The interaction of alternation points and poles in rational approximation

Hans-Peter Blatt

Katholische Universität Eichstätt-Ingolstadt, Mathematisch-Geographische Fakultät, Ostenstraße 26, 85071 Eichstätt, Germany

Received 4 December 2003

Dedicated to Professor Olav Njåstad on the occasion of his 70th birthday

Abstract

The interrelation of alternation points for the minimal error function and poles of best Chebyshev approximants is investigated if uniform approximation on the interval $[-1,1]$ by rational functions of degree $(n(s),m(s))$ is considered, $s \in \mathbb{N}$. In general, the alternation points need not to be uniformly distributed with respect to the equilibrium measure on $[-1,1]$, even not to be dense on the interval. We show that, at least for a subsequence $\mathbb{A} \subset \mathbb{N}$, the asymptotic behaviour of the alternation points to the degrees $(n(s),m(s))$, $s \in \mathbb{A}$, is completely determined by the location of the poles of the best approximants, and vice versa, if $m(s) \leq n(s)$ or $m(s) - n(s) = o(s/\log s)$ as $s \to \infty$.

© 2004 Elsevier B.V. All rights reserved.

MSC: primary 41A20

Keywords: Rational approximation

1. Introduction

Denote by $\mathcal{R}_{n,m}$ the collection of real rational functions with numerator in \mathcal{P}_n and denominator in \mathcal{P}_m, respectively, where \mathcal{P}_k is the set of algebraic polynomials of degree at most k, $k \in \mathbb{N}_0$. For each
pair of nonnegative integers \((n, m)\) there exists a unique function \(r^*_{n, m} \in \mathcal{R}_{n,m}\) that is the best Chebyshev approximation to \(f \in C[-1, 1]\) in the sense that
\[
\| f - r^*_{n, m} \| < \| f - r \| \quad \text{for all } r \in \mathcal{R}_{n,m}, \ r \neq r^*_{n, m},
\]
where \(\| \cdot \|\) denotes the sup norm on \([-1, 1]\). Writing \(r = p_n/q_m\) where \(p_n \in \mathcal{P}_n\) and \(q_m \in \mathcal{P}_m\) have no common factor, the defect of \(r\) is defined by
\[
\delta_{n,m}(r) := \min(n - \deg p_n, m - \deg q_m). \tag{1}
\]
Let us define
\[
d(r) = n + m + 1 - \delta_{n,m}(r) \tag{2}
\]
then \(d(r)\) is the dimension of the tangential space \(T(r)\) at the point \(r\) with respect to the coefficients of the numerator and denominator as parameter space. Moreover, \(T(r)\) is a Haar subspace. We write \(r^*_{n, m} = p^*_n/q^*_m\) with no common factors and define for abbreviation
\[
d_{n,m} := d(r^*_{n, m}).
\]
Then it is well-known that the best approximation \(r^*_{n, m}\) of \(f\) is characterized by the following equioscillation condition:
There exist \(d_{n,m} + 1\) points \(x^{(n,m)}_k\),
\[
-1 \leq x^{(n,m)}_0 < \cdots < x^{(n,m)}_{d_{n,m}} \leq 1,
\]
such that
\[
\lambda_{n,m} (-1)^k (f - r^*_{n, m})(x^{(n,m)}_k) = \| f - r^*_{n, m} \|, \quad 0 \leq k \leq d_{n,m}, \tag{3}
\]
where \(\lambda_{n,m} = +1\) or \(\lambda_{n,m} = -1\) is fixed. Such a set of points \(\{x^{(n,m)}_k\}\), called alternation set, is in general not unique. Therefore, in the following we denote by
\[
A_{n,m} = A_{n,m}(f) := \{x^{(n,m)}_k\}_{k=0}^{d_{n,m}}
\]
an arbitrary, but fixed alternation set for the best approximation \(r^*_{n, m}\) of \(f\) out of \(\mathcal{R}_{n,m}\).

Let \(v_{n,m}\) denote the normalized counting measure of \(A_{n,m}\), i.e.,
\[
v_{n,m}([\alpha, \beta]) := \frac{\# \{x^{(n,m)}_k : \alpha \leq x^{(n,m)}_k \leq \beta\}}{d_{n,m} + 1}. \tag{4}
\]
Kadec [6] has shown that there exists a subsequence \(A\) of \(\mathbb{N}\) such that
\[
v_{n,0} \rightharpoonup^* \mu \quad \text{as } n \in A, \ n \to \infty, \tag{5}
\]
where \(\mu\) is the equilibrium measure of \([-1, 1]\). For rational approximation, Borwein et al. [4] have proved that denseness in \([-1, 1]\) of a subsequence of alternation sets \(A_{n,m}\) holds whenever \(m = m(n)\) and \(n/m(n) \to \kappa > 1\) as \(n \to \infty\). Moreover, they have shown in the case \(\lim_{n \to \infty} m(n)/n = 0\) that there exists \(A \subset \mathbb{N}\) such that
\[
v_{n,m(n)} \rightharpoonup^* \mu \quad \text{as } n \in A, \ n \to \infty,
\]
a result of Kadec’s type. Kroó and Peherstorfer [7] have obtained lower bounds for the number of alternation points in any interval \([x, \beta]\) of \([-1, 1]\) in the case that \(m = m(n) < n\), again for some specified subsequence \(A\) of \(\mathbb{N}\) (comp. [2]).

In [4], Borwein et al. have shown that for \(m(n) = n + 1\) and any \(\varepsilon > 0\) there exists an \(f \in C[-1, 1]\) with the property that all extreme points of \(f - r_{n,m}^*\) lie in the subinterval \([-1, -1 + \varepsilon]\) for every \(n = 1, 2, \ldots\). This situation, or more generally \(m(n) = n + s\), \(s \in \mathbb{Z}\) fixed, was considered by Braess et al. [5]. Their results were based on the number \(v_{n,m}(e)\) of poles of the best approximants that lie outside an \(e\)-neighbourhood of \([-1, 1]\). To give a taste of their theorems we want to cite the following results:

(i) If \(\lim_{n \to \infty} v_{n,m}(e)/\log n = \infty\) for some fixed \(e > 0\), then the point set \(\bigcup_{n=0}^{\infty} A_{n,n}(f)\) is dense in \([-1, 1]\).

(ii) If \(\lim_{n \to \infty} v_{n,m}(e)/n = 1\) for each \(e > 0\), then there exists a subsequence \(A\) of \(\mathbb{N}\) such that

\[
v_{n,n} \rightharpoonup \mu \quad \text{as} \quad n \in A, \quad n \to \infty.
\]

Hence, all these results show that there is a relation between the alternation points and the poles of the rational approximants \(r_{n,m}^*\). This idea was followed up in [3] where weak*-convergence results were obtained between the counting measures of the alternation sets \(v_{n,m}\), the counting measures of the poles and the equilibrium measure \(\mu\) of \([-1, 1]\). To be precise, let \(f\) be not a rational function and let \(n\) and \(m(n)\) satisfy

\[
m(n) \leq n, \quad m(n) \leq m(n + 1) \leq m(n) + 1.
\]

Moreover, let

\[
q_{m(n)}^*(x)q_{m(n+1)}^*(x) = b_n \prod_{i=1}^{l_n} (x - y_i)
\]

be the product of the denominators of \(r_{n,m(n)}^*\) and \(r_{n+1,m(n+1)}^*\), then

\[
\tau_n(A) := \frac{\# \{y_i : y_i \in A\}}{l_n} \quad (A \subset \mathbb{C})
\]

denotes the normalized counting measure of all finite poles of \(r_{n,m(n)}^*\) and \(r_{n+1,m(n+1)}^*\), counted with their multiplicities. Then in [3] it was proved that there exists a subsequence \(A \subset \mathbb{N}\) such that

\[
v_{n,m(n)} - \tau_n \rightharpoonup (1 - \alpha_n) \mu \rightharpoonup 0 \quad \text{as} \quad n \to \infty, \quad n \in A
\]

in the weak*-topology where

\[
\alpha_n = \frac{l_n}{d_{n,m(n)} + 1}
\]

and \(\overline{\tau}_n\) denotes the balayage measure of \(\tau_n\) onto \([-1, 1]\).

The purpose of the present paper is to obtain a convergence result of type (7), where the restriction \(m(n) \leq n\) in (6) is avoided. We point out that this condition was essentially used in the proofs in [3]. Hence, this restriction implied that a lot of known examples (cf. [8,10]) were outside this case.
2. Main result

In the following, we assume that the pairs

$$(n(s), m(s)) \in \mathbb{N}_0 \times \mathbb{N}_0$$

depend on parameters $s \in \mathbb{N}$. Let

$$E_{n(s), m(s)} := \inf_{r \in \mathbb{R}} \| f - r \| = \| f - r^*_{n(s), m(s)} \|$$

and define for abbreviation

$$E_s := E_{n(s), m(s)}, \quad r^*_s := r^*_{n(s), m(s)}, \quad p^*_s := p^*_{n(s)}, \quad q^*_s := q^*_{m(s)}, \quad d(s) := d_{n(s), m(s)}$$

and

$$x^{(s)}_k := x^{(n(s), m(s))}_k, \quad k = 0, 1, \ldots, d(s).$$

Again we use the normalized counting measure for the alternation sets \(\{x^{(s)}_k\}_{k=0}^{d(s)}\), namely

$$v_s(A) := \frac{\#\{x^{(s)}_k : x^{(s)}_k \in A\}}{d(s) + 1} \quad (A \in \mathbb{C}). \quad (8)$$

Moreover, we need the normalized counting measure τ_s of the union of the finite poles of r^*_s, and r^*_{s+1}. As above, all poles are counted with their multiplicities.

An important role is played by the balayage measure $\hat{\tau}_s$ of τ_s onto $[-1, 1]$. $\hat{\tau}_s$ is the unique measure supported on $[-1, 1]$ for which $\| \hat{\tau}_s \| = \| \tau_s \|$ and

$$U^{\hat{\tau}_s}(z) = U^{\tau_s}(z) + c, \quad z \in [-1, 1],$$

where

$$c = \int G(t, \infty) \, d\tau_s(t)$$

and $G(z, a)$ denotes Green’s function of $\Omega = \overline{\mathbb{C}} \setminus [-1, 1]$ with pole at $a \in \Omega$ (cf. [9, p.116]). Furthermore, $\hat{\tau}_s$ has the following properties:

(a) $U^{\hat{\tau}_s}(z) \leq U^{\tau}(z) + c, \quad z \in \mathbb{C}$.
(b) If h is continuous on $\overline{\mathbb{C}}$ and harmonic in $\overline{\mathbb{C}} \setminus [-1, 1]$, then $\int \ h \, d\tau_s = \int \ h \, d\hat{\tau}_s$.

Our main result can be formulated in the following statement.

Theorem. Let f be not a rational function and let $(n(s), m(s)) \in \mathbb{N}_0 \times \mathbb{N}_0, s \in \mathbb{N}$, be a strictly increasing sequence with

$$n(s) \leq n(s + 1) \leq n(s) + 1; \quad m(s) \leq m(s + 1) \leq m(s) + 1.$$ \quad (9)
Moreover, let $\kappa(s)$, $s \in \mathbb{N}$, be a sequence in \mathbb{N} with
\[
\lim_{s \to \infty} \frac{\kappa(s) \log s}{s} = 0 \quad (10)
\]
such that the degrees $n(s)$ of the numerators and the degrees $m(s)$ of the denominators of the rational approximants $r_{m(s),n(s)}^*$ satisfy
\[
m(s) \leq n(s) + \kappa(s). \quad (11)
\]
Then there exists a subsequence $\Lambda \subset \mathbb{N}$ such that
\[
\nu_s - \alpha_s \hat{\nu}_s - (1 - \alpha_s) \mu \rightarrow^* 0 \quad \text{as } s \to \infty, \ s \in \Lambda,
\]
where
\[
\alpha_s = \frac{\deg q_s^* + \deg q_{s+1}^*}{d(s) + 1}.
\]
If $m(s) \geq n(s) - \kappa$, $\kappa \in \mathbb{N}$ fixed, then it is possible that in the theorem
\[
\liminf_{s \to \infty, s \in \Lambda} \alpha_s \geq 1.
\]
In this case, generally no connection between the alternation sets and the equilibrium measure μ can be expected without additional conditions on the poles of the best approximants, as shown by results of Braess et al. [5].

It is possible to formulate the result of the theorem in a more concise form. Let
\[
R_s = r_{s+1}^* - r_s^* = \frac{p}{q},
\]
where p and q have no common divisor. Then the degree of p/q is defined by
\[
\deg p/q = \max(\deg p, \deg q).
\]
In our situation we have
\[
\deg R_s = \max(d(s), \deg q_s^* + \deg q_{s+1}^*),
\]
since all finite zeros of R_s are in $(-1, 1)$ and all poles of R_s are outside $[-1, 1]$. Then the number of zeros, resp. poles, of R_s in the complex plane \mathbb{C} is $\deg R_s$ where all zeros and poles are counted with their multiplicity.

Now, we define the normalized zero counting measure $\sigma_{\text{zero},s}$ and the normalized pole counting measure $\sigma_{\text{pole},s}$ of R_s in \mathbb{C}, i.e., for $A \in \mathbb{C}$
\[
\sigma_{\text{zero},s}(A) = \frac{\# \{\text{zeros of } R_s \text{ in } A\}}{\deg R_s}
\]
resp.
\[
\sigma_{\text{pole},s}(A) = \frac{\# \{\text{poles of } R_s \text{ in } A\}}{\deg R_s}.
\]
Then
\[\sigma_{\text{zero},s}(\overline{C}) = \sigma_{\text{pole},s}(\overline{C}) = 1 \]
and we obtain the following result.

Corollary. Under the conditions of the above theorem there exists \(A \subset \mathbb{N} \) such that
\[\widehat{\sigma}_{\text{zero},s} - \widehat{\sigma}_{\text{pole},s} \to 0 \quad \text{as} \quad s \to \infty, \quad s \in A, \]
where \(\widehat{\sigma}_{\text{zero},s} \) and \(\widehat{\sigma}_{\text{pole},s} \) are the balayage measures of the normalized zero (resp. pole) counting measures of \(R_s = r_s^* - r_{s+1}^* \) onto the interval \([-1, 1]\).

Let us illustrate the corollary in Kadec’s case, i.e., \((n(s), m(s)) = (s, 0)\). Then \(R_s = p_{s+1}^* - p_s^* \) and \(p_s^*, p_{s+1}^* \) are the best approximating polynomials to \(f \) with respect to \(P_s \), resp. \(P_{s+1} \). \(R_s \) has a pole of multiplicity \(s + 1 \) at \(\infty \) if \(p_s^* \neq p_{s+1}^* \). Since \(\hat{\sigma}_{\infty} = \mu, \hat{\sigma}_{\text{zero},s} = \sigma_{\text{zero},s} \) and the zeros of \(R_s \) separate the alternation points of \(f - p_s^* \), we have
\[\lim_{s \in A, s \to \infty} \sigma_{\text{zero},s} = \lim_{s \in A, s \to \infty} \nu_s, 0 = \mu \]
for a subsequence \(A \) of \(\mathbb{N} \), that is Kadec’s result (5).

3. Proof

In the following, we denote by \(c, c_1, c_2, \ldots \) positive constants, independent of \(s \) and \(f \), which may be different at different occurrences.

First, let us note that \(m(s + 1) \leq m(s) + 1 \) implies for all \(s \in \mathbb{N} \)
\[m(s) \leq c_1 + s, \quad n(s) \leq c_2 + s. \]
Hence, for all \(s \in \mathbb{N} \) we obtain
\[l_s \leq \deg q_s^* + \deg q_{s+1}^* \leq 2s + c. \]
Furthermore, \(d(s) = n(s) + m(s) + 1 - \delta_{n(s),m(s)}(r_s^*) \) together with the condition (9) for the strictly increasing sequence \((n(s), m(s)), s \in \mathbb{N}\), yields
\[\frac{s}{2} \leq \max(n(s), m(s)) + 1 \leq d(s) \leq 2s + c. \]
We may furthermore assume without loss of generality that \(\lim_{s \to \infty} \kappa(s) = \infty \) and \(\kappa(s) \geq 2 \) for all \(s \in \mathbb{N} \).

It is well-known that there exists a subsequence \(A \subset \mathbb{N} \) such that
\[A_s := \frac{E_s + E_{s+1}}{E_s - E_{s+1}} \leq s^2 \quad \text{for} \quad s \in A, s \to \infty \]
(12)
(cf. [1, Lemma 7.3.3, p. 243]). Especially, for \(s \in A \) we have \(r_s^* \neq r_{s+1}^* \) and by (3) that
\[(-1)^k (r_{s+1}^* - r_s^*) (x_k^{(s)}) \geq E_s - E_{s+1} \]
(13)
for $0 \leq k \leq d(s)$, where we have used without loss of generality that in (3) the number $n(s), m(s) = 1$. Let

$$R_s = r_{s+1}^* - r_s^* = \frac{p_{s+1}^* q_s^* - p_s^* q_{s+1}^*}{q_s^* q_{s+1}^*} = \frac{P_s}{Q_s},$$

(14)

then (13) implies that for $s \in A$

$$(-1)^k R_s(x_k^{(s)}) \geq E_s - E_{s+1}, \quad 0 \leq k \leq d(s).$$

(15)

Since $r_s^* \neq r_{s+1}^*$ then, because of

$$n(s + 1) \leq n(s) + 1 \quad \text{and} \quad m(s + 1) \leq m(s) + 1,$$

it turns out that $P_s \in \mathcal{P}_{d(s)}$; i.e. (15) implies that all zeros of P_s and R_s are in $(-1, 1)$.

We may assume that q_s^*, q_{s+1}^* are monic polynomials, then

$$Q_s(x) = \prod_{i=1}^{l_s} (x - y_i^{(s)})$$

(16)

and all zeros of Q_s are outside $[-1, 1]$ and they are real or occur in conjugate pairs counted with their multiplicities. Next, define

$$\kappa_s = \deg Q_s - \deg P_s,$$

(17)

then with $\delta = \delta_{n(s), m(s)}(r_s^*)$ we have

$$\kappa_s \leq m(s) - \delta + m(s + 1) - (n(s) + m(s) + 1 - \delta)$$

or

$$\kappa_s \leq m(s) - n(s) \leq \kappa(s).$$

(18)

If $\kappa_s \leq 0$, then the polynomial Q_s can be reconstructed by interpolation at the alternation points $x_k^{(s)}$, $0 \leq k \leq d(s)$. If $\kappa_s > 0$, we need additional interpolation points for doing this. First, we consider

$$Z_1^{(s)} := \{y_i^{(s)} : |y_i^{(s)}| > \kappa(s)\}$$

and we assume that $y_i^{(s)}$ are ordered in such a way that

$$|y_i^{(s)}| \geq |y_{i+1}^{(s)}|$$

and

$$Z_1^{(s)} = \{y_i^{(s)} : 1 \leq i \leq l_{1,s}\}.$$

Then

$$l_{1,s} \leq l_s$$

and we define

$$R_{1,s}(z) := \frac{P_s(z)}{Q_s(z)} \prod_{j=1}^{l_{1,s}} (z - y_j^{(s)}) = \frac{P_s(z)}{Q_{1,s}(z)},$$
where

\[Q_{1,s}(z) = \prod_{i=l_{1,s}+1}^{l_s} (z - \gamma_i^{(s)}). \]

(19)

Note that \(Q_{1,s}(z) \equiv Q_s(z) \), if \(Z_1^{(s)} = \emptyset \).

From (15) we obtain

\[(-1)^k \varepsilon_1 R_{1,s}(x_k^{(s)}) \geq (E_s - E_{s+1}) \prod_{j=1}^{l_{1,s}} (|y_j^{(s)}| - 1), \quad 0 \leq k \leq d(s), \]

(20)

where \(\varepsilon_1 = +1, \) resp. \(\varepsilon_1 = -1, \) if the number of negative real points in \(Z_1^{(s)} \) is even, resp. odd (counted with their multiplicities).

If \(\deg Q_{1,s} = l_s - l_{1,s} > d(s) \), then we define

\[\kappa_{1,s} := \deg Q_{1,s} - d(s) = l_s - l_{1,s} - d(s) \]

(21)

and fix the points

\[\xi_j^{(s)} := -js, \quad 1 \leq j \leq \kappa_{1,s}. \]

(22)

Then condition (10) implies that there exists \(s_0 \in \mathbb{N}, s_0 \geq 2, \) such that all points \(\xi_j^{(s)} < -\kappa(s) \) for all \(s \geq s_0 \).

We consider now

\[R_{2,s}(z) = R_{1,s}(z) \prod_{j=1}^{\kappa_{1,s}} (z - \xi_j^{(s)}) = \frac{P_{2,s}(z)}{Q_{1,s}(z)}, \]

where

\[P_{2,s}(z) = P_2(z) \prod_{j=1}^{\kappa_{1,s}} (z - \xi_j^{(s)}) \]

(23)

and we set \(P_{2,s} = P_s \) if \(\kappa_{1,s} \leq 0 \).

Now, we can reconstruct the polynomial \(Q_{1,s}(z) \) by interpolation at the points

\[\{x_k^{(s)}\}_{k=0}^{d(s)} \cup \{\xi_j^{(s)}\}_{j=1}^{\kappa_{1,s}}. \]

In the case \(\kappa_{1,s} \leq 0 \) the second set \(\{\xi_j^{(s)}\}_{j=1}^{\kappa_{1,s}} = \emptyset \). Let

\[w(z) = \prod_{k=0}^{d(s)} (z - x_k^{(s)}) \prod_{j=1}^{\kappa_{1,s}} (z - \xi_j^{(s)}), \]

then we obtain by Lagrange’s interpolation formula

\[Q_{1,s}(z) = \sum_{k=0}^{d(s)} \frac{Q_{1,s}(x_k^{(s)}) w(z)}{(z - x_k^{(s)}) w'(x_k^{(s)})} + \sum_{j=1}^{\kappa_{1,s}} \frac{Q_{1,s}(\xi_j^{(s)}) w(z)}{(z - \xi_j^{(s)}) w'(\xi_j^{(s)})}, \]
where the last sum is defined as 0 if $\kappa_{1,s} \leq 0$.

Then for $z \neq x_{k}^{(s)}, \xi_{j}^{(s)}$

$$\frac{Q_{1,s}(z)}{w(z)} = \sum_{k=0}^{d(s)} \frac{Q_{1,s}(x_{k}^{(s)})}{(z - x_{k}^{(s)})w'(x_{k}^{(s)})} + \sum_{j=1}^{\kappa_{1,s}} \frac{Q_{1,s}(\xi_{j}^{(s)})}{(z - \xi_{j}^{(s)})w'(\xi_{j}^{(s)})}.$$

Define for abbreviation

$$\frac{1}{\beta_{k}} = w'(x_{k}^{(s)}), \ 0 \leq k \leq d(s)$$

and

$$\frac{1}{\alpha_{j}} = w'(\xi_{j}^{(s)}), \ 1 \leq j \leq \kappa_{1,s}.$$

Then for $z \neq x_{k}^{(s)}, \xi_{j}^{(s)}$

$$\left| \frac{Q_{1,s}(z)}{w(z)} \right| \leq D(z) \left(\sum_{k=0}^{d(s)} |\beta_{k} Q_{1,s}(x_{k}^{(s)})| + \sum_{j=1}^{\kappa_{1,s}} |\alpha_{j} Q_{1,s}(\xi_{j}^{(s)})| \right)$$

$$= D(z)(S_{1} + S_{2}), \quad (26)$$

where S_{1}, resp. S_{2} is the first, resp. second sum on the right-hand side and

$$D(z) := \max \left(\max_{0 \leq k \leq d(s)} |z - x_{k}^{(s)}|^{-1}, \max_{1 \leq j \leq \kappa_{1,s}} |z - \xi_{j}^{(s)}|^{-1} \right). \quad (27)$$

Next, we have to obtain upper bounds for the two sums on the right-hand side of (26).

Let a_{s} be the leading coefficient of P_{s} and let us consider the Chebyshev approximation of $P_{2,s}(z)$ with respect to $\mathcal{P}_{d(s)+\kappa_{1,s}-1}$ and the weight function $1/Q_{1,s}(z)$ at the points $\{x_{k}^{(s)}\}_{k=0}^{d(s)}$ with interpolation conditions at the points $\{\xi_{j}^{(s)}\}_{j=1}^{\kappa_{1,s}}$. Let ρ denote the minimal deviation for this weighted approximation problem. Then de la Vallée-Poussin’s Theorem, together with (20) and (23), implies

$$\rho \geq (E_{s} - E_{s+1}) B_{s} C_{s}, \quad (28)$$

where

$$B_{s} := \prod_{j=1}^{l_{1,s}} (|y_{j}^{(s)}| - 1), \quad C_{s} := \prod_{j=1}^{\kappa_{1,s}} (|\xi_{j}^{(s)}| - 1). \quad (29)$$

Moreover, the minimal deviation ρ can be calculated by the following well-known Lemma for Chebyshev approximation with interpolation conditions.

Lemma.

$$\rho = \frac{|a_{s}|}{\sum_{k=0}^{d(s)} |\beta_{k} Q_{1,s}(x_{k}^{(s)})|},$$

where β_{k} is defined by (24).
Hence, this lemma and (28) imply
\[
\sum_{k=0}^{d(s)} |\beta_k Q_{1,s}(x_k^{(s)})| \leq \frac{|a_s|}{(E_s - E_{s+1}) B_s C_s}.
\]

(30)

For estimating $|a_s|$, we use a method of [2]. Define the function
\[
h(z) := \log |R_s(z)| - \sum_{j=1}^{l_s} G(z, y_j^{(s)}) + (d(s) - l_s) G(z, \infty)
\]
then h is subharmonic in \mathbb{C}. By the maximum principle we get together with \(\lim_{z \to \infty} (G(\infty, z) + \log \frac{1}{2} - \log |z|) = 0 \) that
\[
h(\infty) = \log |a_s| - \sum_{j=1}^{l_s} G(\infty, y_j^{(s)}) + (d(s) - l_s) \log \frac{1}{2}
\leq \max_{-1 \leq x \leq 1} \log |R_s(x)| = \log \|R_s\|
\leq \log(E_s + E_{s+1})
\]
or
\[
\log |a_s| \leq \log(E_s + E_{s+1}) + \sum_{j=1}^{l_s} G(\infty, y_j^{(s)}) - (d(s) - l_s) \log \frac{1}{2}.
\]

Inserting in (30), it follows that
\[
\log S_1 = \log \sum_{k=0}^{d(s)} |\beta_k Q_{1,s}(x_k^{(s)})|
\leq \log \frac{A_s}{B_s C_s} + \sum_{j=1}^{l_s} G(\infty, y_j^{(s)}) + (d(s) - l_s) \log \frac{1}{2}
\]

(31)

is an upper bound for the first sum in (26).

Concerning the second sum we have to consider only the case $\kappa_{1,s} \geq 1$. Since
\[
\frac{\kappa_{1,s} + d(s)}{js} \kappa(s) \leq \frac{\kappa(s) + d(s)}{s} \kappa(s) \leq \frac{\kappa(s) + c + 2s}{s} \kappa(s) \leq c_1 \kappa(s)
\]
and
\[
\frac{d(s) + 1}{js} \leq \frac{d(s) + 1}{s} \leq c_2,
\]
we obtain for \(s \geq s_0 \geq 2 \)

\[
|z_j Q_{1,s}(\zeta_j^{(s)})| = \prod_{l=l_{1,s}+1}^{l_{s}} |\zeta_j^{(s)} - y_i^{(s)}| \prod_{i=1}^{\kappa_{1,s}} |\zeta_j^{(s)} - \zeta_i^{(s)}| \prod_{k=0}^{d(s)} |\zeta_j^{(s)} - x_k^{(s)}| \\
\leq \frac{[js + \kappa(s)]^{l_{s} - l_{1,s}}}{s^{\kappa_{1,s} - 1}[js - 1]^{d(s)+1}} \\
= \frac{(js)^{\kappa_{1,s} - 1}(1 + \kappa(s)/js)^{\kappa_{1,s} + d(s)}}{s^{\kappa_{1,s} - 1}(1 - 1/js)^{d(s)+1}} \\
\leq \kappa_{1,s}^{-1} \exp \left(\frac{\kappa_{1,s} + d(s)}{js} \kappa(s) + 2 \frac{d(s) + 1}{js} \right) \\
\leq c_3 \kappa(s)^{\kappa(s)}.
\]

Therefore,

\[
\log S_2 = \log \sum_{j=1}^{\kappa_{1,s}} |z_j Q_{1,s}(\zeta_j^{(s)})| \leq c \kappa(s) \log \kappa(s) \\
= o(s) \text{ as } s \to \infty. \tag{32}
\]

Back to (26), let \(D_s \) be the constant

\[
D_s := \prod_{j=1}^{\kappa_{1,s}} |\zeta_j^{(s)}|.
\]

Then

\[
D_s \left| \frac{Q_{1,s}(z)}{w(z)} \right| = Q_{1,s}(z) \prod_{j=1}^{\kappa_{1,s}} |\zeta_j^{(s)}| \prod_{k=0}^{d(s)} \frac{1}{|z - x_k^{(s)}|} \\
\leq D(z)(D_s S_1 + D_s S_2).
\]

Since for \(|z| \leq 2\) and all \(s \)

\[
\prod_{j=1}^{\kappa_{1,s}} \frac{|\zeta_j^{(s)}|}{|z - \zeta_j^{(s)}|} \geq \prod_{j=1}^{\kappa_{1,s}} \frac{|js|}{|js| + 2} \geq \left(1 + \frac{2}{s} \right)^{-\kappa(s)} \\
\geq e^{-2\kappa(s)/s} \geq c_1,
\]

we obtain for \(|z| \leq 2\)

\[
\log \frac{Q_{1,s}(z)}{\prod_{k=0}^{d(s)} |z - x_k^{(s)}|} \leq c + \log D(z) + \log(D_s S_1 + D_s S_2).
\]

Next, we use for \(\alpha, \beta > 0 \) that

\[
\log(\alpha + \beta) \leq \log(2\alpha) + \log(2\beta).
\]
Thus, we can write
\[\log \frac{Q_{1,s}(z)}{d(s)} \leq c + \log D(z) + \log(D_s S_1) + \log(D_s S_2). \] (33)

Now, by (29) and (31) we obtain for \(s \geq s_0, |z| \leq 2 \) that
\[
\log D_s S_1 \leq \log \frac{A_s}{B_s C_s} + \sum_{j=1}^{l_s} G(\infty, y_j^{(s)}) + \sum_{j=1}^{\kappa_{1,s}} \log |\xi_j^{(s)}| - (d(s) - l_s) \log \frac{1}{2}
\]
\[
= \log A_s - \sum_{j=1}^{l_{1,s}} \log(|y_j^{(s)}| - 1) - \sum_{j=1}^{\kappa_{1,s}} \log(|\xi_j^{(s)}| - 1)
\]
\[
+ \sum_{j=1}^{l_s} G(\infty, y_j^{(s)}) + \sum_{j=1}^{\kappa_{1,s}} \log |\xi_j^{(s)}| - (d(s) - l_s) \log \frac{1}{2}
\]
\[
\leq c + \log A_s + \sum_{j=1}^{l_{1,s}} (G(\infty, y_j^{(s)}) - \log |z - y_j^{(s)}|)
\]
\[
+ 3 \frac{l_{1,s}}{\kappa(s) - 1} + \sum_{j=l_{1,s}+1}^{l_s} G(\infty, y_j^{(s)}) - (d(s) - l_s) \log \frac{1}{2},
\] (34)

since
\[
\frac{\sum_{j=1}^{\kappa_{1,s}} \log |\xi_j^{(s)}|}{|\xi_j^{(s)}| - 1} \leq \kappa_{1,s} \log \frac{1}{1 - 1/s} \leq c \kappa_{1,s} \frac{1}{s} \leq c
\]

and
\[
\sum_{j=1}^{l_{1,s}} \log \frac{|z - y_j^{(s)}|}{|y_j^{(s)}| - 1} \leq \sum_{j=1}^{l_{1,s}} \log \frac{|y_j^{(s)}| + 2}{|y_j^{(s)}| - 1} = \sum_{j=1}^{l_{1,s}} \log \left(1 + \frac{3}{|y_j^{(s)}| - 1} \right)
\]
\[
\leq \sum_{j=1}^{l_{1,s}} \frac{3}{|y_j^{(s)}| - 1} \leq 3 \frac{l_{1,s}}{\kappa(s) - 1}.
\]

Note, that
\[
\frac{l_{1,s}}{\kappa(s) - 1} \leq \frac{l_s}{\kappa(s) - 1} \leq 2s + c
\]

hence with the Landau symbol \(o(s) \) we can write
\[
3 \frac{l_{1,s}}{\kappa(s) - 1} + \log A_s = o(s) \text{ as } s \to \infty,
\] (35)

where we have used that \(\kappa(s) \to \infty \) as \(s \to \infty \).
Summarizing, we have

\[
\log D_s S_1 \leq o(s) + \sum_{j=1}^{l_1,s} \left(G(\infty, y_j^{(s)}) + \log \frac{1}{|z - y_j^{(s)}|} \right) + \sum_{j=l_{1,s}+1}^{l_s} G(\infty, y_j^{(s)}) + (d(s) - l_s) \log \frac{1}{2}.
\]

(36)

Furthermore,

\[
D_s = \prod_{j=1}^{k_{1,s}} |z_j^{(s)}| = \prod_{j=1}^{k_{1,s}} (j s) = s^{k_{1,s}} k_{1,s}! \leq s^{\kappa(s)} \kappa(s)^{k(s)}
\]

or

\[
\log D_s \leq \kappa(s) (\log s + \log \kappa(s)) = o(s) \text{ as } s \to \infty
\]

(37)

since \(\kappa(s) = o(s/\log s) \).

Now we consider \(z \) the level curves

\[
\Gamma_{1/s} : = \{ z \in \mathbb{C} : G(z, \infty) = \log(1 + \frac{1}{s}) \}
\]

of Green’s function \(G(z, \infty) \) which are ellipses with foci at 1 and \(-1\) and major semi-axis \(a = \frac{1}{2}(s + \frac{1}{s} + (s + \frac{1}{s})^{-1}) \). Hence,

\[
\text{dist}(\Gamma_{1/s}, [-1, 1]) \geq 1/(4s^2) \text{ for } s \in \mathbb{N}
\]

and therefore

\(D(z) \leq 4s^2 \text{ for } s \geq s_0. \)

Then (32) – (37) imply for \(z \in \Gamma_{1/s} \) that

\[
\log \frac{Q_{1,s}(z)}{d(s) \prod_{k=0}^{l_{1,s}} |z - x_k^{(s)}|} \leq o(s) + \sum_{j=1}^{l_{1,s}} (G(\infty, y_j^{(s)}) - \log |z - y_j^{(s)}|) + \sum_{j=l_{1,s}+1}^{l_s} G(\infty, y_j^{(s)}) - (d(s) - l_s) \log \frac{1}{2}
\]

or

\[
\log \left| a_s \frac{Q_s(z)}{P_s(z)} \right| \leq o(s) + \sum_{j=1}^{l_s} G(\infty, y_j^{(s)}) - (d(s) - l_s) \log \frac{1}{2}.
\]

The last inequality can be written with the logarithmic potentials \(U^{\tau_s} \) and \(U^{\tau_s} \) as

\[
U^{\tau_s}(z) - a_s U^{\tau_s}(z) \leq \frac{1}{d(s) + 1} \left(o(s) + \sum_{j=1}^{l_s} G(\infty, y_j^{(s)}) \right) - \left(1 - \frac{l_s + 1}{d(s) + 1} \right) \log \frac{1}{2}.
\]
Moreover, we use
\[U^\mu(z) = -G(z, \infty) - \log \frac{1}{2} \]
and obtain for \(z \in \Gamma_{1/s} \)
\[U^\nu(z) - \alpha_s U^{\tau_s}(z) - (1 - \alpha_s) U^\mu(z) \leq \frac{1}{d(s) + 1} \left(o(s) + \sum_{j=1}^{l_s} G(\infty, y_j^{(s)}) + \log \frac{1}{2} \right) + (1 - \alpha_s) G(z, \infty). \]
Hence, for \(z \in \Gamma_{1/s} \)
\[U^\nu(z) - \alpha_s U^{\tau_s}(z) - (1 - \alpha_s) U^\mu(z) \leq o(1) + \frac{1}{d(s) + 1} \sum_{j=1}^{l_s} G(\infty, y_j^{(s)}). \]
Next, we decompose the measure \(\tau_s \) into
\[\tau_s = \tau_{s,1} + \tau_{s,2}, \]
where
\[\tau_{s,1} := \tau_s|_{\text{ext } \Gamma_{1/s}} \]
and \(\text{ext } \Gamma_{1/s} := \{ z \in \mathbb{C} : G(z, \infty) > \log(1 + 1/s) \} \). Let \(\tau_{s,1}^* \) denote the balayage measure of \(\tau_{s,1} \) onto \(\Gamma_{1/s} \). Since \(\nu_s \) and \(\tau_s \) are probability measures and the numbers \(\alpha_s \) are bounded, we may assume that we have chosen \(\Lambda \) in such a way that
\[\nu_s - \alpha_s (\tau_{s,1}^* + \tau_{s,2}) - (1 - \alpha_s) \mu \xrightarrow{s \to \infty} \sigma \text{ as } s \in \Lambda, \]
where \(\sigma \) is a signed measure on \([-1, 1]\) with \(\sigma([-1, 1]) = 0 \).
We want to show that \(\sigma = 0 \). To this end, let us consider the point sets
\[T_1 := \{ y_i : y_i \in \text{ ext } \Gamma_{1/s} \} \]
and
\[T_2 = \{ y_i \}_{i=1}^{l_s} \setminus T_1. \]
Then, for \(z \in \Gamma_{1/s} \)
\[U^{\tau_{s,1}}(z) + U^{\tau_{s,2}}(z) = U^{\tau_{s,1}}(z) + U^{\tau_{s,2}}(x) + \frac{1}{l_s} \sum_{y_i \in T_1} G_s(y_i, \infty), \]
where \(G_s(z, \infty) \) is Green’s function of \(\Gamma_{1/s} \) with pole at \(\infty \). Since \(G_s(z, \infty) = G(z, \infty) - \log (1 + 1/s) \) we obtain for \(z \in \Gamma_{1/s} \) and \(s \geq 2 \)
\[U^\nu(z) - \alpha_s (U^{\tau_{s,1}}(z) + U^{\tau_{s,2}}(z)) - (1 - \alpha_s) U^\mu(z) \leq o(1) \text{ for } s \in \Lambda, \]
\[s \to \infty. \] (39)
If we assume \(\sigma \neq 0 \) in (38) then the maximum principle and Carleson’s theorem (cf. [9]) imply that
\[\max_{z \in T_s} U^\sigma(z) > 0 \]
for some $x > 0$, since $U^\sigma(z)$ is subharmonic in $\mathbb{C}\setminus I$ and $U^\sigma(\infty) = 0$. Applying the maximum principle again, we get
\[
\max_{z \in I_{1/s}} U^\sigma(z) > \max_{z \in I_s} U^\sigma(z)
\]
for $1/s < x$. This contradicts the inequality (39). Hence $\sigma = 0$.

Our final step is to show that
\[
\tau^*_s,1 + \tau^*_s,2 \xrightarrow[*]{\ast} \tilde{\tau}_s \text{ as } s \in A, \ s \to \infty
\]
which is equivalent to
\[
\lim_{s \to \infty} \int g \, d(\tau^*_s,1 + \tau^*_s,2) = \lim_{s \to \infty} \int g \, d\tilde{\tau}_s
\]
for all continuous functions g on \mathbb{C} with compact support.

Let h be the harmonic extension of $g|_{[-1,1]}$ onto \mathbb{C}. Since g and h are uniformly continuous, there exists for $\varepsilon > 0$ a number $\delta > 0$ such that
\[
|g(z) - g(z')| < \varepsilon \quad \text{and} \quad |h(z) - h(z')| < \varepsilon
\]
for all z, z' with $|z - z'| < \delta$.

Let $\ast \in \text{ext } I_{1/s}$. Then there exists a point $x_\ast \in I$ with $|x - x_\ast| < 1/s$ and consequently for all such z
\[
|g(z) - h(z)| \leq |g(z) - g(x_\ast)| + |g(x_\ast) - h(z)|
\]
\[
= |g(z) - g(x_\ast)| + |h(x_\ast) - h(z)|
\]
\[
\leq 2 \varepsilon
\]
if $1/s < \delta$. Hence, for $s > 1/\delta$
\[
\int g \, d\tilde{\tau}_s = \int h \, d\tau_s = \int h \, d(\tau^*_s,1 + \tau^*_s,2)
\]
\[
= \int g \, d(\tau^*_s,1 + \tau^*_s,2) + \int (h - g) \, d(\tau^*_s,1 + \tau^*_s,2)
\]
and therefore
\[
\left| \int g \, d\tilde{\tau}_s - \int g \, d(\tau^*_s,1 + \tau^*_s,2) \right| \leq 2 \varepsilon
\]
Summarizing, we have obtained
\[
\nu_s - (1 - x_s)\tilde{\tau}_s - x_s \mu \xrightarrow[*]{\ast} 0 \text{ as } s \in A, \ s \to \infty
\]
and the theorem is proved. □

Concerning the proof of the Corollary, we consider first the case $\deg R_s = d(s)$. Then R_s has $l_s = \deg q^*_s + \deg q^*_s + 1$ finite poles and $d(s) - l_s$ poles at ∞. Hence
\[
\hat{\sigma}_{\text{pole},s} = \frac{l_s}{d(s)} \tilde{\tau}_s + \frac{d(s) - l_s}{d(s)} \mu
\]
\[
= \frac{d(s) + 1}{d(s)} \nu_s \tilde{\tau}_s + \left(1 - \nu_s \frac{d(s) + 1}{d(s)} \right) \mu.
\]
Then we obtain with $d(s) \geq s/2$ and
\[
\lim_{s \to \infty} (\sigma_{\text{zero},s} - v_s) = \lim_{s \to \infty} (\sigma_{\text{zero},s} - v_s) = 0
\]
that
\[
\lim_{s \in A, s \to \infty} (\sigma_{\text{zero},s} - \sigma_{\text{pole},s}) = \lim_{s \in A, s \to \infty} (v_s - \alpha_s \tau_s - (1 - \alpha_s) \mu) = 0.
\]

In the case that $\deg R_s = l_s$, the rational function R_s has $d(s)$ finite zeros on $(-1, 1)$ and $l_s - d(s)$ zeros at infinity. Let us denote by $\sigma_{1,s}$ the normalized measure associated with the finite zeros on $(-1, 1)$. Then
\[
\hat{\sigma}_{\text{zero},s} = \frac{d(s)}{l_s} \sigma_{1,s} + \left(1 - \frac{d(s)}{l_s}\right) \mu
\]
and therefore
\[
\hat{\sigma}_{\text{zero},s} - \hat{\sigma}_{\text{pole},s} = \frac{d(s)}{l_s} \sigma_{1,s} + \left(1 - \frac{d(s)}{l_s}\right) \mu - \tau_s
\]
\[
= \frac{d(s)}{l_s} \left(\sigma_{1,s} - \frac{l_s}{d(s)} \tau_s - \left(1 - \frac{l_s}{d(s)}\right) \mu\right).
\]
Since $d(s) \leq l_s$ and $\lim_{s \to \infty} (\sigma_{1,s} - v_s) = 0$, we obtain
\[
\lim_{s \in A, s \to \infty} (\hat{\sigma}_{\text{zero},s} - \hat{\sigma}_{\text{pole},s}) = \lim_{s \in A, s \to \infty} (v_s - \alpha_s \tau_s - (1 - \alpha_s) \mu) = 0
\]
and the convergence result for the zero measures $\sigma_{\text{zero},s}$ and pole measures $\sigma_{\text{pole},s}$ holds.

References