature Tbh and entropy S , 
namely

Tbh = 12S2 + l2
(−π2 Q 2 + 4(1 + b)π S + 8a

√
π S3/2

)
16l2π3/2 S3/2

. (2.9)

Based on this relation, one can plot the isocharge curves on the 
Tbh–S plane for a given charge. The plot is presented in Fig. 1, 
which is obviously similar to that of the Van der Waals phase 
transition. As can be seen from this plot, for different charges, the 
curves behave differently. For the small charge in (a), we can see 
that the curve is not monotonic. According to the definition of the 
specific heat capacity

C Q = Tbh
∂ S

∂Tbh
|Q , (2.10)

we know that the specific heat capacity changes from positive to 
negative and then to positive again. That is, for an intermediate 

1 This behavior can be observed in both the T –S plane in general phase space 
and P –V plane in extended phase space, where the cosmological constant is viewed 
as a dynamical pressure of the black hole system. It has been pointed out that these 
two perspectives are related to each other by a duality similar to the T-duality of 
string theory [14].

2 In principle the case of k = −1 can also be analysed, but in practice it is hard 
to choose a proper entangling surface to implement the calculation.
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Fig. 1. Relation between the entropy and temperature for a black hole in a fixed charge ensemble. The red dotted lines in (a) and (b) correspond to the locations of first 
order phase transition and second order phase transition.
range of event horizon r+ the black hole is thermodynamically un-
stable. In other words, there are three holes competing thermody-
namically. The smallest hole continues to win until a temperature 
T� , above which the system jumps to the large hole. As stressed in 
[15], this kind of transition is a first order phase transition. When 
the charge increases to the critical charge, the smallest hole and 
the largest hole merge into one and squeeze out the unstable black 
hole. So there is an inflection point in the Tbh–S plane, which is 
shown in (b) of Fig. 1. One can see that the specific heat capacity 
is divergent at the inflection point and it has been shown that this 
phase transition is a second order phase transition. At the inflec-
tion point, the critical charge and critical entropy are determined 
by the following equations

(
∂Tbh

∂ S
)Q = (

∂2Tbh

∂ S2
)Q = 0. (2.11)

Substituting (2.9) into (2.11), we find the critical charge, critical 
entropy and critical temperature

Q c = l(1 + b)

3
, (2.12)

Sc = l2(1 + b)π

6
, (2.13)

Tc = 4 + 4b + √
6a

√
(1 + b)l2√ √

2
. (2.14)
2 6 (1 + b)l π
Obviously these critical parameters depend on the parameters as-
sociated with the graviton mass.3 As a and b vanish, these values 
are the same as that of the AdS-RN black hole. As b > −1, we can 
observe that there is always a Van der Waals-like phase transition. 
In this paper, we choose a = b = 1, and for convenience, we also 
set the AdS radius l = 1.

For the first order phase transition, we will check whether 
Maxwell’s equal area law holds in this background. The first or-
der transition temperature T� plays an important role on the equal 
area law. To find T� , we first plot the curve about the free en-
ergy F = M − T S [12] with respect to the temperature T . The 
plot is shown in Fig. 2. We see that there is a swallowtail struc-
ture, which corresponds to the unstable phase in (a) of Fig. 1. 
The non-smoothness of the junction indicates that the phase tran-
sition is a first order. The critical temperature T� is apparently 
given by the horizontal coordinate of the junction. From Fig. 2, 
we find T� = 0.549. Substituting this temperature into (2.9), we 
can get three values of the entropy S1 = 0.210442, S2 = 0.977147, 
S3 = 2.93091. With these values, we can now check Maxwell’s 
equal area law, which states

3 In this paper, we are not interested in the effect of the graviton mass on the 
critical behavior, for more information about this topic please see [12,13].
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Fig. 2. Relation between the free energy and temperature for a black hole at Q =
1.5/3. The intersection point between the red dotted line and horizontal coordinate 
is the temperature of first order phase transition.

T�(S3 − S1) =
S3∫

S1

Tbh(S, Q )dS. (2.15)

After simplying the whole calculation, we find both the left and 
right of (2.15) equal to 1.49354 exactly. Thus, Maxwell’s equal area 
law is verified in this background.

For the second order phase transition, we are interested in 
the critical exponent associated with the heat capacity defined 
in (2.10). Near the critical point, we write the entropy as S =
Sc + δ, where Sc is defined in (2.13). Expanding the temperature 
in small δ, we find

Tbh =
12S2

c + l2
(
−π2 Q 2 + 4(1 + b)π Sc + 8a

√
π S3/2

c

)
16l2π3/2 S3/2

c

+
(
12S2

c + l2π
(
3π Q 2 − 4(1 + b)Sc

))
δ

32l2π3/2 S5/2
c

+ 3
(−4S2

c + l2π
(−5π Q 2 + 4(1 + b)Sc

))
δ2

128l2π3/2 S7/2
c

+
(
12S2

c + 5l2π
(
7π Q 2 − 4(1 + b)Sc

))
δ3

256l2π3/2 S9/2
c

. (2.16)

Near the critical point, the first term on the right is the critical 
temperature, the second and third terms vanish according to (2.11). 
So we get

Tbh − Tc =
(
12S2

c + 5l2π
(
7π Q 2 − 4(1 + b)Sc

))
256l2π3/2 S9/2

c

(S − Sc)
3.

(2.17)

With the definition of the heat capacity, we further find Cq ∼
(Tbh − Tc)

−2/3, namely the critical exponent is −2/3, which is the 
same as the one from the mean field theory.

2.2. The case of k = 0

For the case k = 0, the spacetime we are considered is a black 
brane. The Hawking temperature is

Tbb = − Q 2 − 4r2+(b + r+(2a + 3r+))

16πr3
. (2.18)
+

Replacing the event horizon r+ by the entropy S , (2.18) can be 
rewritten as

Tbb = −π2 Q 2 + 4bπ S + 8a
√

π S3/2 + 12S2

16π3/2 S3/2
, (2.19)

whereby, we can also observe the Van der Waals-like phase transi-
tion, which is presented in Fig. 3. Based on (2.11), we can also get 
the critical charge, critical entropy and critical temperature

Q c = b/3, (2.20)

Sc = bπ

6
, (2.21)

Tc = 3a + 2
√

6
√

b

6π
. (2.22)

It is obvious that these critical values depend on the parameters 
associated with the graviton mass. As a and b vanish, the Van der 
Waals-like phase transition disappears. That is, in Einstein gravity, 
this is no Van der Waals-like phase transition for an AdS-RN black 
brane.

To check Maxwell’s equal area law, we should find the first or-
der phase transition temperature T� from the F − Tbb plot, which 
is shown in Fig. 4. Reading from the horizontal coordinate of 
the junction, we find T� = 0.4316. Substituting this temperature 
into (2.19), we get S1 = 0.131235, S3 = 1.32697, where S1, S3
are the smallest and largest roots of equation Tbb = T� . Substi-
tuting these values to (2.15), we find the left equals 0.5161 and 
the right equals 0.5162. Obviously both the left and the right are 
equal nearly within our numerical accuracy, which indicates that 
Maxwell’s equal area law is satisfied in this background.

Similarly we can also get the critical exponent for the second 
phase transition in (b) of Fig. 3. Writing the entropy as S = Sc + δ

and expanding the temperature in small δ, we find

Tbb − Tc =
(
35π2 Q 2 − 20bπ Sc + 12S2

c

)
256π3/2 S9/2

c

(S − Sc)
3, (2.23)

where we have used (2.11). This relation is similar to that of the 
black hole. That is to say, the critical exponent is −2/3 too.

3. Holographic entanglement entropy and its phase structure

Having understood the phase structure of a black hole and 
black brane in massive gravity from the viewpoint of thermody-
namics, we will study entanglement entropy in both spacetimes. 
The main motivation is to check whether entanglement entropy 
has the similar phase structure as that of the thermal entropy.

For a given quantum field theory described by a density matrix 
ρ , entanglement entropy for a region A and its complement B is 
defined as

S A = −Tr A(ρA lnρA), (3.1)

where ρA = TrB(ρ) is the reduced density matrix. Usually it is 
not easy to calculate this quantity in field theory. But from the 
viewpoint of holography, Ref. [7] gave a very simple geometric de-
scription for computing S A for static states in terms of the area of 
a bulk minimal surface anchored on ∂ A, which states that

S A = Area(γ )

4
, (3.2)

where γ is the codimension-2 minimal surface with boundary 
condition ∂γ = ∂ A. Here we will still use (3.2) to calculate en-
tanglement entropy and study the corresponding phase structure 
for preliminary study.
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Fig. 3. Relation between the entropy and temperature for a black brane in a fixed charge ensemble. The red dotted lines in (a) and (b) correspond to the locations of first 
order phase transition and second order phase transition.
3.1. Phase transition of entanglement entropy in a finite volume system

For a black hole, the space on the boundary is a round. The 
volume of the space is finite in this case. To avoid the entangle-
ment entropy to be affected by the surface that wraps the horizon, 
we will choose a small region as A. To be more precise, as done 
in [15,16], we choose the region A to be a spherical cap on the 

Fig. 4. Relation between the free energy and temperature for a black brane at Q =
0.8/3. The intersection point between the red dotted line and horizontal ordinate is 
the temperature of first order phase transition.
boundary delimited by θ ≤ θ0. In this case the area can be written 
as

A = 2π

θ0∫
0

L(r(θ), θ)dθ, L = r sin θ

√
(r′)2

f (r)
+ r2, (3.3)

in which r′ = dr/dθ . Imagining θ as time, and treating L as the 
Lagrangian, one can get the equation of motion for r(θ) by mak-
ing use of the Euler–Lagrange equation. It seems to be impossible 
to get the analytical solution of r(θ), so we will solve it numeri-
cally with the boundary conditions r′(0) = 0, r(0) = r0. With the 
numerical result of r(θ), we can easily obtain the area and further 
entanglement entropy. Note that the area is divergent, so it should 
be regularized by subtracting off the area in pure AdS with the 
same entangling surface on the boundary. In Einstein gravity, one 
can often get an analytical solution of the minimal surface in the 
pure AdS. In our massive gravity, we find that the spacetime for 
the pure AdS is given by4

dS2 = −(1 + r2

l2
+ ar + b)dt2 + 1

(1 + r2

l2
+ ar + b)

dr2

+ r2(dθ2 + sin2 θdφ2). (3.4)

4 Note that in this case, the space is not strictly a pure AdS, but for convenience 
we also call it pure AdS.
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Fig. 5. Relation between the entanglement entropy and temperature for a black hole in a fixed charge ensemble. The boundary is located at θ0 = 0.1. The red dotted lines in 
(a) and (b) correspond to the locations of first order phase transition and second order phase transition.
It is obvious that the parameters related to the graviton mass af-
fect the structure of the pure AdS. The analytical result for the 
pure AdS in Einstein gravity thus cannot be used and we obtain 
the corresponding minimal surface for the pure AdS in our massive 
gravity by numeric strategy too. We label the regularized entan-
glement entropy as δS . For the numerical computation, we choose 
θ0 = 0.1 and θ0 = 0.16. The UV cutoff in the dual field theory is set 
to be r(0.099) and r(0.159) by holography respectively. To com-
pare with the phase transition of thermal entropy, we will study 
the relation between the entanglement entropy and Hawking tem-
perature, which is regarded as the temperature of the dual field 
theory. The numeric results for θ0 = 0.1 and θ0 = 0.16 are shown 
in Fig. 5 and Fig. 6 respectively. We can see that for a given charge, 
the relation between the entanglement entropy and temperature 
is similar to that between the black hole entropy and temperature. 
That is, there is a critical charge and below it the first order phase 
transition occurs. In this case there is an unstable hole interpolat-
ing between a small and a large stable hole. As the temperature 
grows to the critical temperature T� , the small black hole jumps 
to the large black hole. As the charge grows to the critical charge, 
the small hole and the large hole merge so that the unstable hole 
shrinks into an inflection point where the second order phase tran-
sition occurs. For a large enough charge, a large stable black hole 
forms and the entanglement entropy grows monotonically as the 
temperature increases. Comparing Fig. 5 with Fig. 6, we find the 
profile for different sizes of entangling surface seems to be the 
same, which indicates that the phase structure of entanglement 
entropy does not depend on the size of entangling surface.
For the first order phase transition of the entanglement en-
tropy, we now check whether Maxwell’s equal area law holds. For 
the case θ0 = 0.1, we first construct an Interpolating Function of 
the temperature T (δS, Q ) using the data obtained numerically.5

At the first order phase transition point, we find the smallest 
and largest roots for the equation T = T� are δS1 = 0.000136338, 
δS3 = 0.00128997. Substituting these values into the equal area 
law

T�(δS3 − δS1) =
δS3∫

δS1

T (δS, Q )dδS, (3.5)

we find the left equals 0.0006333 and the right equals 0.0006337. 
Obviously both the left and the right are equal within our numer-
ical accuracy. Similarly, for the case θ0 = 0.16, we find the left 
equals 0.002625 and the right equals 0.002627, which also indi-
cates that the equal area law is satisfied.

Now let’s turn to the critical exponent of the second order 
phase transition of the entanglement entropy. Similar to the defi-
nition of specific heat capacity in thermodynamics, we also define 
an analogous specific heat capacity for entanglement entropy

CQ = Tbh
∂δS

∂Tbh
|Q . (3.6)

5 Though the entanglement entropy resembles the black hole entropy, they have 
different function dependence of temperature.
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Fig. 6. Relation between the entanglement entropy and temperature for a black black hole in a fixed charge ensemble. The boundary is located at θ0 = 0.16. The red dotted 
lines in (a) and (b) correspond to the locations of first order phase transition and second order phase transition.
Fig. 7. Plot of log | Tbh − Tc | versus log | δS − δSc | based on 45 points closest to the 
inflection point in Fig. 5(b).

Provided a similar relation as that in (2.17) is satisfied, then with 
(3.6) we can get the critical exponent of phase transition of entan-
glement entropy. Here we are interested in the logarithm of the 
quantities Tbh − Tc , δS − δSc , in which Tc is the critical tempera-
ture in (2.14) and δSc is the critical entropy obtained numerically. 
Taking the case θ = 0.1 as an example, the linear relation is shown 
in Fig. 7 and the analytical relation can be fitted as

log | Tbh − Tc |= 15.0607 + 2.983 log | δS − δSc | . (3.7)
Obviously the slope is about 3, therefore the critical exponent for 
the second order phase transition of entanglement entropy agrees 
with that of the thermal entropy.

3.2. Phase transition of entanglement entropy in an infinite volume 
system

As have seen in Section 2.2, for a black brane in massive grav-
ity, there exists a Van der Waals-like phase transition, which does’t 
exist in Einstein gravity. So we will study entanglement entropy in 
this spacetime to check whether the phase structure of entangle-
ment entropy resembles that of the thermal entropy.

To study the entanglement entropy, we should choose a proper 
region for A. Here we choose a rectangular strip parametrized by 
the boundary coordinates (x1, x2) with the assumption that this 
infinite strip is invariant under the x2-direction. In order to make 
the notation as simple as possible, we would like to rename this 
exceptional coordinate x1 as x and employ it to parameterize the 
minimal area surface such that the entanglement entropy in this 
background can be written as

A = L

�/2∫
r

√
(r′)2

f (r)
+ r2dx, (3.8)
−�/2
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Fig. 8. Relation between the entanglement entropy and temperature for a black black brane in a fixed charge ensemble. The boundary separation is � = 1.2. The red dotted 
lines in (a) and (b) correspond to the locations of first order phase transition and second order phase transition.
in which L is length of the minimal surface along the x2-direction 
which is set to be 1 here, � is the boundary separation connected 
by two boundary points: (t0, −�/2), (t0, �/2), r′ = dr/dx and

f (r) = −2M

r
+ Q 2

4r2
+ r2

l2
+ ar + b. (3.9)

The integrand in (3.8) can be thought as the Lagrangian L of a fic-
titious system with x the proper time. Since the Lagrangian does 
not depend explicitly on x, there is an associated conserved quan-
tity, which is useful for us to get the following equation of motion 
of r(x)

4r(x)2 f (r)2 − 2 f (r)r′(x)2 + r(x)r′(x)2 f ′(r) − 2 f (r)rr′′(x) = 0.

(3.10)

To solve r(x), we use the boundary conditions

r(0) = r0, r′(0) = 0. (3.11)

Substituting the numerical result of r(x) into (3.8), we can get the 
area and further the entanglement entropy. We are also interested 
in the regularized entanglement entropy δS ≡ S − S0, where S0
is entanglement entropy in the pure AdS space of our massive 
gravity, which is not amenable to analytical calculation but can 
be obtained by our numerical strategy. In what follows, we are 
interested in the cases � = 1.2, � = 2.2. The UV cutoff is set to 
be r(1.19) and r(2.19). The numerical results are shown in Fig. 8
and Fig. 9. We can see that the behavior of the curves in Fig. 8
or Fig. 9 is reminiscent of that in Fig. 3. Namely in the Tbb–δS
phase space, the phase structure of entanglement entropy depends 
on the charge of the black brane. As the charge grows from small 
to large enough, the first order phase transition and second order 
phase transition occur successively, and a stable black brane forms 
lastly.

We can also check whether Maxwell’s equal area law holds 
for the first order phase transition in (a) of Fig. 8 and Fig. 9. 
For the case � = 1.2, the smallest and largest roots for the equa-
tion T (δS, Q ) = T� are δS1 = 0.167805, δS3 = 0.403158, where 
T (δS, Q ) is an Interpolating Function and T� is the critical temper-
ature of the first order phase transition. Substituting these values 
into (3.5), we find the left equals 0.10080 and the right equals 
0.10076. Similarly, for the case � = 2.2, the left and right of (3.5)
are found to be 0.20568 and 0.20565 respectively. It is obvious 
that the equal area law is satisfied and its validity is independent 
of the boundary separations.

We can also get the critical exponent of the heat capacity in 
the neighborhood of the critical point for the second order phase 
transition, which is shown in (b) of Fig. 8 or Fig. 9. Taking the 
case � = 1.2 as an example. According to the numeric result of the 
entanglement entropy-temperature curve, we first construct an In-
terpolating Function T (δS, Q ). At the critical temperature, we ob-
tain the critical entropy δSc by solving the equation T (δS, Q ) = Tc , 
where Tc is defined in (2.18). The relation between log | Tbb − Tc |
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Fig. 9. Relation between the entanglement entropy and temperature for a black black brane in a fixed charge ensemble. The boundary separation is � = 2.2. The red dotted 
lines in (a) and (b) correspond to the locations of first order phase transition and second order phase transition.
Fig. 10. Plot of log | Tbh − Tc | versus log | δS − δSc | based on 31 points closest to 
the inflection point in Fig. 8(b).

and log | δS − δSc | is plotted in Fig. 8. This curve can be fitted as 
(see Fig. 10)

log | Tbh − Tc |= 6.29083 + 3.01454 log | δS − δSc | . (3.12)

It is obvious that the slope equals to 3 nearly. In other words, 
for entanglement entropy in quantum system with infinite volume, 
the critical exponent of the heat capacity also agrees with that of 
the thermal entropy.
4. Conclusions

In this paper, we have studied the phase structure of holo-
graphic entanglement entropy in massive gravity. Our result shows 
that the phase structure of holographic entanglement entropy is 
the same as that of the thermal entropy regardless of the volume 
of a spacetime on the boundary. So one is suggested to use the 
behavior of holographic entanglement entropy to identify the ther-
mal phase transition. But maybe more importantly, one should be 
encouraged by these accumulated evidences to find a general proof 
for such a coincidence between the holographic entanglement en-
tropy and thermal entropy.
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