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Abstract

We consider the numerical computation of stationary distributions for level dependent quasi-birth-and-death pro-
cesses. An algorithm based on matrix continued fractions is presented and compared to standard solution techniques.
Its computational efficiency and numerical stability is demonstrated by numerical examples.
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1. Introduction

In many applications of multi-dimensional Markov chains, an appropriate numbering of the states yields a chain
with block-tridiagonally structured generator or transition probability matrix, that is a quasi-birth-and-death process
(QBD). QBDs are well suited for modeling various population processes as the abstract term of a population is
interpreted in a wide sense. They apply to a diversity of biological, social, economic and technical processes such as
cell growth, biochemical reaction kinetics, epidemics, demographic trends, or queueing systems, amongst others. For
complex systems where no explicit expressions can be obtained, there is a great interest in numerical analysis.

If all but boundary blocks are identical, then the QBD is said to be level independent and matrix-geometric
techniques [1, 2, 3] provide a powerful machinery. However, level dependent QBDs are often more realistic and
while efficient and stable numerical solution techniques are available for level independent QBDs, there are only a
few approaches that try to exploit the block structure in the level dependent case [4, 5]. Since their numerical stability
is not in general guaranteed one often resorts to numerical solution approaches for general Markov chains [6, 7]
without taking advantage of the specific QBD structure.

We consider an algorithm for computing stationary distributions of level dependent QBDs based on matrix contin-
ued fractions (MCFs). Our description is focused on the continuous-time case but the algorithm applies analogously
to the discrete-time case. Essentially, the algorithm relies on an appropriate generalization of continued fractions to
matrices, the convergence of such MCFs if a certain subdominant solution of a second-order vector-matrix recursion
exists, and a transformation of the system of equations for the stationary distribution of CTMCs into a first-order re-
currence scheme. The relation of MCFs to first-order linear recurrence systems is provided by [8] and the connection
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to Markov chains as well as its usefulness for analyzing queueing models is exploited in [9, 10]. For the general
theory of MCFs, see [11, 12, 13].

In the remainder of this paper, we describe the MCF algorithm in Section 2 and provide numerical examples and
comparisons to general (not requiring structured generator matrices) numerical solution approaches for Markov chains
in Section 3. Finally, Section 4 concludes the paper and outlines further research directions.

2. Matrix continued fraction algorithm

Let (Xt)t≥0 be an ergodic level dependent QBD, that is an ergodic CTMC with block-tridiagonally structured
generator matrix

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q00 Q01

Q10 Q11 Q12

Q21 Q22 Q23

. . .
. . .

. . .

QN−1,N−2 QN−1,N−1 QN−1,N

QN,N−1 QNN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

where Qn,n+1 ∈ Rdn×dn+1 , Qnn ∈ Rdn×dn , and Qn,n−1 ∈ Rdn×dn−1 .
Note that in the literature QBDs are often defined as two-dimensional Markov chains with block-tridiagonal gen-

erator matrices. Though we shall focus on examples with two-dimensional state spaces when presenting numerical
results in Section 3, we emphasize that in general we do not need any restrictions with regard to the dimensionality of
the state space but only require a block-tridiagonal generator matrix. That is, we define a (continuous-time) QBD as a
CTMC (Xt)t≥0 = (Nt,Ct))t≥0 with state space S = N × S′,S′ ⊆ Nd, d ∈ N where Nt is called the level component, Ct

is the control component and direct state transitions are only possible between states whose level components differ
by less than one. Then an appropriate numbering of the states yields the desired block-tridiagonal generator matrix.

The specific structure of Q shall be used to construct a fast and numerically stable algorithm for computing the
solution x of xQ = 0 which is unique up to a constant factor. By normalizing, the stationary distribution π is obtained.
The system of equations xQ = 0 is equivalent to the system of second-order vector-matrix difference equations

x0Q00 + x1Q10 = 0, (2)

xn−1Qn−1,n + xnQnn + xn+1Qn+1,n = 0, n = 1, . . . ,N − 1, (3)

xN−1QN−1,N + xN QNN = 0 (4)

with row vectors xn ∈ Rdn and x = (x0, x1, . . . , xn). If Q−1
n,n−1 exists for all n = 1, . . . ,N, in particular dn = d for all

n = 0, . . . ,N, then

x1 = −x0Q00Q−1
10 , (5)

xn+1 = −xn−1Qn−1,nQ−1
n+1,n − xnQnnQ−1

n+1,n, n = 1, . . . ,N − 1, (6)

from which we can obtain x1 = x0F1, . . . , xN = x0FN with matrices F1, . . . , FN . Substituting in the last equation
yields x0(FN−1QN−1,N + FN QNN) = 0 and we can compute x0.

However, apart from the fact that Q−1
n,n−1 does not exist in many applications, this algorithm of directly for-

ward computing is numerically cumbersome and extremely unstable, because the solution of the difference equation
xn−1Qn−1,n + xnQnn + xn+1Qn+1,n = 0, which is compatible with the boundary conditions, is dominated by some other
solutions. This holds as well for the similar backward computing algorithm. The MCF algorithm on the other hand
transforms the second-order vector-matrix difference equation into a first-order recurrence scheme, that is xn+1 = xnRn

for n = 0, . . . ,N − 1. Substituting this recursion into the difference equations yields

xN−1
(
QN−1,N + RN−1QNN

)
= 0, (7)

xn−1
(
Qn−1,n + Rn−1Qnn + Rn−1RnQn+1,n

)
= 0, n = 1, . . . ,N − 1, (8)

x0 (Q00 + R0Q10) = 0. (9)
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The first equations can be used to compute recursively

RN−1 = −QN−1,N Q−1
NN , (10)

Rn−1 = −Qn−1,n
(
Qnn + RnQn+1,n

)−1 , n = 1, . . . ,N − 1. (11)

Then x0 can be estimated by solving the last equation. By iterating xn+1 = xnRn for n = 0, . . . ,N − 1 we obtain the
solution x and normalizing yields the stationary distribution.

The first similar algorithm for finite QBDs due to Gaver et. al. [4] is based on the backward recursion xn = xn+1Rn

leading to a forward recursion for the Rn. It has the disadvantage that it is not capable of solving infinite systems with,
e.g., a state space truncation method or any other straightforward extension. Bright and Taylor [5] have developed
an algorithm applicable to infinite level dependent QBDs and give a ’physical interpretation’ of the matrices Rn by
identifying the matrix coefficients as conditional expected state sojourn times. From that, it can be shown that Q−1

NN

and
(
Qnn + RnQn+1,n

)−1 exist as well as a nontrivial root x0 of x0 (Q00 + R0Q10) = 0, which is unique up to a constant
factor. Gaver et. al. [4] as well as Bright and Taylor [5] point out that for their methods there is a risk of overflow or
underflow errors in the recursive computations of the matrices Rn such that numerical stability cannot be guaranteed.

An interpretation of the Rn as MCFs is due to Hanschke [10]. The main difference between a corresponding al-
gorithm for the analysis of a QBD-type queueing model provided by Hanschke [10] and the method of Bright and
Taylor [5] is the initial value for the recursive computation of the Rn if Q is infinite. While Bright and Taylor [5]
attempt to approximate RN before invoking the main algorithm, Hanschke [10] chooses RN = 0 for a large N, which
we adapt here for general level dependent QBDs. Altogether we get

Algorithm

• Compute RN−1 = −QN−1,N Q−1
NN ;

• Iterate Rn−1 = −Qn−1,n
(
Qnn + RnQn+1,n

)−1 for n = N − 1,N − 2, . . . , 1;

• Estimate a solution π0 � 0 of π0 (Q00 + R0Q10) = 0;

• Iterate πn+1 = πnRn for n = 0, . . . ,N − 1;

• Renormalize π.

In practice, for the estimation of π0 one column of Q00 + R0Q10 is simply ignored and one component of π0 is fixed,
for example π01 = 1. Note that the algorithm can be easily applied to QBDs with infinite state spaces. The algorithm
can also be used if Q is the northwest-corner-truncation of an infinite generator matrix Q̃. An augmentation of the row
sums to zero is not necessary if N is chosen large enough.

2.1. Memory-efficient implementation

For all examples we considered in a preliminary study the MCF algorithm is much faster than the Gaussian
elimination and standard iterative methods (power method, Jacobi, Gauss-Seidel), but it turns out that with a too
crude ’direct’ implementation a disadvantage compared to the iterative methods is the larger memory requirement.

The matrix Q is often very sparse, that means in each row and in each column there are only m nonzero components
with m about 3 to 6. This holds for the iteration matrix, too, and it preserve sparsity such that it can be stored using
sparse matrix storage techniques, where the positions (4 bytes each for row index and column index) and the value of
the matrix coefficient (8 bytes) is stored. In this manner each nonzero value requires 16 bytes. In our examples it is
d0 = d1 = d2 = . . . = d, the number of blocks is N + 1. Altogether the storage of the iteration matrix requires about
16 · m · (N + 1) · d bytes.

On the other hand for the MCF algorithm we have to store the matrices R0,R1, . . . ,RN−1, which are usually not
sparse and have to be stored in the standard way. Doing so and storing each value with 8 bytes we require 8 · N · d2

bytes for the MCF algorithm. Additionally, in both cases we require 8 · (N + 1) · d bytes for the storage of the
current approximation π(n) and the solution π respectively. Because this is the same for all algorithms we ignore this
requirement in further comparison.
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A simple idea for reducing the memory requirement of the MCF algorithm is not to store all the Rn but only
R0,RK ,R2K , . . .. R0 is used to compute π0 and π1. Then starting with RK we again compute RK−1,RK−2, . . . ,R1 and
π2, . . . , πK+1 subsequently. Afterwards, starting with R2K we compute R2K−1,R2K−2, . . . ,RK+1 and πK+2, . . . , π2K+1. In
this way we only need memory for storing K + N

K matrices at the same time. The number K + N
K of course is small for

K ≈ √N and this choice leads us to a memory requirement for 2
√

N matrices of size d×d, that means about 16
√

Nd2

bytes. If m
√

N > d the MCF algorithm using this storage scheme requires less memory than the iterative methods.
Of course, the method described above implies that the computing time grows. The worst case behavior would be a
doubling of the computing time, but we will see in the examples that for N >> d not that much additional time is
required. Even with this storage scheme the MCF algorithm is much quicker than the iterative methods.

3. Numerical Examples

For the purpose of comparing the MCF algorithm with standard solution algorithms for Markov chains we have
considered Gaussian elimination, the power method on the uniformized DTMC which has the same stationary distri-
bution as the CTMC, the Jacobi iteration method, and the Gauss-Seidel iteration method, see, e.g., [6, 7] for details.

The methods were implemented in Matlab using the sparse matrix operations for all methods. The iterative
methods were terminated as soon as the total difference

∣∣∣
∣∣∣π(n+1) − π(n)

∣∣∣
∣∣∣ of two successive iterates was smaller than

10−16. We compared the computing time and the memory requirement dependent on the number of levels N and
dependent on the block size d = d0 = d1 = . . . = dN .

3.1. Erlang/M/∞ Queue

Our first model is a specific PH/M/∞ queue, that is a queueing system with phase-type distributed interarrival
times, exponential service times, and infinitely many servers. It can be modeled as a two-dimensional Markov chain
with states (n, k) where n is the number of customers and k is the exponential phase of the interarrival time distribution
for the next arriving customer. The phase-type distribution is specified by an initial distribution α and the generator
matrix (

T t
0 0

)

of an absorbing Markov chain. Using these notations we get Qnn = T − nμI, Qn,n+1 = tα and Qn,n−1 = nμI. As a
simple example we chose an Erlang distribution, defining α = (1, 0, . . . , 0),

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ λ
−λ λ

. . .
. . .

−λ λ
−λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
λ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with λ = 8 and μ = 3. For the dependence on N we additionally fixed d = 10 and chose truncation levels N from 100
(Q has the size 1010× 1010) to 1000 (Q has the size 10010× 10010). For the dependence on d we fixed N = 100 and
chose d = 10, 20, 30, 40.

Numerical results for different truncation levels and different numbers of phases are depicted in Figures 1–4. In
particular, we note that the Jacobi iteration method did not converge at all. Terminating the iteration after 60 seconds
for N = 100 produced an error of ||πQ|| ≈ 0.03. Even direct forward computing produces a smaller error of about
10−7. Direct backward computing is not possible for Q−1

n,n+1 does not exist.

3.2. A Telecommunications model with impatient customers

Our next model is a telecommunications model with impatient customers that was also discussed, e.g., in [6]. It
deals with the influence of impatience on telephone customers during a computerized telephone exchange. Customers
arrive at the telecommunication server forming a Poisson process with rate a. At the server, customers are processed
according to the processor sharing discipline with maximum capacity N. Customers arriving at a full server are lost.
If there are n > 0 customers at the server, one of them may leave the server either after being successfully served (rate
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Figure 1: Computing times versus truncation level for the Erlang/M/∞ model
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Figure 2: Memory requirements versus truncation level for the Erlang/M/∞ model
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Figure 3: Computing times versus number of phases for the Erlang/M/∞ model
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Figure 4: Memory requirements versus number of phases for the Erlang/M/∞ model
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μ) or due to impatience (rate n · τ). An impatient customer may quit completely (with a probability 1 − h), or, after an
exponentially distributed ’thinking time’ (rate λ), rejoin the telecommunication server.

If the thinking time is interpreted as a •/M/∞-node, the system is transformed into a two-node open queuing
network. The states of the system are described by pairs (n, k) ∈ {0, . . . ,N} × N0, where n is the number of customers
being served and k is the number of customers ’thinking’. In order to obtain a finite Markov chain we additionally
assume k ≤ s, where s has to be chosen large enough. The rates of the corresponding Markov chain are as follows.

• new arrival: q(n,k),(n+1,k) = a, n ≤ N,

• successfully served or leaving the network due to impatience: q(n,k),(n−1,k) = μ + nτ(1 − h), n ≥ 1,

• leaving the server due to impatience and ’begin thinking’: q(n,k),(n−1,k+1) = nτh, n ≥ 1, k ≤ s − 1,

• rejoining the server after ’thinking’: q(n,k),(n+1,k−1) = kλ, n ≤ N, k ≥ 1.

The diagonal entries of Q, Q(n,k),(n,k) guarantee that the row sums of Q disappear, all other neglected values are zero.
The desired structure of Q is achieved by

Qn,n−1 =
(
q(n,k),(n−1,�)

)s
k,�=1 , (12)

Qn,n =
(
q(n,k),(n,�)

)s
k,�=1 , (13)

Qn,n+1 =
(
q(n,k),(n+1,�)

)s
k,�=1 . (14)

We chose a = 0.6, μ = 1, τ = 0.05, h = 0.85 and λ = 5 and s = 10 (dependence on N) respectively N = 550
(dependence on s). Numerical results for different numbers of blocks and different block sizes are depicted in
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Figure 5: Computing times versus number of blocks for the telecommunications model

Figures 5–8. The iterative methods converged very slowly or did not converge at all, e.g., for s = 10 and N =
110, 220, 330, 440, 550 we terminated the Jacobi method after 180 seconds and the error was still large (between 10−3

and 10−2). The other iterative methods converged for small values of N in reasonable time and the errors ||πQ|| were
about 10−13 for the power method and smaller than 10−15 for the Gauss-Seidel method, the Gaussian elimination and
the MCF algorithm. For larger N we only compared the MCF with the Gaussian elimination. For the largest model in
this example (N = 50000 and s = 10) Q is a 550011 × 550011-matrix. The direct solution methods for matrix-vector
difference equations in this example for N = 110 and s = 10 produced errors ||πQ|| of about 51 (forward computing)
and 1.3 (backward computing).
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Figure 6: Memory requirements versus number of blocks for the telecommunications model
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Figure 7: Computing times versus block size for the telecommunications model

4. Conclusion

We have addressed the numerical computation of stationary distributions for level dependent QBDs. A matrix
continued fraction (MCF) algorithm has been proposed and compared with standard solution techniques for Markov
chains. It turns out that the MCF algorithm is much faster than the standard approaches and numerically stable.

Further research includes more extensive empirical comparisons with other algorithms such as aggregation tech-
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Figure 8: Memory requirements versus block size for the telecommunications model

niques and the Bright-Taylor (BT) algorithm. Also the major similarities and differences between the MCF algorithm
and the BT algorithm should be worked out. Furthermore, more complex models including state spaces of dimension
higher than two are under consideration. This fits the framework as we only require the desired block-tridiagonal
structure of the generator or transition probability matrix and do not require restrictions on the dimensionality. In
particular, the application to queueing networks and epidemiological models is currently under investigation.

Another topic of further research is the extension of the algorithm beyond QBDs in order to be able to efficiently
analyze Markov chains with more general transition structure such as QBDs with catastrophes or Markov chains
skip-free to the right having block lower Hessenberg generator or transition probability matrices.
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