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Abstract

A robust physically consistent three-dimensional constitutive model is developed to describe the finite mechanical
response of amorphous polymers over a wide range of temperatures and strain rates, including the rubbery region and
for impact loading rates. This thermomechanical model is based on an elastic–viscoplastic rheological approach, wherein
the effects of temperature, strain rate, and hydrostatic pressure are accounted for. Intramolecular, as well as intermolec-
ular, interactions under large elastic–inelastic behavior are considered for the mechanisms of deformation and hardening.
For a wide range of temperatures and strain rates, our simulated results for poly(methyl methacrylate) (PMMA) and poly-
carbonate (PC) are in good agreement with experimental observations.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Polymer-based materials represent the largest and fastest growing area of materials for engineering appli-
cations. Due to their unique combination of properties, such as lightweight or ease of processing, polymers
have transformed the quality of our everyday life. For many applications, an accurate knowledge of the
mechanical behavior of these materials is of prime importance to improve performance and increase efficient
use. Consequently, the ability of predicting the mechanical behavior of polymers is a strong motivation for the
mathematical modeling of the elastic–inelastic deformation of these materials.

Through several decades, many physically based models have been introduced to account for the mecha-
nisms of deformation of amorphous polymers. The elementary mechanisms are identified as thermally
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activated processes of molecular movements. This is the case for the state transition theory of Eyring (1936),
the conformational change theory of Robertson (1966) and the intermolecular shear resistance model of
Argon (1973). However, as it was discussed by Richeton et al. (2003), the use of these latter models has to
be restricted to a specific domain of temperatures and strain rates. Among other works, a great deal of atten-
tion has been given by Bauwens, Bauwens-Crowet, and co-workers to the yield stress of amorphous polymers
(Bauwens et al., 1969; Bauwens, 1972; Bauwens-Crowet et al., 1969, 1972; Bauwens-Crowet, 1973). In their
work, these authors have introduced two rheological processes, a and b, to describe the yield behavior on a
wide range of temperatures and strain rates. For five glassy polymers, they showed that the rheological b pro-
cess corresponds to a well-defined molecular process, the secondary relaxation of polymer chains. They also
mentioned that, in their theory, there is no connection between the rheological a process with any other iden-
tified molecular relaxation of polymer chains (such as the glass transition).

Most of the pre-cited models can be employed to predict the yield behavior of amorphous polymers, but
they are also frequently part of a more complex deformation theory where they are used as a rate dependent
plasticity model acting in parallel with a network model to account for the alignment of polymer chains with
deformation (Boyce et al., 1988; Arruda and Boyce, 1993; Arruda et al., 1995). More recently, Mulliken and
Boyce (2006) employed the model of Bauwens and Bauwens-Crowet (Bauwens et al., 1969; Bauwens, 1972;
Bauwens-Crowet et al., 1969, 1972; Bauwens-Crowet, 1973) to describe the mechanical response of amor-
phous polymers at high strain rates for various temperatures. However, the constitutive model of Mulliken
and Boyce (2006) lacks robustness since their flow rule is not valid through the glass transition region. In fact,
the adiabatic heating developed under dynamic loading leads to drastic increase of temperature in the material
which may trigger a change from the glassy to the rubbery state.

Therefore, due to the limitations of the existing models, we propose here a robust, physically consistent,
three-dimensional constitutive model for the mechanical response of amorphous polymers. This thermome-
chanical model is designed to be valid on a wide range of temperatures and strain rates, including the rubbery
region and for impact loading rates. This model also accounts for the possible change from the glassy to the
rubbery state in case of strong local adiabatic heating (Bjerke and Lambros, 2002; Bjerke et al., 2002).

Our present contribution is organized as follows. In Section 2, we will introduce the different constitutive
equations such as our new formulation of the cooperative model for the yield stress of amorphous polymers,
the 8-chain model of Arruda and Boyce (1993), or the temperature dependence of the material properties.
Next, the kinematics theory of finite strains as well as the numerical implementation of the thermomechanical
model are briefly reviewed in Section 3. With poly(methyl methacrylate) (PMMA) and polycarbonate (PC) as
reference materials, Section 4 is a discussion on the attributes of the new robust constitutive model. Our sim-
ulated results are furthermore compared to experimental results for a wide range of temperatures and strain
rates.

2. Model formulation

Technologically advanced applications of polymers require development of physically consistent models
that are able to describe the temperature and strain rate dependence of the mechanical response of these mate-
rials. The constitutive model considered in this work is developed after physical considerations by using a
molecular theory for the plastic flow and an orientational model for the deformation of polymer chains at
large strains. Fig. 1 shows the schematic representation of the elastic–viscoplastic constitutive model. At small
deformations, the polymer is assumed to behave elastically and Hooke’s law is used to predict the mechanical
response. At yield, the polymer chains overcome the isotropic resistance due to plastic flow, which acts in par-
allel with the anisotropic resistance due to molecular chain alignment. The details of temperature and strain
rate dependence of the constitutive equations describing the large deformation of amorphous polymer are out-
lined in the following sections.

2.1. Flow rule

Most of the existing theories for the yield stress of amorphous polymers can be used only in specific
domains of temperature and/or strain rate. By taking into account the influence of the secondary relaxation
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Fig. 1. Schematic representation of the mechanical model.
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of polymer chains, a new formulation of the cooperative model of Fotheringham and Cherry (1976) for the
yield response of amorphous polymers has shown a good agreement with experimental results over a wide
range of strain rates and temperatures, including the glass transition region and impact loading rates (Rich-
eton et al., 2005a, 2006).

2.1.1. Flow rule below the glass transition

For the yield behavior of amorphous polymers, the plastic shear strain rate, _cp, is expressed by the coop-
erative model as
_cp ¼ _c0 exp �DHb

kh

� �
sinhn ðs� tiÞ � V

2kh

� �
ð1Þ
where _c0 is the pre-exponential shear rate factor, DHb is the activation energy of the secondary relaxation of
polymer chains, k is Boltzmann’s constant, h is the absolute temperature, n is a material parameter describing
the cooperative nature of the polymer chain segments, V is the shear activation volume, s is the effective equiv-
alent shear stress, and ti is the evolving internal shear stress. The internal shear stress evolves significantly from
its initial value to account for the strain softening. We would like to point out that at the yield point, ti = si,
where si is the initial test condition value of the internal shear stress defined by
si ¼ sið0Þ � m � hþ ap � P ð2Þ
where si(0) is the internal shear stress at the temperature h = 0 K, and m is a material parameter roughly equal
to si(0)/Tg, Tg being the glass transition temperature. The parameter ap is the hydrostatic pressure coefficient
and P is the hydrostatic pressure. Eq. (2) is the classical form of the internal shear stress, where si presents a
linear decrease with temperature. This formulation allows us to account for the differences in the mechanical
response of the polymer associated with the temperature and pressure effects. For further details on the physics
of the cooperative model, the reader may refer to the work of Richeton et al. (2005a, in press).

2.1.2. Flow rule through the glass transition

In line with the free-volume theory of William et al. (1955), the plastic shear rate, _cp, is given through the
glass transition by (Richeton et al., 2005a):
_cp ¼ _c0 exp �DHb

kh

� �
exp

ln 10� cg
1 � ðh� T gÞ

cg
2 þ h� T g

� �
sinhn s � V

2kh

� �
ð3Þ
where cg
1 and cg

2 are the WLF parameters relative to Tg. It should be noted that above Tg, the internal stresses si

and ti are taken to be zero as strain softening vanishes in the rubbery state.
In this study, the parameters of the cooperative model were determined from previous work concerning

uniaxial compression tests (Richeton et al., 2006). Given that the implementation of the flow rule is generally
made in terms of shear (Boyce et al., 1988), a correction of the model’s parameter has to be introduced. This
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correction is based on the von Mises relationship taking into account the effect of the hydrostatic pressure. The
pre-exponential shear rate factor, _c0, can be expressed as a function of Poisson’s ratio, t, and of the pre-expo-
nential rate factor, _e0: _c0 ¼ ð2

ffiffiffi
3
p

=3Þð1þ tÞ_e0 �
ffiffiffi
3
p

_e0. The correction of the activation volume and stress
parameters given for uniaxial compression results in the following equations:
Table
Param

n

V (m3)
si(0) (M
m (MP
_c0 (s�1

DHb (k

cg
1

cg
2 (�C

ap

sps/si

h (MP
sið0Þ ¼
ð1� ap=3Þffiffiffi

3
p rið0Þ

mshear ¼ ð1� ap=3Þffiffiffi
3
p mcompression

V shear ¼
ffiffiffi
3
p

1� ap=3
V compression

8>>>>>><
>>>>>>:

ð4Þ
The shear parameters used for the implementation of the cooperative model are given in Table 1.

2.2. Strain softening

The evolution of the shear internal resistance, ti, of the cooperative model follows closely the work of Boyce
et al. (1988). The internal stress decreases with plastic deformation until reaching a preferred structural state.
Indeed, after yielding, it can be assumed that molecular defects rearrange themselves until reaching a more
stable configuration. A phenomenological evolution of the internal stress during strain softening is described
by
_ti ¼ h � 1� ti

sps

� �
� _cp ð5Þ
where h is the softening slope and sps is the stress referring to the preferred structural state of the material. The
stress, sps, may depend on temperature and strain rate. Concerning our modeling, we assume that the ratio
sps/si is constant. Here, we remind the reader that si is the initial value of the internal stress, where
si = si(0)� m Æ h + ap Æ P. As a consequence, we note that sps is only temperature dependent and that the model
does not predict any strain softening for h P Tg since the internal stress is zero. The softening parameters
related to Eq. (5) are given in Table 1.

2.3. Orientational hardening

Once a polymer is stressed to the point of overcoming the intermolecular resistance, the chains begin to
orient themselves. The resistance to plastic flow due to the molecular alignment could be described by the
8-chain model of Arruda and Boyce (1993). The principal components of the network stress tensor are
expressed as
1
eters for the flow rule and the strain softening

PMMA PC

6.37 5.88
9.75 · 10�29 9.18 · 10�29

Pa) 100 81
a/K) 0.25 0.14
) 1.16 · 1016 1.36 · 1013

J/mol) 90 40

32.58 16.19
or K) 83.5 55.6

0.26 0.08

0.20 0.57
a/K) 30 300
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Bi ¼ CRðhÞ
ffiffiffiffiffiffiffiffiffiffi
NðhÞ

p
3

L�1 kchainffiffiffiffiffiffiffiffiffiffi
NðhÞ

p
 !

k2
i � k2

chain

kchain

; i ¼ 1; 2; 3 ð6Þ
where CR(h) is the rubbery modulus, N(h) is the number of rigid chain links between entanglements, ki are the
principal components of the plastic stretch tensor, Vp, which is the symmetric part of the plastic deformation
gradient, Fp. The values k2

i are the eigenvalues of the tensor (Vp)2 = Fp(Fp)T, (Fp)T being the transpose of Fp.
The inverse Langevin function, L�1, is calculated using the Padé approximation of Cohen (1991),
L�1ðxÞ � x � ð3� x2Þ=ð1� x2Þ. In what follows, we will compare two approaches for the temperature depen-
dence of CR(h) and N(h) since the mechanical properties of polymers are known to be strongly affected by
temperature.

2.3.1. Dissociating network description
The temperature dependence of the rubbery modulus, CR(h), proposed by Arruda et al. (1995) is taken to

be proportional to the chain density, n(h):
CRðhÞ ¼ nðhÞkh ð7Þ

where the thermally evolving chain density, n(h), is function of a thermal dissociation energy, Ea, and also
parameters representing the non-dissociating, A, and the dissociating, B, network parts:
nðhÞ ¼ A� B � exp
�Ea

kh

� �
ð8Þ
The thermally evolving chain density, n(h), for which a chain is statically defined as the segment between phys-
ical entanglements results in an evolution of the number of statistically rigid links per chain, N(h). In fact, the
decrease in entanglement incidences, n(h), with increasing temperature, results in an increase in the average
number of links per chain, N(h), according to the following relationship:
nðhÞ � NðhÞ ¼ constant ð9Þ

The total number of rigid links in the model and hence, the mass of the physical system, is conserved. Con-
sequently, the thermally evolving number of statistical rigid links per chain is given by
NðhÞ ¼ nð298 KÞ � Nð298 KÞ
A� B � expð�Ea=khÞ ð10Þ
where n(298 K) and N(298 K) refer to the room temperature h = 298 K.

2.3.2. Linear phenomenological description
In line with the experimental results of Meyer and Ferri (1935) concerning the temperature dependence of

the elastic stress of rubbery materials, we proposed a linear phenomenological model for the dependence on
temperature of the material parameters CR(h) and N(h). The experimental stress–temperature curve (see
Fig. 2) for a rubber presents a linear behavior over a large range of temperatures. The rubber elastic stress
increases linearly above the glass temperature (Tg = 215 K), which is in agreement with the prediction of
the finite strain elasticity theories (i.e. CR = n(h)kh). While below the glass transition temperature the
Fig. 2. Stress of a rubber at constant length as a function of absolute temperature. After Meyer and Ferri (1935).
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stress–temperature curve shows an inversion of the sign of the curve’s slope. In the glassy state, the internal
energy of the rubber is more predominant than the entropic term. In accordance with these experimental
observations, we have expressed the temperature dependence of the rubbery modulus, CR(h), as follows:
Table
Param

CR(0)
a (MP

N(0)
b (1/K
CRðh 6 T gÞ ¼ CRð0Þ � a � h

CRðh P T gÞ ¼
CRð0Þ � a � T g

T g
� h

8><
>: ð11Þ
where CR(0) and a are material parameters. For the temperature dependence of the number of rigid links be-
tween entanglements, N(h), we propose the following phenomenological description:
Nðh 6 T gÞ ¼ Nð0Þ þ b � h
Nðh P T gÞ ¼ Nð0Þ þ b � T g

�
ð12Þ
where N(0) and b are material parameters. The expression of N(h) is obtained by the fact that below Tg, the
orientational hardening should decrease with increasing temperature. For a given strain, an increase of N(h)
will decrease the orientational hardening. The linear dependence of N(h) with temperature is a very rough esti-
mate. We used this description to avoid any major contradiction with the experimental results of Meyer and
Ferri (1935). While above Tg, the expression of N(h) is built on the following two assumptions: (1) N(h) is a
continuous function through Tg, (2) N(h) is constant above Tg, according to the experimental results of G’Sell
and Souami (1997). Indeed, these authors noticed that strain hardening decreases gradually with temperature
in the glassy state, but keep a significant value in the rubbery state.
2.3.3. Comparison between the two formulations
The comparison between the two formulations is made for PMMA. The parameters used for the temper-

ature dependence of the strain hardening can be found in Table 2. Fig. 3 reports the temperature dependence
of the hardening modulus, CR(h). The temperature dependence suggested by Arruda et al. (1995) predicts the
opposite phenomenon from that experimentally observed by Meyer and Ferri (1935) and by G’Sell and Sou-
ami (1997). Further, due to a numerical artifact, the inflexion point in their curve does not occur for the glass
transition. We believe that the temperature dependence model of Arruda et al. (1995) for the orientational
hardening is only valid within a small range of temperatures. As mentioned by Meyer and Ferri (1935), the
hardening modulus has to decrease with temperature for h < Tg since the internal energy term is far superior
compared to the entropic term.

Fig. 4 reports the predicted temperature dependence of the number of rigid links between entanglements of
Arruda et al. (1995) compared to our approach. The temperature dependence model proposed by Arruda et al.
(1995) predicts a drastic increase in the number of rigid links in the vicinity of the glass temperature transition.
This implies that the orientational hardening should tend to zero in this region, which is in contradiction with
the experimental results of G’Sell and Souami (1997).

The good fit of experimental stress–strain curves, obtained by Arruda et al. (1995), might be explained by
the competition between orientational hardening and strain softening. The orientational hardening can be
numerically compensated with the strain softening for good description of the stress–strain response. Concern-
ing our phenomenological formulation for the temperature dependence of the orientational hardening, we
have to mention that our approach is also certainly far from the real behavior of the polymer chains. As it
is also the case with Arruda et al. (1995), the values taken by N are typically in the order of 2–4. These values
2
eters for the phenomenological temperature dependence of the orientational hardening

PMMA PC

(MPa) 91.15 37.57
a/K) 0.226 0.077

1.515 1.960
) 0.0025 0.0013
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are much too small to be an actual number of statistical links between the entanglements of a physically cross-
linked system. As described by Dooling et al. (2002), a more physical description can be obtained via the slip-
links/cross-links model of Edwards and Vilgis (1986). However, as stated by Sweeney (1999), the use of the 8-
chain model is convenient to use from a mathematical point view and it presents very few differences with the
model of Edwards and Vilgis (1986) in regards to the fitting of data.
2.4. Modeling the effects of temperature and strain rate for Young’s modulus

It is well established that Young’s modulus of polymers is strongly influenced by temperature and strain
rate. For the high strain rates, typical experimental data could be found in the literature (see for instance Cady
et al., 2003). In line with these observations, we have recently modified the temperature dependent statistical
model for the stiffness modulus of Mahieux and Reifsnider (2001, 2002) into a robust constitutive model,
which considers the effect of strain rate as well (Richeton et al., 2005b). Mahieux and Reifsnider (2001,
2002) used Weibull statistics to represent the failure of secondary bonds (e.g. van der Waals, polar attraction)
during the different relaxation processes that lead to stiffness modulus change with temperature. In the case of
amorphous polymers, it is assumed that the material undergoes three main transitions (b relaxation, glass
transition and flow) characterized by the associated transition temperatures (Tb, Tg, and Tf). The temperature
and strain rate dependence of Young’s modulus is then given by
Eðh; _eÞ ¼ ðE1ð_eÞ � E2ð_eÞÞ � exp � h
T b _eð Þ

� �m1
� �

þ ðE2ð_eÞ � E3ð_eÞÞ � exp � h
T gð_eÞ

� �m2
� �

þ E3ð_eÞ � exp � h
T fð_eÞ

� �m3
� �

ð13Þ
where the moduli, Eið_eÞ, are the instantaneous stiffness of the material at the beginning of each transition re-
gion, and the parameters, mi, are the Weibull moduli corresponding to the statistics of the bond breakage. The
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strain rate dependence of the transition temperatures and instantaneous stiffness was discussed by Richeton
et al. (2005b) according to physical considerations
Table
Param

_eref (s�

Eref
1 (M

Eref
2 (M

Eref
3 (M

T ref
b (K

T ref
g (K

T ref
f (K

m1

m2

m3

s

The in
Ei ¼ Eref
i � ð1þ s � logð_e=_erefÞÞ

1
T b
¼ 1

T ref
b

þ k
DHb

lnð_eref=_eÞ

T g ¼ T ref
g þ

�cg
2 � logð_eref=_eÞ

cg
1 þ logð_eref=_eÞ

T f ¼ T ref
f � ð1þ 0:01 � logð_e=_erefÞÞ

8>>>>>>><
>>>>>>>:

ð14Þ
where Eref
i are the instantaneous stiffness at a chosen reference strain rate, _eref , and s is the sensitivity of the

modulus to strain rate. The use of a logarithm function was driven by the fact that mechanical properties
of polymer systems are usually sensitive to the logarithm of the rate of loading. Regarding the transition tem-
peratures (Tb, Tg, and Tf), we postulated that: (1) the b movements are activated by an Arrhenius process, (2)
the glass transition is described by the free-volume theory of William et al. (1955), and (3) a phenomenological
dependence can be used to depict the rate dependence of the flow temperature, T fð_eÞ, where the value of 0.01
was arbitrary chosen. The parameters for the temperature and rate dependence of the stiffness modulus of
PMMA and PC are given in Table 3.

2.5. Influence of temperature on the material properties

The physical properties of polymers are known to be strongly altered by temperature and in particular by
the glass transition. In the books of Van Krevelen (1990) and Bicerano (1993), some empirical and semi-empir-
ical formulae can be found to determine the temperature dependence of material properties as a function of
the material properties at 298 K. Hence, the temperature dependence of the density, q(h), is expressed by
qðh 6 T gÞ ¼ qð298 KÞ � ð1:42T g þ 44:7Þ
ð1:42T g þ 0:15 � hÞ

qðh P T gÞ ¼ qð298 KÞ � ð1:42T g þ 44:7Þ
ð1:27T g þ 0:30 � hÞ

8>><
>>: ð15Þ
The temperature dependence of the thermal conductivity, C(h), is given by
Cðh 6 T gÞ ¼ CðT gÞ �
h

T g

� �0:22

Cðh P T gÞ ¼ CðT gÞ � 1:2� 0:2 h
T g

� �
8>>><
>>>:

ð16Þ
3
eters for the modeling of Young’s modulus of PMMA and PC

PMMA PC

1) 1 1

Pa) 5100 3500
Pa) 2700 1700
Pa) 20 20

) 290 195
) 387 423
) 466 436

5 5
40 80
20 15

0.087 0.011

fluence of hydrostatic pressure on the modulus is neglected in this study.



Table 4
Material properties at 298 K

PMMA PC

q(298 K) (kg/m3) 1190 1200

C(298 K) (W/mK) 0.190 0.187

cs
pð298 KÞ ðJ=kgKÞ 1370 1200

cl
pð298 KÞ ðJ=kgKÞ 1835 1615

b(298 K) (m/mK) 80.0 · 10�6 70.2 · 10�6

m(298 K) 0.35 0.36
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with CðT gÞ ¼ Cð298 KÞ � ð T g

298
Þ0:22. The temperature dependence of the heat capacity, cp(h), is given by
cpðh < T gÞ ¼ cs
pð298 KÞ � ð0:106þ 3:0 � 10�3 � hÞ

cpðh P T gÞ ¼ cl
pð298 KÞ � ð0:613þ 1:3 � 10�3 � hÞ

(
ð17Þ
where the parameters cs
pð298 KÞ and cl

pð298 KÞ are the heat capacities of solid and liquid polymers at 298 K.
The temperature dependence of the coefficient of linear thermal expansion, b(h), is given by
bðh < T gÞ ¼ bð298 KÞ
bðh P T gÞ ¼ bð298 KÞ þ 0:113

3T g

8<
: ð18Þ
The temperature dependence of Poisson’s ratio, m(h), is given by
mðh < T gÞ ¼ mð298 KÞ
mðh P T gÞ ¼ 0:499

�
ð19Þ
All the parameters required for Eqs. (15)–(19) are given in Table 4.

2.6. Indication for the determination of the model parameters

Most model parameters are material constants that could be obtained from basic physical properties. But
other parameters have to be determined by fitting experimental results. Information on the different identifi-
cation procedures can be found in the literature. The parameters for the flow rule were determined by a tech-
nique exposed in a previous work (Richeton et al., 2006). The determination of the parameters for Young’s
modulus is also described in another work (Richeton et al., 2005b). Concerning the identification of the
remaining parameters, the reader may consult the work of Boyce et al. (1988) for full details. Once the hard-
ening parameters, CR(h) and N(h), are known for different temperatures, their temperature dependence is
obtained from a linear regression according to Eqs. (11) and (12).

3. Three-dimensional constitutive model

3.1. Kinematics of finite strain

As it is generally the case in mechanics of rubber and plastics, finite deformation tensors are used for large
deformations. In what follows, we briefly address the kinematics of finite deformation, since the full details can
be found elsewhere (Boyce et al., 1988, 1992; Arruda et al., 1995).

The deformation of a material from its initial isotropic reference state, X0(h0), at a temperature h0 to an
actual state Xt(h) is described by the gradient of deformation, F. This tensor is multiplicatively decomposed
into elastic, Fe, thermal, Fth, and plastic, Fp, components:
F ¼ FeFthFp ð20Þ
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This decomposition considers a conceptual sequence of unloading steps. A material point, dXt(h), is first iso-
thermally unloaded to a stress state via Fe�1 to a local intermediate configuration dXtðhÞ. The material point is
then taken to undergo a reversible heat transfer process whereby its temperature changes from h to h0 via Fth�1

to a second unloaded intermediate configuration dXtðh0Þ.
The deformation gradient tensors can be further decomposed according to a polar decomposition. For

instance, Fe may be decomposed in terms of the elastic stretch tensors, Ve or Ue (left or right, respectively),
and the elastic rotation tensor, Re:
Fe ¼ VeRe ¼ ReUe ð21Þ

The velocity gradient, L, is then obtained by differentiating the product decomposition as
L ¼ _FF�1 ¼ Le þ Fe½Lth þ FthLpFth�1�Fe�1 ð22Þ

where the elastic, thermal, and plastic velocity gradients are given by
Le ¼ _FeFe�1

Lth ¼ _FthFth�1

Lp ¼ _FpFp�1

8><
>: ð23Þ
The velocity gradient of the dXtðhÞ configuration is given by
Lthp ¼ _FthpFthp�1 ¼ Lthp þ FthLpFth�1 ð24Þ

Further, the velocity gradient may be decomposed as the sum of the symmetric stretching tensor, Dthp, and the
skew-symmetric spin tensor, Wthp:
Lthp ¼ Dthp þWthp ð25Þ

For convenience and numerical efficiency, Wthp is frequently set to zero. The rate of deformation, Dthp, may be
further decomposed into a plastic stretching, Dp, and a thermally induced stretching, bðhÞ � _h � I, where b(h) is
the temperature dependent linear thermal expansion coefficient:
Dthp ¼ Dp þ bðhÞ _hI ð26Þ

According to Boyce et al. (1988), the thermal expansion tensor can be taken to be isotropic. Concerning the
plastic stretching tensor, Dp, a thermodynamic formalism by Parks et al. (1984) suggested a flow rule specified
by the applied plastic shear strain rate, _cp:
Dp ¼ _cpffiffiffi
2
p

s
T�0 ð27Þ
In Eq. (27), T�0 is the deviatoric part of the driving stress tensor expressed in XtðhÞ:

T� ¼ ReTTRe � B ð28Þ
Here, Re has been defined in Eq. (21) and T is the Cauchy stress given by
T ¼ 1

J
Ce lnðVeÞ ð29Þ
where J is the volume change given by det(Fe) and Ce is the temperature dependent isotropic elastic modulus
tensor. The rate and temperature dependences of Young’s modulus were given in Section 2.4.

In Eq. (28), B is the back stress tensor. Its principal components are defined by Eq. (6), where the k values
are the principal components of the left plastic stretch tensor, Vp. In Eq. (27), s is the effective equivalent stress
defined by
s ¼ 1

2
T�0 � T�0

� �1=2

ð30Þ
T� is referred to as the driving stress tensor since it is only this portion of the stress that continues to activate
plastic flow.
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At time zero, the deformation gradient tensors, F, Fe, Fth, and Fp, are all unit tensor, I. The stress and strain
of the material are zero. The velocity gradient, L, is given as a deformation constraint. At each increment, the
equivalent stress and the equivalent strain were calculated and output to a data file that was later translated
into a stress–strain curve.

3.2. Adiabatic heating

The deformation of the polymer generates heat. The general energy balance equation is classically given by
Fi
qðhÞ � cpðhÞ � _h� divðCðhÞ � gradðhÞÞ ¼ _q ð31Þ
where q(h) is the density, cp(h) is the specific heat, C(h) is the thermal conductivity, and _q is the rate of heat
generation due only to plastic flow (Boyce et al., 1992; Arruda et al., 1995) and is equal to ½TraceðT�0DpÞ�. The
plastic work associated with the back stress is supposed to be stored as free energy in the material due to
locked-in orientation. In our case, we neglect the effect of thermal conductivity since we will only simulate
the mechanical response on a single element (homogeneous case). Besides, as a small simplification, the quan-
tity ½TraceðT�0DpÞ� is assimilated to ½s � _cp�. The resulting energy balance equation is then given by
_h ¼ s � _cp

qðhÞ � cpðhÞ
ð32Þ
4. Results and discussion

4.1. Simulated results

4.1.1. Influence of strain rate on the stress–strain curves

The influence of strain rate on the predicted true stress–true strain compression curves of PMMA and PC at
25 �C is reported in Fig. 5. Relative to the mechanical responses of PC, PMMA shows a strong influence of the
strain rate on the yield stress and on the magnitude of the orientational hardening. At very high strain rates,
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g. 5. Simulated results at a temperature of 25 �C for the compression stress of PMMA and PC. Influence of true strain rate.
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PMMA does not exhibit any orientational hardening due to the rise of temperature resulting from adiabatic
heating. The abrupt drop of the stress at a strain equal to about 1.1 on the stress–strain curve at the strain rate,
_e ¼ 5000 s�1, is due to the transition from the glassy to the rubbery state of PMMA. In contrast, the high glass
transition temperature of PC leads to less effect of the adiabatic heating on the orientational hardening. If the
simulations for PC are conducted at a temperature closer to its Tg, a similar drop in the stress–strain curve
would be observed. At low strain rate, the mechanical response of PC shows a weaker dependence on strain
rate in comparison to PMMA. This effect can be explained by comparing the values of the secondary activa-
tion energies for these two materials.

4.1.2. Influence of temperature on the stress–strain curves

Fig. 6 illustrates the influence of temperature on the predicted true stress–true strain response under uni-
axial compression for PMMA and PC. These simulations are conducted at a true strain rate, _e ¼ 0:01 s�1,
to minimize the adiabatic heating effect. At low temperatures, the results are probably purely speculative
according to a competition between yielding and brittle failure. This statement is particularly true for PMMA
since this material exhibits a brittle behavior at low temperatures where the yield stress cannot be reached. The
transition behavior across the glass transition temperature range from the glassy to rubbery states is predicted
both for PMMA and PC.

4.1.3. Influence of the testing mode on the stress–strain curves

Fig. 7 presents a comparison between the evolutions of the mechanical response for different deformation
states. The hardening response is very different in each test since the orientational hardening trend is related to
the degrees of freedom of chains. The degree of freedom for chain alignment is higher for uniaxial compres-
sion, wherein the chains align in the radial direction of the compressed sample. In contrast, for uniaxial ten-
sion the degree of freedom is lower, wherein the chains align within the tensile direction. The hardening under
plane strain compression is closer to that in tension because of the boundary conditions, where one of the mac-
roscopic directions is constrained to zero strain. At low strains, the predicted yield points are different for dif-
ferent loading conditions. These are ranked in the following decreasing order: plane strain compression,
uniaxial compression, simple shear, uniaxial tension. This result is an outcome of the hypothesis of the linear
dependence of the yield stress on the hydrostatic pressure (see Eq. (2)).
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simulations were run at a temperature of 25 �C and at a true strain rate of 0.01 s�1.
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4.2. Comparison with experimental results in compression

The modeling results are compared to experimental data in compression for PMMA and PC at different
strain rates and temperatures. The model parameters are fitted for each polymer on the experimental data
at a specified strain rate and temperature, and then the same parameters are used to predict the mechanical
response for other temperatures and strain rates (see Figs. 8 and 9). The quasi-static uniaxial compression tests
were conducted on a standard servohydraulic load frame, and the dynamic uniaxial compression tests were
conducted using a 12.7 mm diameter split Hopkinson pressure bar (SHPB) setup. The details of these exper-
imental procedures have been published previously elsewhere (Richeton et al., 2006).

The quasi-static tests were conducted at constant displacement rates. During the compression, the true
strain rate increases slightly from its nominal value. Therefore, the numerical simulations were also conducted
at constant engineering strain rates to avoid any discrepancy between the predicted curves and the experimen-
tal data at large strains.

In the case of dynamic testing, the compression tests and simulations were conducted at nearly constant
true strain rate. However, the functionality limitation of the SHPB setup allows reaching large strains only
for the high strain rates. In fact, the strain and strain rate in the SHPB testing are in a complex interaction.
They depend on the striker bar length, the gun pressure (striker velocity), and the sample deformation behav-
ior. Our experimental results show therefore an increasing amount of strain with the strain rate since we used
the same striker bar length with different gun pressure. We note that larger strains at a lower strain rates could
be achieved using a longer striker bar.

Subsequent figures are labeled with the temperature and strain rate shown on the top of each figure. Figs. 8
and 9 show good agreement between the experimental and simulated stress–strain curves. At small strains, the
use of a temperature and rate dependent statistical model for the initial Young’s modulus provides a correct
description of the experimental data at high strain rates and in the rubbery region. The cooperative model,
used as a flow rule, is able to capture the temperature and strain rate dependence of the compressive yield
stress. Unfortunately, due to the lack of data in tension, it was not possible to determine the validity of the
hydrostatic pressure effect on the yield stress. Relative to the stress–strain response of PC, the PMMA
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Fig. 8. Validation of the model for PMMA on a wide range of temperatures and strain rates. Quasi-static experiments and simulations
were conducted at constant displacement rates whereas dynamic experiments and simulations were conducted at constant true strain rates.
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Fig. 9. Validation of the model for PC on a wide range of temperatures and strain rates. Quasi-static experiments and simulations were
conducted at constant displacement rates whereas dynamic experiments and simulations were conducted at constant true strain rates.
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post-yield model predictions underestimate the experimental results at high strain rates. The main difficulty in
the modeling of the post-yield lies in the fact that there is a competition between the strain softening associated
with adiabatic heating and the orientational hardening. As it was noticed by Billon (2003), the self-heating of
the polymer become significant above a strain rate of 0.01 s�1.

Further, the adiabatic heating at very high strain rates is poorly described in our modeling. Experimental
results of Rittel (1999) for the adiabatic heating at high strain rate, _e ¼ 6500 s�1, showed a step-like increase
of temperature, whereas our predicted temperature presents nearly a linear increase with deformation (see
Fig. 10). In the case of dynamic testing, Bjerke and Lambros (2002) and Bjerke et al. (2002) have shown that
additional heat effects, such as the phenomena present during dynamic fracture, must be considered in the sim-
ulation to get a more accurate comparison with the experiments. However, this linear evolution of the tem-
perature with deformation was experimentally validated for low and medium strain rates by Arruda et al.
(1995).

5. Conclusions

A robust physically consistent constitutive model for the large inelastic deformation of amorphous poly-
mers has been presented. In addition to being able to account for the effects of strain rate, temperature and
hydrostatic pressure, this thermomechanical model can account for the possible change of the polymer from
the glassy to the rubbery state due to adiabatic heating at very high strain rates. Intramolecular, as well as
intermolecular, interactions under large elastic–inelastic behavior were considered for the mechanisms of
deformation and hardening. The results from the implemented model were compared to experimental results,
which in turn, were used to tune the proposed constitutive laws. Good agreement between the modeling and
the experimental results was obtained for poly(methyl methacrylate) (PMMA) and polycarbonate (PC). This
proposed model can be seen as a decisive step towards the development of advanced material constitutive
models for the description of the mechanical response of thermoplastic polymers solicited under a wide range
of temperatures, strain rates, and pressures.
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