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Abstract 

In the literature, one can distinguish two main approaches to the definition of observational 
semantics of algebraic specifications. On one hand, observational semantics is defined using 
a notion of observational satisfaction for the axioms of the specifications and. on the other 
hand, one can define observational semantics by abstraction with respect to an observational 
equivalence relation between algebras. In this paper, we present an analysis and a comparative 
study of the different approaches in a more general framework which subsumes the observa- 
tional case. The distinction between the different observational concepts is reflected by our 
notions of behavioural specification and abstractor specification. We provide necessary and 
sufficient conditions for the semantical equivalence of both kinds of specifications and we show 
that behavioural specifications can be characterized by an abstractor construction and, vice 
versa, abstractor specifications can be characterized in terms of behavioural specifications. 
Hence, there exists a duality between both concepts which allows to express each one by the 
other. We also study the relationships to fully abstract algebras which can be used for a further 
characterization of behavioural semantics. Finally, we provide proof-theoretic results which 
show that behavioural theories of specifications can be reduced to standard theories of some 
classes of algebras. 

Keywords: Algebraic specification; Behaviour; Abstraction; Partial congruence; Factorizable 
equivalence; Fully abstract algebra; Behavioural theory 

1. Introduction 

Observability plays an important role in program development. For instance, 

formal implementation notions can be based on this concept. Other applications are 

the notion of equivalence between concurrent processes and 

single step transitions to input-output operational semantics. 

the abstraction from 
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Since the beginning of the 1980s observational frameworks have found continuous 

interest in the area of algebraic specifications. In the literature, one can distinguish 

two main possibilities for the definition of observational semantics. One is based on 

the so-called observational satisfaction relation where equations are not interpreted 

as identities but as observational equivalences of objects (cf. e.g. [3,12,19,22]. In this 

case, the observational semantics of a specification is given by the class of all algebras 

that observationally satisfy the axioms of the specification. Other approaches define 

observational semantics by constructing the closure of the (standard) model class of 

a specification with respect to an observational equivalence relation between algebras 

(cf. e.g. [21,23,24,26,27]. In [22] (and similarly in [19]) both semantical views are 

considered and it is shown that they are equivalent if the axioms of the specification 

are conditional equations with observable premises. However, this is in general not 

true for specifications with arbitrary first-order formulas as axioms. 

In this paper, we study the relationships between the two semantical concepts in 

a more general framework which allows us to “abstract” from technical details (like 

e.g. observable contexts) appearing in observational approaches. For this purpose, we 

generalize the two concepts of observational semantics in the following way: instead of 

the observational equivalence of elements (in the following simply called observa- 

tional equality) we use an arbitrary partial congruence relation for the interpretation 

of equations. This leads to our notion ofpat behauioural specification which admits as 

models all algebras satisfying the axioms of a specification with respect to a given 

congruence relation. In order to be general enough for capturing the different views 

about which “inputs” should be allowed for “observable” experiments (e.g. arbitrary 

inputs as in [22] or only observable inputs as in [ 191) we use partial congruences. As 

a first result, we show that the model class of a flat behavioural specification can be 

characterized by the class of all algebras whose “behavioural quotient” is a (standard) 

model of the underlying specification. This characterization leads to a straightforward 

extension of behavioural semantics to arbitrary structured specifications (of an ASL- 

like specification language). On the other hand, following the notion of an “abstrac- 

tor” in [24], we define abstractor specifications which describe all algebras that are 

equivalent to a (standard) model of a specification w.r.t. a given equivalence relation 

between algebras. In order to establish the connection between behavioural and 

abstractor specifications, we consider only those equivalences on algebras which are 

“factorizable” (by a partial congruence relation between the elements of the algebras). 

As an example, we show that all observational equivalences of algebras w.r.t. a set of 

observable sorts are factorizable (for any choice of the input sorts). 

As a central result of our approach, we obtain necessary and sufficient conditions 

for the semantical equivalence of behavioural and abstractor specifications. For 

instance, behavioural semantics coincides with abstractor semantics if and only if the 

(standard) model class of the underlying specification is closed under the “behavioural 

quotient” construction. Particular instantiations of this condition lead to the the- 

orems of [ 19,221 (cf. above). Moreover, we show that in general behavioural semantics 

is included (i.e. is more restrictive) than abstractor semantics and we prove that 
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behavioural specifications can be characterized in terms of abstractor specifications 

and, conversely, abstractor specifications can be characterized in terms of behavioural 

specifications as well. Hence, there exists a duality between both kinds of specifica- 

tions. Each one can be expressed by the other one. An important further characteriza- 

tion of behavioural semantics is provided using fully abstract algebras. It says that the 

model class of a behavioural specification can be characterized by the class of all 

algebras which are equivalent to a fully abstract (standard) model of the underlying 

specification. Hence, a behavioural specification has a model if and only if there exists 

a fully abstract (standard) model of the specification. 

For the analysis of behavioural properties of specifications, we consider their 

behavioural theories. According to the generalized satisfaction relation with respect to 

a partial congruence, the behavioural theory of a specification is defined as the set of 

all formulas which are behaviourally satisfied (w.r.t. the given congruence) by all 

models of the specification. Since it is usually difficult to prove behavioural theorems, 

we need techniques which allow to reduce behavioural proofs to standard ones. For 

this purpose, we show that the behavioural theory of a behavioural specification is the 

same as the standard theory of the class of the fully abstract (standard) models of the 

specification. Similarly, we show that the behavioural theory of an abstractor speci- 

fication can be reduced to the standard theory of the class of the “behavioural 

quotients” of the (standard) models of the specification. These results provide the basis 

for the investigation of concepts which allow one to prove behavioural properties of 

specifications by standard proof techniques (cf. [4,6,7]). 

The paper is organized as follows: Section 2 provides the underlying notions of our 

approach. In Section 3, behavioural specifications are introduced, and in Section 4, we 

consider abstractor specifications. The relationships between behavioural and ab- 

stractor specifications are studied in Section 5. In Section 6, we focus on fully abstract 

algebras and on the characterization of behavioural semantics by fully abstract 

algebras. In Section 7, behavioural theories are studied and finally, in Section 8, we 

end with some concluding remarks. 

2. Basic concepts 

2. I. Algebraic preliminaries 

In this section, the basic notions of algebraic specifications which will be used 

hereafter are briefly summarized (for more details see e.g. [9,29]. 

A (many sorted) signature C is a pair (S, F), where S is a set of sorts and F is a set of 

function symbols. To each function symbol f E F, a functionality sl, . . , s, + s with 

Sl, ..‘, s,, s E S, is associated. If n = 0, then f is called constant of sort s. A (total) 

C-algebra A = ((ALs, (fA)fs~) over a signature C = (S, F) consists of a family of 

carrier sets (As)ses and a family of functions (fA)/,F such that, if f has functionality 

Sl, ..., s, + s, thenfA is a (total) function from A,, x ... x A,,, to A, (if n = 0, thenfA 
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denotes a constant object of A,). A Z-algebra A0 is called subalgebra of a C-algebra 

A if (A,), E A, for all s E S, and if for allfe F, the restriction off” to A0 is the function 

fAo. Throughout this paper, we always assume that the carrier sets A, of a C-algebra 

A are not empty for all s E S. The category of all Z-algebras with the usual notion of 

C-homomorphism is denoted by Alg(1). For any class C E Alg(C) of C-algebras, 

Iso denotes the closure of C under C-isomorphism, i.e. Iso =def {A E Alg(C)I A is 

isomorphic to some B E C}. 

Given an arbitrary S-sorted family X = (XJseS of sets X,, T(C, X) denotes the 

C-term algebra freely generated by X. An element t E T(C, X), is called term of sort 

s with variables in X. In several occasions, we will consider a subset In z S and we 

will choose X, = 0 for all s E S\In (and X, # 8 for all s E In). In that case, due to the 

requirement of nonempty carrier sets from above, we will always assume that the 

signature Z is sensible w.r.t. In which means that for all s E S\In (and hence for all 

s E S) there exists a term t of sort s which is built by function symbols of Z and by the 

variables of the nonempty sets X, with s E In. A term t without variable is called 

ground term. Given a C-algebra A, a valuation a:X + A is a family of mappings 

(4 : xs -+ 4scs. Any valuation cc: X -+ A uniquely extends to a C-homomorphism 

I, : T (C, X) + A, called the interpretation associated to c( and defined by: 

(1) I&) =def E,(X) if x E X,, 

(2) Uf(r13 ... > 42)) =deffA(L,(tl)> .. . 2 I,Jt,)) iff has functionality si, . . . , s, -+ s. 

2.2. Partial congruences 

A partial C-congruence on a C-algebra A is a family =A = (zAA,JseS of nonempty, 

partial equivalence relations (i.e. symmetric and transitive relations) z~,~ on A, 
compatible with the signature C, i.e. for allf E F with functionality si, . . . , s, + s and 

for all ai, bi E ASf, if ai z+si bi, thenfA(al, . . . , a,) zAA.S fA(bI, . . . , b,). In particular, if 

f is a constant of sort s, thenfA zA,s fA holds.’ A C-congruence %A is total if a %A a for 

all a E A, i.e. if the relations %A,s are reflexive. The “definition domain” of a partial 

C-congruence %A, denoted by Dom(zA), is defined by Dom(?zA)s =def {a E A,la %A a} 
for all s E S. 

Fact 2.1. Let A be a C-algebra and %A be a partial C-congruence on A. Then: 
(1) Dom(zA) is a subalgebra of A; 
(2) the restriction of %A to Dom(zA) is a total C-congruence on Dom(x,). 

Proof. (1) Let f~ F with functionality si, . . . , s, + s and let ai E Dom(zA)s, for 

i = 1, . . , n. Then ai %A Ui for i = 1, . . . , ?I. Since =A is compatible with the signature C, 

we have fA(aI, . . . , a,) zA_fA(al, . . . , a,), i.e. fA(al, . . . , a,) E Dom(EA)s. Hence, the 

1 In the sequel, we will often omit the index s and write a zA b instead of a zA,, b. 
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carrier sets Dom(zA)s together with the restrictions of the functions f” to 

Dom(& x ... x Dom(zJ,, (for anyfE F with functionality si x ... x s, + s) con- 

stitute a subalgebra Dom(z.J of A. In particular, Dom(zJS # 8 for all s E S since it is 

assumed that zAA.S # 0 for all s E S. 

(2) is obvious. •l 

Notation. For any C-algebra A and partial C-congruence =A on A, A/z* denotes the 

quotient algebra of Dom(zJ by Ed. 

2.3. Formulas 

In the sequel of this paper, we assume given an arbitrary but fixed family 

X = (XS)YES of countably infinite sets X, of variables of sort s E S. The set of (well- 

formed) C-formulas is inductively defined by: 

(0) If t, r E T(z, X), are terms of sort s, then t = Y is a C-formula (called equation). 
(1) If 4, $ are C-formulas, then 14 and 4 A $ are &formulas. 

(2) if 4 is a C-formula, then Vx : s . cj is a C-formula. 

(3) If {pi 1 i E I} is a countable family of .JC-formulas, then AiEl 4i is a E-formula. 

All other logical operators such as finitary and infinitary disjunction “ V “, implica- 

tion “ * “, and the existential quantifier “3” are defined as usual.’ A C-formula is 

a (jinitary) j&-order formula if it is built only by the rules (O)-(2). A J?-sentence is 

a C-formula which contains no free variable. 

The (standard) satisfaction relation, denoted by I=. is inductively defined as follows: 

Let A be a C-algebra, t, r E T(C, X), be two terms of sort s, 4, $ be two C-formulas, 

{ & 1 i E Z} be a countable family of C-formulas and CI : X + A be a valuation. 

(0) A, CI + t = r holds if Z,(t) = Z,(r). 
(1) A, x k 1 C$ holds if A, M(= z 4 does not hold and A, a I= 4 A $ holds if both 

A,a+dandA.a+$hold. 

(2) A, CI k Vx : SC) holds if for all valuations /I: X --f A with p(y) = a(y) for all y # x, 

A, B + C$ holds. 

(3) A, a k /J\isI $i holds if for all i E I, A, CI k 4i holds. 

(4) A /= 4 holds if A, CI + 4 holds for all valuations LY : X + A. 

This definition is a straightforward extension of the satisfaction relation of the 

(many sorted) first-order predicate calculus given in [17,29] to infinitary formulas. 

Note that due to the assumption that algebras have no empty carrier sets, no 

pathological situation can occur. 3 Other solutions avoiding the nonempty carrier set 

2 In fact, our language of Z-formulas coincides with (many-sorted) infinitary logic Lw,_. 

3 Otherwise, according to the above definition, a Z-algebra with an empty carrier set would satisfy any 

Z-formula 4. 
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requirement are possible (for instance, considering only valuations from the set of the 

free variables of the given formula). But then one has to handle the problem with 

empty carrier sets when using proof systems as discussed for the equational calculus 

e.g in [ll]. 

2.4. Specifications 

A basic (algebraic) specification SP = (C, Ax) consists of a signature C and a set Ax 

of (possibly infinitary) C-sentences, called axioms of SP. The signature Z is called the 

signature of SP and the model class of SP is defined by Mod(SP) =def 

{A E Alg(U A k 4 f or all 4 E Ax}. We assume given a specification language for 

constructing large, structured specifications which has the following properties: 

(1) To any specification SP is associated a signature, denoted by Sig(SP), and 

a class of models, denoted by Mod(SP), such that Mod(SP) c Alg(Sig(SP)) and 

Mod(SP) is closed under C-isomorphism, i.e. Mod(SP) = Iso(Mod(SP)). 

(2) The language contains among arbitrary other specification building operators 

(cf. e.g. [24] or the operators of ASL [28]) the following two constructs: 

(i) Basic specifications (cf. above). 

(ii) An operator + for the combination of specifications SP and SP’ such that 

Sig(SP + SP’) = Sig(SP)u Sig(SP’), 

Mod(SP + SP’) = {A E Alg(Sig(SP + SP’)) 1 A Isig(sp) E Mod(SP) 

and Alsis(sP’) E Mod(SP)}, 

where A Isig(sp) (A Isig(sp’) resp.) denotes the restriction of A to Sig(SP) (Sig(SP’) 

resp.). If Sig(SP) = Sig(SP’), then Mod(SP + SP’) = Mod(SP)n Mod(SP’). 

(Note that the model class of any basic specification and the model class 

Mod(SP + SP’) of any combination of specifications SP and SP’ is closed under 

isomorphism (since it is assumed that Mod(SP) and Mod(SP’) are isomorphically 

closed). Two specifications SP and SP’ are semantically equivalent, denoted by 

SP = SP’, if Sig(SP) = Sig(SP’) and Mod(SP) = Mod(SP’). 

2.5. Reachability constraints 

In the definition of basic specifications, we have allowed infinitary formulas to be 

used as axioms. However, in practice we consider basic specifications with finitary 

axioms together with a reachability constraint that allows to express a generation 

principle for the elements of a C-algebra. We will see below that a reachability 

constraint is equivalent to a particular set of infinitary formulas and hence all results 

developed in this paper apply also to specifications with reachability constraints. 

Formally, we need the following definitions: 

(1) A reachability constraint over a signature C = (S, F) is a pair 6% = (S9, Fa) such 

that S9 c S, F3 c F and for any f E Fs with functionality sl, . . . , s, -+ s, the sort 

s belongs to SB. A sort s E Ss is called constrained sort and a function symbol f E Fg is 
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called constructor symbol (or briefly constructor). We assume also that for each 

constrained sort s E S8, there exists at least one constructor in Fd with range s. 

(2) A constructor term is a term t E T(C’, X’), of sort s E S,g where C’ = (S, Fd), 

X’ = (X&s with XL = X, if s E S\S& and Xi = 0 if s E S.9. The set of constructor 

terms is denoted by 7’+ 

(3) A C-algebra A satisjies a reachability constraint d = (Ss, Tip), denoted by 

A (= 9, if for any s E Ss and a E A,, there exist a constructor term t E Tg of sort s and 

a valuation a : X’ + A such that I,(t) = a. (Note that this definition is independent of 

the choice of X because X, is assumed to be countably infinite for all s E S.) 

The notion of reachability constraint corresponds to the “reachable” construct of 

ASL (cf. [28]) and to the concept of generation constraint in [lo]. In particular, 

requiring reachability induces a structural induction proof principle. The following 

fact shows that reachability constraints can be expressed by infinitary sentences. 

Fact 2.2. Let A be a C-algebra and 92 = (S,#, Eg) be a reachability constraint over C. 
Then AI= W if and only if A + GEN, f or all s E Sjp where GEN, is the following 
injnitary C-sentence: 

GEN, =def \y’x : s. V 3Var(t). x = t. 
ts(Tg). 

Here 3Var(t).x = t is an abbreviation for Ix1 : s1 . . . .3x, : s,. x = t where x1, . , x, are 
the variables occurring in t of (nonconstrained) sorts sl, . , s,. 

According to this fact, specifications with finitary axioms and reachability con- 

straints can be defined as a particular kind of basic specifications with infinitary 

axioms as follows. Let C be a signature, 9 = (S9, F,#) be a reachability constraint over 

C and Ax be a set of finitary Z-sentences. Then the triple SP = (C, B, Ax) is, by 

definition, the basic specification (C, Ax u (GEN, 1 s E S,} ). 

2.6. Examples 

Example 2.3. The following specification SET is a usual specification of finite sets 

over arbitrary elements. It introduces a reachability constraint which says that the 

constants “true” and “false” are constructors for the boolean values and the opera- 

tions “empty” and ‘add” are constructors for sets. The operation “iselem” defines the 

membership test on sets. 

spec SET = 

sorts {bool, elem, set} 

functs {true: + bool, false: -+ bool, empty: + set, add: elem, set + set, 

iselem: elem, set + bool} 

constrained sorts { bool, set} 
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constructors {true, false, empty, add} 

axioms { Vx, y : elem, s : set. 

iselem(x, empty) = false A iselem(x, add(x, s)) = true A 

[x # y * iselem(x, add(y, s)) = iselem(x, s)] A 

add(x, add(y, s)) = add(y, add(x, s)) A add(x, add(x, s)) = add(x, s) 

endspec 

For instance the algebra PPi”(N) of finite subsets of the set N of natural numbers is 

a model of SET. 

Example 2.4. The following specification CSO describes the operational semantics of 

a trivial nondeterministic sublanguage of CCS. It defines a sort “process” of processes 

containing a constant “nil”, a semantical composition “ - ” of actions and processes 

and a nondeterministic choice operator “+“. The operational semantics is given by 

a one-step (ternary) transition function where (p ‘+ p’) = true indicates that there is 

a transition from process p to process p’ when executing the action a. All known 

equivalences on processes induce models of CSO. 

spec CSO = 

sorts { bool, action, process} 

functs {true: + bool, false: + bool, 

nil: -+ process, . . . : action, process + process, . + . : process, 

process + process, + :process, action, process + bool} 

constrained sorts { bool, process) 

constructors {true, false, nil,. . . , + .} 

axioms {Vu: action, p, p’, q: process. 

(a.p”+ p) = true A 

[(p ‘+ p’) = true * ((p + q”--+ p’) = true A (q + p’+ p’) = true)] ) 

endspec 

3. Behavioural specifications 

3.1. Behavioural satisfaction relation 

Behavioural specifications are a generalization of standard specifications which 

allow to describe the behaviour of data structures (or programs) using a behavioural 

equality. Formally, a behavioural equality is represented by a family z = (%JAEAlg(r.) 

of (partial) C-congruences on the algebras of Alg(Z) where for any two elements a, b of 

a C-algebra A, a Z~ b holds whenever a and b are considered to be behaviourally 

indistinguishable. The underlying idea of behavioural specifications is to interpret 

the axioms of a specification according to the given behavioural equality. For 

this purpose, we generalize the standard satisfaction relation (cf. Section 2.3) to 
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the behavioural satisfaction relation. The difference to the standard case is twofold: 

First, we interpret the variables occurring in a C-formula not by all values of an 

algebra A but only by the values in the definition domain Dom(=,J of the partial 

congruence relation z_~. (Remember that Dom(zA) is a subalgebra of A, cf. Fact 2.1.) 

Secondly, the equality symbol “ - ” is not interpreted by the set-theoretic equality but - 

by the given congruence relation Z~ (cf. also the notion of observational Z-algebra in 

C161). 

Definition 3.1 (Behavioural satisfaction relation). Let z = (%JAEAlg(Z) be a family of 

partial C-congruences and let A be a C-algebra. The behavioural satisfaction relation 

w.r.t. z:, denoted by I== , is defined as follows: Let t, r E T(C, X), be two terms of sort s, 

4, $ be two C-formulas, {$ili E I) be a countable family of C-formulas and 

c( : X + Dom(%,J be a valuation. Then: 

(0) A, tl I== t = r holds if Z,(t) zA I,(r). 

(1) A, CY I=% 1 C$ holds if A, cx += C/I does not hold and A, c1 I== 4 A $ holds if both 

A, a +- $ hold. 

(2) A, a +;L Vx : S.C#J holds if for all valuations /I: X + Dom(%J with /I(y) = a(y) for 

all y # x, A, /? I=% C#I holds. 

(3) A, C( k= Ais 4i holds if for all i E I, A, C( I== pi holds. 

(4) A I=* 4 holds if A, x += q5 holds for all valuations CI :X + Dom( z~). 

A connection between the generalized and the standard satisfaction relation will be 

established in Section 3.3. The following fact shows how the standard satisfaction of 

reachability constraints translates to behavioural satisfaction using the characteriza- 

tion of reachability constraints by infinitary sentences in Fact 2.2. 

Fact 3.2. Let A be a C-algebra and B = (S.4, Fa) be a reachability constraint over C. 

We say that A behaviourally satisfies 9, denoted by A Fe 3, ifand only ifA +_= GEN, 

for all s E S.8 (cf Fact 2.2) which is equivalent to the fact that for any s E S.# and 

a E Dom( =Js, there exists a constructor term t E T.8 of sort s and a valuation 

a : X’ + Dom(zA) such that Z,(t) =A a. This coincides exactly with our intuition that in 

the behavioural case, a generation principle should be interpreted up to (the given) 

behavioural equality. 

Example 3.3 (Observational equalities). The most important examples of partial con- 

gruences are observational equalities between the elements of an algebra. Formally, we 

assume given a signature C = (S, F) and a distinguished set Obs c S of “observable” 

sorts which denote the carrier sets of observable values. Moreover, we assume given 

a set In G S of “input” sorts such that Z is sensible w.r.t. In (cf. Section 2.1). All values 

of an input sort can be used as inputs for observable computations. Then two objects 

of an algebra are considered to be observationally equal if they cannot be distin- 

guished by “experiments” with observable result. This can be formally expressed using 
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the notion of observable context, which is any term c E T(C, XI,uZ) of observable 

sort that contains (besides input variables) exactly one variable z, E Z. Thereby, the 

S-sorted family Xr, of sets of input variables is defined by (Xi,), =def@ if s#In, 

(X,,), =def X, if x E In (where X = (XJscs is the generally assumed family of countably 

infinite sets X, of variables of sort s) and Z = ({z,)),,~ is an S-sorted family of 

singleton sets {z,} where z, is a variable of sort s not occurring in (Xi,), for all s E S. 

Now for any C-algebra A E Alg(C), the observational equality of objects w.r.t. the 

observable sorts Obs and the input sorts In is the partial C-congruence c+,~~,,,,~ 

defined as follows: 

Let A [Xi,] be the smallest subalgebra of A generated by C and Xi,. The carrier sets 

of A[X,,] are defined by (A[X,,]), =,&_f {u E A,lthere exists a term t E T(C, Xln)s and 

a valuation M. : Xi, -+ A such that 1,(t) = u} and for anyf e F,fArXlnl is the restriction of 

f” to A[X,,]. Obviously, A[X,,] is a subalgebra of A (with nonempty carrier sets 

since C is sensible w.r.t. In). A[X,,] is the smallest subalgebra of A which is generated 

by (the interpretations of) the operations F over the values of input sorts. In other 

words, A [XI,1 = &,d4, where &,I, denotes the restriction functor considered e.g. 

in [10,24-J. In particular, if In = 0 then A[X,,] is the finitely generated, smallest 

subalgebra of A. 
Two elements a, b E A, are observationally equal, i.e. a ~o~~,r,,~ b if and only if both 

a and b belong to A [XI,] and for all observable C-contexts c E T (C, XI, u Z) contain- 

ing z, and for all valuations LY :Xln + A, we have IEn = Z,,(c) where 

CI,, Q: Xlnu {z,} -+ A are the unique extensions of c( defined by a,(~,) =def a, 

CQ,(Z,) =&f b. Obviously, if s is an observable sort, then for all a, b E A[X,,], 
a zObs,In,A b is equivalent to a = b. 

It is easy to show that zobs,rn,A is a partial C-congruence on A with 

Dom(%obs,ln,A) = A[X,,]. The family (zobs.r,,,A)AEAig(~) of observational equalities 

will be denoted by zobs.r,,. The behavioural satisfaction relation w.r.t. zobs,in is often 

called observational satisfaction relation. In particular, if t = r is an equation, then 

from the definition it follows that A ]=Obs,In t = r if and only if A b c[a(t)] = c[a(r)] 
for all observable contexts c E T (C, X,, u Z) and for all substitutions 0 which replace 

the variables occurring in t and r by arbitrary terms of T(C, X,,). (Here c[a(t)] and 

c[o(r)] denote the application of the context c to a(t) and a(r) which is simply defined 

by replacing the variable z, in c by the terms o(t) and a(r), respectively.) In Example 

3.5, we will discuss three different kinds of observational satisfaction relations accord- 

ing to different choices of the set In of input sorts. 

The following fact provides a useful alternative definition for the observational 

equality: 

Fact 3.4. The observational equality of objects defined in Example 3.3 could be equiva- 
lently defined using instead of the countably infinite sets X, of variables for any 
C-algebra A the carrier sets A, themselves as variable sets and the interpretation 
lid : T (C, A,,) -+ A, where id,: A, -+ A, is the identity on A, for all s E In. For any s E S, 
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let (A [&I Is =def { a E A, 1 there exists a term t E T(C, AI,), such that lid(t) = u}. Then 

for all a, b E A,, a EObs, In, A b holds ifand only ifboth a and b belong to A[Aln] andfor all 

observable C-contexts c E T(C, A,,uZ) containing zS, lid,(c) = lidb(c), where id,, 

id* : AI, u (zS} + A are the unique extensions of id dejned by id,(z,) =&f a, idb(zs) =&f b. 

Obviously, Dom(~o,,s,In,A) = A[A,J. 

Example 3.5 (Particular observational equalities). Let C = (S, F) be a signature and 

Obs c S be a set of observable sorts. For any C-algebra A, we distinguish the 

following important cases of observational equalities for the elements of A: 

(1) If we choose In = S, i.e. the elements of all carrier sets of the algebra A can be 

used as input for observable computations, then Dom(%obs,S,A) = A and %obs,S,A is 

a total C-congruence which is the behavioural equality used e.g. in [4,22]. In particu- 

lar, the behavioural satisfaction relation w.r.t. zobs,S coincides with the behavioural 

satisfaction relation used in [4] and, if we restrict to conditional equations, with the 

notion of behavioural validity in [22]. 

(2) If we choose In = Obs, i.e. only the observable elements of A can be used as 

input for observable computations, then Dom( ~~~~~~~~~~~ consists of all values that 

can be generated over the observable elements of A by the operations F and 

zObs.Obs,A is a partial C-congruence. The behavioural satisfaction relation 

w.r.t. =Obs,Obs is the one used in [ 191 for the behavioural satisfaction of equations. The 

advantage here is that nonobservable junk (i.e. values which are not reachable from 

the observable ones) will not be considered for the satisfaction of formulas and hence 

cannot cause problems, for instance, with respect to the correctness of implementa- 

tions (cf. e.g. [20]). 

(3) If we choose In = 8, then observable computations are always represented by 

ground terms of observable sort. In this case %obs,@,R is a partial C-congruence whose 

definition domain DOm(%obs,O,A) is the finitely generated, smallest subalgebra of A. 

To our knowledge, the corresponding behavioural satisfaction relation w.r.t. %obs,@ is 

not used in the literature for arbitrary (not necessarily finitely generated) C-algebras 

although it provides an interesting candidate for further applications because it 

eliminates not only problems with nonobservable junk but also problems that can 

occur with respect to observable junk (cf. Example 3.9(3)). 

Example 3.6 (Congruences generated by a set of equations). Let C = (S, F) be a signa- 

ture and In G S be a set of input sorts such that C is sensible w.r.t. In. Moreover, let 

E be a set of equations between C-terms. The set E generates on any C-algebra 

A a partial C-congruence ~~,i”,~ (relative to the input sorts In) as follows: 

Let A[X,,] be (as in Example 3.3) the reachable part of A which is generated over 

the values of input sorts. Then %E, in. A is the partial C-congruence on A with definition 

domain Dom( ~~,i”,~) = A[X,,] such that the restriction of %E.in,A to A[X,,] is the 

(total) Z-congruence on A[X,,] generated by the equations E (in the usual way). 

The family (%E,in,A)AEAig(z) will be denoted by zE,in. A C-algebra A behaviourally 

satisfies w.r.t. zE,,,, a C-formula 4 if it satisfies C$ up to junk elements (i.e. elements 
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which are not generated over the input values) and up to the identification of elements 

w.r.t. the equations E. 

Example 3.7 (Strong bisimulation). The notion of strong bisimulation is an example of 

a congruence on CSO (cf. Example 2.4). For any algebra A over the signature of CSO, 

a simulation equivalence Esim,A is a relation such that for all p, q E Aprocess: 

P %im,A 4 if for all P’ E Aprocess, s E (Aaction)*, 

C(P s-+*Ap’) = trueA e 39’ E Aprocess, p’ Zsim,A q’ and (qS+*A q’) = trueA] 

and vice versa for all q’ E Aprocess, s E (Aaction)*, 

C(4 ‘-+** q’) = true* o 3p’ E Aprocess, q’ zSirn,* p’ and (pS+** p’) = true*] 

Thereby, --f ** denotes the reflexive and transitive closure of + * which is the least 

relation on Aprocess x (Aaction)* x Aprocess with the following properties: 

(1) P &+*A p, 

(2) If pa-+* q, then p@)+** q, 
(3) If p ‘I-+** q and q s2+*A r, then p ‘i 0s2-+** r, 

where ( - ) denotes the construction of singleton sequences and 0 denotes the concat- 

enation of sequences. For the carrier sets Aboo, and A,,ti,“, ~~im,A is defined as the 

(standard) equality of elements. 

According to [2] (see also [l]) we have the following fact: Let A be a (standard) 

model of CSO. Then any simulation equivalence is a (total) congruence (w.r.t. the 

signature of CSO) and the simulation equivalences on A form a complete lattice. For 

any model A of CSO, the coarsest simulation congruence on A is called strong 

bisimulation on A and is denoted by Gisim.A. If for A we choose the Herbrand model 

H(CS0) of CSO with the set Tg of constructor terms as carrier sets and the following 

interpretation of “ + ” by valid transitions: 

H(CS0) k (p”- q) = true iff CSO k (p ‘+ q) = true, 

then qisim, H(CSO) is Milner’s strong bisimulation congruence. 

The following equations are behaviourally satisfied by H(CS0) (but are obviously 

not satisfied in the standard sense): 

H(CS0) +z,,,i, Vp, q, r: process. 

p+(q+r)=(p+q)+rr\p+q=q+pAp+p=pAp+nil=p. 

Here ~isim is the family of total C-congruences where z&i_+ is defined as above if 

A is a model of CSO and sisim, A is defined as an arbitrary congruence (for instance as 

the set-theoretic equality =*) otherwise. 

3.2. Flat behavioural speci$cations 
For any basic specification SP = (C, Ax) (cf. Section 2.4) and any family 

z = (~A)AE.~I~(Z) of partial C-congruences, one can construct a (flat) behavioural 
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specification where instead of the standard satisfaction relation the behavioural 

satisfaction relation w.r.t. z is used for the interpretation of the axioms. 

Definition 3.8 (Flat behavioural specijcations). Let SP = (C, Ax) be a basic specifica- 

tion and let = = (z.JAEAlgCz) be a family of partial C-congruences. Then: 

(1) The expression behaviour SP wrt z is a flat behavioural specijication. 
(2) The signature of a behavioural specification is given by C and its model class is 

defined by Mod(behaviour SP wrt cz) =def {A E Alg(C)I A k. C$ for all C#J E Ax}. 

Example 3.9 (Observable behaviour specijications). Let 1 = (S, F) be a signature, 

Obs c S be a set of observable sorts and In c S be a set of input sorts such that C is 

sensible w.r.t. In. Let zobs,,,, be the family of observational equalities induced by Obs 

and In (cf. Example 3.3). Then the specification behaviour SP wrt zobs,In specifies the 

observable behaviour of a data structure (or a program) by means of the corresponding 

observational satisfaction relation. Again we can distinguish three cases for the choice 

of the input sorts In: 

(1) If In = S, then the semantics of an observable behaviour specification coincides 

with the behavioural semantics of specifications used in [4,22]. Note that if 

Obs = In = S, there is no difference between standard semantics and behavioural 

semantics of specifications. 

(2) If In = Obs, then the semantics of an observable behaviour specification co- 

incides with the behavioural semantics of specifications in the sense of [19]. In this 

case, the variables occurring in the axioms of a specification will not be interpreted by 

nonobservable junk. As a concrete example, we can construct the behavioural speci- 

fication 

behaviour SET wrt szobs,obs 

on top of the standard specification SET of sets (cf. Example 2.3) where Obs = (bool, 

elem) is the set of observable sorts and the set of input sorts as well. Since the sort “set” 

is not observable, sets can only be observed via the membership test “iselem”. For 

instance, the algebra N* of finite sequences of natural numbers is a model of this 

behavioural specification of sets. In particular, N* satisfies observationally the last 

two axioms of SET, because one cannot distinguish the order of the elements and the 

number of occurrences of elements in a sequence by the allowed observations. But 

note that N* does not satisfy in the standard sense the last two SET axioms and hence 

is not a model of the (basic) specification SET. 

(3) If In = 8, then the variables occurring in the axioms of a specification will only 

be interpreted by values which are reachable by the operations F, i.e. are represented 

by ground terms over the signature C. This means that neither nonobservable nor 

observable junk will be considered for the satisfaction of the axioms of a specification. 

As an example, consider a specification NAT of natural numbers that contains an 

axiom Vx : nat. equal(O, succ(x)) = false for specifying the equality of natural numbers 

and where all values are defined as being observable. The algebra Z of the integers is 
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a model of bebaviour NAT wrt z{bO,,(_tl,@ Indeed since In = 0, we have 

Dom(+ol, nat),@,z) = N. Therefore, the equation ‘dx : nat. equal(O, succ(x)) = false is 

satisfied w.r.t. z{:(b,,,,l. na,1,0 since the universal quantifier ranges over values of N; thus 

the variable x cannot be interpreted by the (observable junk) value -1 (if it could, then 

the above axiom would be violated and hence the integers would not be admitted as 

an implementation of the natural numbers). 

Example 3.10. Let CSOl be the specification CSO (cf. Example 2.4) enriched by the 

following axiom: 

kfp, q, Y: process. 

p+(q+r)=(p+q)+rAp+q=q+pAp+p=pr\p+nil=p. 

Then the behavioural specification bebaviour CSOl wrt ~bisim describes all algebras 

(over the signature of CSO) that behaviourally satisfy the axioms of CSOl w.r.t. the 

strong bisimulation congruence. For instance, the Herbrand model H(CS0) described 

in Example 3.7 is a model of the behavioural specification behaviour CSOl wrt zbisim. 

3.3. Relating behavioural satisfaction and standard satisfaction 

The following theorem establishes an important connection between the behav- 

ioural satisfaction w.r.t. % an d the standard satisfaction of C-formulas. The theorem 

and its various consequences have recently been extended to higher-order logic in 

c141. 

Theorem 3.11. Let z = (zJaEAlg(~) be a family of partial C-congruences. For any 

C-algebra A and any C-formula 4 the following holds: 

A(=, $I if and only if A/z* k 4, 

where A/z~ denotes the quotient algebra of Dom(%Jby =A (cf. Section 2.2). In particu- 

lar, for any reachability constraint 9 over C, A +- &’ if and only if A/z*+ 3. 

Proof. Let A be a C-algebra. For the proof the the theorem we use the following 

lemma (*): 

(*) For all C-formulas 4 and for all valuations CI : X --f Dom( Q: A, !I kz 4 if and only 

if AIS, 7181‘ I= 4 where 71: Dom( z_J + A/ =A is the canonical epimorphism. 

Let us first show how to prove the theorem using lemma (*): Assume that A/=, 4 

holds. We have to show that A/E* + LJ$, i.e. A/z~, fi k 4 for all valuations 

p:X+A/z*. Let p: X + A/z~ be an arbitrary valuation. Then there exists a valu- 

ation a: X -+ Dom(zJ such that fi = 7~ 0 a. .Since we have assumed A +=_ 4, in 

particular A, CI bE 4 holds. Then using (*) we obtain as desired that A/z~, p t= $ 

holds. The converse direction can be shown similarly. 
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It remains to prove the above lemma (*) by induction on the form of 4: 

Case 0: Let t = r be an equation with t, Y E T(C, X) and let a : X + Dom(z_,J be an 

arbitrary valuation. Then A, al=% t = Y iff r,(t) ~~1~ iff [1,(t)] = [l,(r)] iff IEO,(t) 

= I,,,(r) iff A/ZA, 7~0 CI + t = Y. 

Case 1: For formulas of the form 14 and 4 A $, the desired result follows 

immediately from the induction hypothesis. 

Case 2: Consider an arbitrary formula of the form V’x: s.4 and an arbitrary 

valuation c1 :X -+ Dom(zJ. Then A, a I== trx:s.$~ iff for all valuations 

p: X + Dom(=J with B(y) = a(y) for y # x, A, j?l=zr: $J and A/z~, n 0 al= Vx :s.+ iff 

for all valuations y : X + A/E~ with y(y) = (loo) for y # x, A/Q, y I= 4. Hence, we 

have to show: 

For all valuations p : X + Dom(=J with p(y) = a(y) for y # x, A, fi I== 4 iff for all 

valuations y : X + A/z~ with y(y) = ( n 0 4 (y) for y # x, Ah, y I= 4. 

Proof of “ * “: Let ~1: X + A/z~ be a valuation with y(y) = (Z 0 cc)(y) for y # x. Then 

define p : X + Dom(=,J by p(x) =&f a with [a] = y(x) and p(y) = or(y) for y # x. 

Hence, y = n T p. By assumption, A, p += 4. Then, by induction hypothesis, we have 

A/Q, 7~0 PI= 4. Thus, A/Q, 3’ I= 4. 

Proof of “-=“: Let fl: X + Dom(=J be a valuation with p(y) = a(y) for y # x. Then 

define y :X -+ A/z* by lf =&f n 0 j. Hence, y(y) = (7~ 0 a)(y) for y # x. By assumption, 

A/z~, y + 4. Then, by induction hypothesis, we have A, p +% 4. 

Case 3: For formulas of the form AiEl@i, the desired result follows immediately 

from the induction hypothesis. 

This completes the proof. 0 

3.4. Behauioural speci$cations: the general case 

Up to now, behavioural specifications are always built on top of basic specifica- 

tions. In this section, we extend this concept to the arbitrary structured specifications 

of the generally assumed specification language (cf. Section 2.4). The underlying idea 

for the extension is provided by the following characterization of the model class of 

a flat behavioural specification (which is an immediate consequence of Theorem 3.11): 

Corollary 3.12. Let SP = (C, Ax) be a basic specification and let z =(+)AEAlg(zj be 
a family of partial C-congruences. Then: 

Mod(behaviour SP wrt z ) = (A E Alg(Z)l A/z~ E Mod(SP)}. 
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Proof. By Theorem 3.11, for any C-algebra A and any axiom 4 E Ax, A +- 4 if and 

only if A/z* + 4. Hence, A E Mod(bebaviour SP wrt z ) if and only if 

A/z~ E Mod(SP). 0 

Corollary 3.12 says that a C-algebra A is a model of a behavioural specification if 

and only if its quotient A/z~ is a model of the underlying specification SP. This result 

points out the crucial role of quotients in the behavioural framework. Indeed, since 

the quotient of a C-algebra A identifies all elements of A which are behaviourally 

equal, i.e. are indistinguishable “from the outside”, it can be considered as the “black 

box view” or as the “behaviour” of A. 

Definition 3.13 (Behauiour). Let % = (%,JAEAlg(~, be a family of partial C-congruen- 

ces. For any C-algebra A, the behaviour of A w.r.t. z is the quotient algebra A/z~. 

The following definition describes two simple properties which should be satisfied 

by any reasonable behavioural equality z. First, we expect that two isomorphic 

algebras have (up to isomorphism) the same behaviour w.r.t. z. Secondly, the con- 

struction of the behaviour of an algebra should be idempotent which means that the 

behaviour of the behaviour of a C-algebra A is (up to isomorphism) the same as the 

behaviour of A. 

Definition 3.14 (Isomorphism compatibility and weak regularity). A family 

= =(dA~Alg@) of partial C-congruences is called: 

(1) isomorphism compatible if for any two isomorphic C-algebras A and B, the 

behaviours A/z~ and B/+, are isomorphic; 

(2) weakly regular if for any C-algebra A, its behaviour A/z* is isomorphic to 

(~/?4)/%, = a).4 

Example 3.15. Any family zobs. in which is generated by a set Obs of observable sorts 

and a set In of input sorts (cf. Example 3.3) and any family zn.in which is generated by 

a set E of equations and a set In of input sorts (cf. Example 3.6) is isomorphism 

compatible and weakly regular. (The only nonobvious proof is the weak regularity of 

%obs,in which will be provided in Example 6.7 where it is shown that =obs,in is even 

regular.) 

General Assumption 1. In the following, we assume that z always denotes an isomor- 

phism compatible family of partial C-congruences. (Weak regularity will technically 

not be needed before Section 5.) 

* The notion of regularity will be introduced in Section 6. 
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The characterization of Corollary 3.12 gives rise to the definition of a semantical 

behaviour operator, denoted by Beh %, which constructs for any class C of C-algebras, 

the class of all C-algebras whose behaviour belongs to C. 

Definition 3.16 (Behauiour operator). For any class C c Alg(C) of C-algebras, 

Beh,(C) =def (A E Alg(C) 1 A/zA E C>. 

We are now able to extend the given specification language by a construct for 

behavioural specifications built on top of any arbitrary (structured) specification. 

Definition 3.17 (Behuuioural specijcation). Let SP be a specification with signature C. 

(1) The expression behaviour SP wrt r+: is a behuviourul specijicution. 

(2) The signature and the model class of a behavioural specification are given by: 

Sig(behaviour SP wrt z) =def Sig(SP), 

Mod(behaviour SP wrt z) =def Beh ,(Mod(SP)). 

The model class of a behavioural specification consists, by definition, of all algebras 

whose behaviour belongs to Mod(SP) and hence fulfills the requirements of SP. Thus, 

a behavioural specification describes all algebras which can be considered as “behav- 

iourally correct realizations” of the models of SP (cf. [S]). Note that the model class of 

a behavioural specification is closed under isomorphism since = is assumed to be 

isomorphism compatible and that, by Corollary 3.12, the above definition is consis- 

tent with Definition 3.8. 

The following example shows that it may happen that some models of a specifica- 

tion SP are not models of a behavioural specification behaviour SP wrt z. 

Example 3.18. Consider the following specification DEMO: 

spec DEMO = 

sorts (sJ 

functs {a, b: + s] 

axioms (u # b} 

endspec 

The specification DEMO has a model where a and b are interpreted as different 

objects. Now consider the observational equality s, ,s, ( I generated by the empty set of 

observable sorts and by the input sort s (the choice of the input sorts is not relevant 

here). Then there is no observation that allows to distinguish elements; hence all 

elements (in particular a and b) are observationally equal. Therefore, there is no 

algebra whose behaviour w.r.t. q.is; satisfies a # b, i.e. is a model of DEMO. Hence. 

Mod(behaviour DEMO wrt qs,is;) = 8 while Mod(DEM0) # 0. In this case, we say 

that the specification DEMO is behaviourally inconsistent w.r.t. q. I~;. Intuitively, the 

reason for this behavioural inconsistency is that the requirements of the specification 

DEMO, asking for a and b to be different, contradict the chosen observational 

equality which does not provide any observational computation for distinguishing 
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elements. For obtaining a behaviourally consistent specification, one has either to 

omit the axiom a # b or one has to consider the sort s to be observable. 

In general, a class C of C-algebras is called behaviourally consistent w.r.t z if the 

behaviour A/E* of any algebra A in C is also an algebra of C, i.e. C c Beh, (C). In 

particular, a specification SP is behaviourally consistent if the behaviour of any model 

of SP is also a model of SP (and hence fulfills the requirements of SP). This means that 

the properties required by SP are compatible with the chosen behavioural equality z. 

Definition 3.19 (Behauioural consistency). Let C c Alg(C) be a class of Z-algebras and 

SP be a specification with signature C. Then: 

(1) C is behauiourally consistent w.r.t. E if C c Beh=(C). 

(2) SP is behaviourally consistent w.r.t. z if Mod(SP) G Mod(bebaviour SP wrt z). 

Using the following quotient operator which extends the construction of the 

behavioural quotient of a C-algebra A to classes C of C-algebras, we can formulate an 

obvious equivalent condition for behavioural consistency. 

Definition 3.20. For any class C c Alg(C) of C-algebras, C/c =d,_f {A/z~ 1 A E C}. 

Proposition 3.21. For any class C G Alg(C) of C-algebras, C is behaviourally consistent 

w.r.t. z if and only if C/z C C. 

The semantical quotient operator for classes of C-algebras gives rise to a quotient 

operator for specifications which will be added in the following to the given specifica- 

tion language. 

Definition 3.22 (Behavioural quotient). Let SP be a specification with signature C. 

(1) The expression SP/z is a specification, called the behavioural quotient of SP. 

(2) The signature and the model class of a behavioural quotient specification are 

given by: 

Sig(SP/z ) =&f Sig(SP), 

Mod(SP/_, ) =&f Iso(Mod(SP)/=). 

Note that for fulfilling the requirement that model classes have to be closed under 

isomorphism one has explicitly to construct in (2) the isomorphic closure to 

Mod(SP)/z (cf. Section 2.1). Obviously we have the following equivalent conditions 

for the behavioural consistency of specifications: 

Proposition 3.23. Let SP be a specijcation with signature C. The following conditions 

are equivalent: 

(1) SP is behaviourally consistent w.r.t. z:, 

(2) Mod(SP)/z E Mod(SP), 

(3) Mod(SP/z) c Mod(SP). 
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Example 3.24. In the case of (partial) observational equalities %bs,In, one can show 

that the model class of a basic specification SP is closed under the behavioural 

quotient construction if the axioms of SP are conditional equations with observable 

premises. Hence, in this case SP is behaviourally consistent w.r.t. qbs.i,, (cf. also 

Example 5.12). More generally, we have provided in [S] a proof-theoretic character- 

ization of the behavioural consistency of basic specifications if the given behavioural 

equality z is axiomatizable and we have developed conditions which allow to derive 

the behavioural consistency of structured specifications. 

Example 3.25 (Connection to the forget-restrict-identity approach). (1) Let bebaviour 

SP wrt =Obs,In be an observational behaviour specification (cf. Example 3.9). Then the 

model class Mod(behaviour SP wrt %obs.,,, ) is the class of all C-algebras A which, due 

t0 the definition Of 4/~obs,rn,A, have the following property: If we first restrict A to its 

subalgebra Dom(%obs,r& generated over the values of input sorts and if we then 

identify all observationally equal elements of Dom(%o,,,,,,.), then we obtain a model 

of SP. Hence, an observational behaviour specification describes all C-algebras which 

after restriction and observational identification are models of the underlying speci- 

fication SP. Note that in the case where all sorts are observable an observational 

behaviour specification describes all algebras which after restriction are standard 

models of SP. 

(2) Let SP = (Z, E) be an equational specification. i.e. the axioms E consist of 

universally quantified equations, such that the signature C is sensible w.r.t. the empty 

set of input sorts. Assume that init SP is a specification such that the model class 

Mod(init SP) is defined as the isomorphism class of the initial model of SP. Let C~,B be 

the family of partial C-congruences generated by the equations E relative to the empty 

set of input sorts (cf. Example 3.6). Then the model class of the behavioural specifica- 

tion behaviour (init SP) wrt ~s.0 consists of all Z-algebras A such that if we first restrict 

A to its finitely generated subalgebra (which is just Dom(zE,O,J) and if we then 

identify all elements of this subalgebra w.r.t. the congruence relation generated by the 

equations E, we obtain an algebra of Mod(init SP), i.e. an initial model of SP. This 

means that behaviour (init SP) wrt X~,S describes all C-algebras which can be con- 

sidered as forget-restrict-identify implementations of the initial model of SP (with 

a trivial forget step). 

4. Abstractor specifications 

The notion of “abstractor” was introduced in [24] for describing a specification 

building operation which allows to abstract from the model class of a specification 

with respect to a given equivalence relation on the class of all C-algebras. Intuitively, 

the equivalence relation is used for expressing that two algebras have “the same 

behaviour”. 
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Definition 4.1. Let = G Alg(C) x Alg(C) be an equivalence relation on Al&C). For 

any class C G Alg(C) of C-algebras, Abs E (C) denotes the closure of C under E, i.e. 

Abs,(C) =def (A E Alg(C) 1 A = B for some B E C). 

Definition 4.2 (Zsomorphism protection). An equivalence relation = on Alg(C) is called 

isomorphism protecting if for any two C-algebras A, BE Alg(C), the following 

holds: If A and B are isomorphic then A E B. 

General Assumption 2. In the following, we always assume that = is an isomorphism 

protecting equivalence relation between C-algebras. 

We now extend our specification language by the concept of abstractor specifica- 

tion which allows to construct the closure of (the model class of) a given specification 

under =. 

Definition 4.3 (Abstractor speci$cation). Let SP be a specification with signature ,E. 

(1) The expression abstract SP wrt = is an abstractor specijication. 

(2) The signature and the model class of an abstractor specification are given by: 

Sig(abstract SP wrt = ) =&f Sig(SP), 

Mod(abstract SP wrt = ) =&_f Abs,(Mod(SP)). 

Note that from our hypothesis that = is isomorphism protecting the model class of 

an abstractor specification is closed under isomorphism. 

Example 4.4 (Observational abstractions). Important examples for abstractor speci- 

fications are observational abstractions which are determined by observational equiva- 

lence relations between algebras. The basic idea behind such relations is that two 

algebras are considered to be observationally equivalent if they cannot be distin- 

guished by a predefined set of observations. In [23] such observations are represented 

by formulas while (more specifically) in the algebraic specification language ASL (cf. 

[26]), the admissible observations are defined by a set W of terms. In this case, two 

algebras are called W-equivalent if they satisfy the same equations between terms of 

W. For W, we will consider here all terms (over a given signature) of observable sort 

which may contain variables of some given input sorts. More precisely, we assume 

again given a signature C = (S, F), a distinguished set Obs E S of observable sorts 

and a set In E S of input sorts such that Z is sensible w.r.t. In. Then two C-algebras 

A and B are called observationally equivalent w.r.t. Obs and In, denoted by 

A- Obs,In B, if there exists an S-sorted family Yi, of sets (Yi,), of variables of sort 

s with (Y,,), = 8 for all s&In, (Y,,), # 8 for all s E In and if there exist two valuations 

al : Y,, -+ A and /?l : Y,, + B with surjective mappings ~1,: (Y,,), + A, and 

/?l, : (Yi,), -+ B, for all s E In such that for all terms t, r E T(,Z, Y,,), of observable sort 
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s E Obs the following holds: 

Z,,(t) = Z,i(r) if and only if I,,(t) = IDI( 

Obviously, =obs, in is isomorphism protecting. In the following we consider three 

important cases of observational equivalence relations between algebras: 

(1) If we choose In = S, then the relation =ob& coincides with the behavioural 

equivalence relation of Reichel (cf. e.g. [22]). We will give a sketch of the proof that 

=Obs,S is indeed Reichel’s equivalence: First assume that A and B are C-algebras 

which are behaviourally equivalent in the sense of [22]. Then there exists a C-algebra 

C and surjective C-homomorphisms rA : C + A and rB : C + B (called reductions) such 

that the mappings (rJs: C, -+ A, and (T~)~: C, + B, are bijective for all s E Obs. One 

can now prove that A =obs,s B holds by choosing Yi, = C and al = rA, fil = rB. 

Conversely, assume that A z0bs.s B holds w.r.t. some Y,, and some surjective valu- 

ations al : Y,, + A and 81: Y,, -+ B. The interpretations Z,r : T(z’, Yr,) + A and 

I,, : T(C, Y,,) + B induce corresponding C-congruences on the term algebra T (C, Y,,) 
denoted by -Z,r and “I,,. Then the intersection -la1 n “I,, is also a z-congruence 

on T (C, Y,,). We can now prove that A and B are equivalent in the sense of Reichel by 

choosing for C the quotient algebra T(C, YI,)/(-Z,,n -IpI) and by defining 

rA:C+A by rA([t]) =defzal(t) and rg:C’B by Qt([t]) =&fzbl(t). 
(2) If we choose In = Obs, then we can show that the relation =obS.obS coincides 

with the behavioural equivalence of algebras in the sense of [19] and, if algebras with 

the same observable carrier sets are considered, also with the equivalence relation 

defined in [27]. 

(3) If we choose In = 8, then two algebras are equivalent w.r.t. =obs,s if they satisfy 

the same equations between observable ground terms. Hence, in this case the equiva- 

lence relation =Obs,O determines a behavioural abstraction in the sense of [24]. 

5. Relating bebavioural and abstractor specifications 

Behavioural specifications and abstractor specifications are based on the same 

intention, namely to allow a more general view of the semantics of specifications. In 

particular, this is useful for formal implementation definitions where implementations 

may relax (some of) the properties of a given requirement specification (cf. e.g. 

abstractor implementations in [24] or behavioural implementations in [8], for a sur- 

vey on implementation concepts and observability see [20]). However, the semantical 

definitions of behavioural specifications and abstractor specifications are quite differ- 

ent. Therefore, it is an important issue to compare both approaches carefully and to 

figure out precisely the relationships and the differences between the two concepts. 

Remark 5.1. If we consider the particular case of observable behaviour specifications 

(cf. Example 3.9) and observational abstractions (cf. Example 4.4) then we can 
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conclude from a result in [22] that (if all sorts are input sorts) both specifications have 

the same semantics if the axioms of the specification are conditional equations with 

observable premises. Analogously a result in [19] shows that if only the observable 

sorts are used as input sorts and if the specification is equational, then again 

behavioural semantics and abstractor semantics coincide. However, this is in general 

not true if the axioms are arbitrary first-order formulas. For instance, the specification 

DEMO of Example 3.18 has a standard model which, by definition, is also a model of 

the abstractor specification “abstract DEMO wrt %bs,In” for any choice of Obs and 

In. However, if we choose Obs = 0, then we have seen that the behavioural specifica- 

tion “bebaviour DEMO wrt q,CSl” has no model. 

5.1. Factorizability 

The underlying idea of the behavioural approach is to consider the behaviour A/q 

of any C-algebra A w.r.t. a given behavioural equality of objects z while the abstrac- 

tor approach is based on an equivalence relation = between algebras where intuit- 

ively two algebras A and B are equivalent if they have the same behaviour. Hence, to 

relate both approaches an obvious preliminary requirement is that in both cases 

“behaviour” has the same meaning. More formally, this means that for any two 

C-algebras A and B, A = B holds if and only if A and B “have the same behaviour” if 

and only if “the behaviour of A” and “the behaviour of B” are “the same” if and only if 

A/c~ and B/ + are the same (up to isomorphism). This consideration leads to the 

following definition: 

Definition 5.2 (Factorizability). Let = c Alg(C) x Alg(Z) be an equivalence relation 

and let = = (~~),4EAl&!(,r) be a family of partial C-congruences. = is calledfactorizable 

by c if for all C-algebras A, B E Alg(C), the following holds: 

A E B if and only if A/Z* and B/-, are isomorphic. 

The equivalence = is called factorizable if there exists a family z such that = is 

factorizable by E:. 

Remark 5.3. Given a family z of partial C-congruences, one can always construct an 

associated equivalence relation between C-algebras, denoted by =%, which is factoriz- 

able by z in the following way: For any A, B E Alg(C), A -_= B holds, by definition, if 

A/q, and B/q are isomorphic (cf. [30]). On the other hand, if we are given an 

equivalence relation = on Alg(C), we can find an associated family of partial 

C-congruences only if the equivalence is factorizable. Indeed, it is usually not a simple 

task to prove factorizability. 

The following example shows that observational equivalences between algebras as 

defined in Example 4.4 are factorizable. As a consequence, we obtain that the 

equivalences of Reichel (cf. Example 4.4(l)), of Nivela and Orejas (cf. Example 4.4(2)) 
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and the equivalence of Sannella and Tarlecki w.r.t. all equations between observable 

ground terms (cf. Example 4.4(3)) are factorizable. 

Example 5.4 (Observational equivalences of algebras are factorizable). For any set Obs 

of observable sorts and any set In of input sorts, the equivalence -o&In of 

Example 4.4 is factorizable by the family %obs,l,, of partial Z-congruences defined in 

Example 3.3. 

In order to prove this, we have to show that for all C-algebras A and B with partial 

C-congruences %o&, ,“, A and - -Obs,ln,B? the following holds: A Gobs,,” B if and only if 

&obs, In, A and B/zobs,ln,B are isomorphic. Thereby, we will use the variant of the 

definition of the observational equality of elements given in Fact 3.4 and we will write 

shortly ;r, instead of zobs,In,A (and similarly for B). 

‘.a”: Let A =_ObS,In B w.r.t. Y,,, al : Y,, c A and /31 : Y,, + B. In a first step we will 

show that the following holds: 

(1) For all terms t, r E T(z, Y1,): Ial( ZmI(r) E Dom(%J, I,,(t), Z,,(r) E Dom(zB) 

and Z,,(t) ~Z~l(r) ifi Z,,(t) % ZplP). 
Using (1) we will show in a second step that the following holds: 

(2) h: A/zA + B/+, h([a]) =&f [ZpI(t)] if t E T(C, Y,,) with [a] = [Z,,(t)] defines 

a C-isomorphism. 

Proof of (1): By construction of %A and -- and since (Y,,), = 8 for all s$In, it is 

obvious that for any terms t, r E T(Z, Y,,), Ial( Z,,(r) E Dom(%J and 

Z,,(t), IDI E Dom(=J. Now let Ial %A InI with t, r E T(C, Y,,),. We have to 

show that then Z,,(t) % IpI holds, i.e. that for any observable z-context 

c E T(C, B,,uZ) containing z,, Z,(c) = Z,(c) where t(z,)ZgI(t), p(z,) = ZaI(r) and 

r(x) = p(x) = x for all x E B,,. W.1.o.g. assume that c contains besides z, exactly one 

variable x E B,,. Since bls: (Y,,), -+ B, is surjective for all s E In, there exists y E Y,, 

with pi(y) = x. Then, if we replace z, by t and x by y in c we have 

ZP1(c[y/x, t/zs]) = Z,(c) and analogously ZB1(c[y/x, r/z,]) = Z,(c). Hence, it remains to 

show that ZBl(c[y/x, t/zJ) = Zpl(c[y/x, r/z,]). Since we have assumed Zn1(t) %A Z,,(r), 

it is easy to derive that Znl (c [y/x, t/zJ) = Zzl (c[ y/x, r/z,] ) holds. Because c [ y/x, t/zJ 

and c[y/x, r/z,] are observable terms of T(C, Y,,), we then obtain by the assumption 

A =Obs. III B the desired result I, 1 (c [ y/x. t/zJ ) = I,, (c [y/x, r/z,]). Analogous1 y, one 

can show that Zp1(t) + IpI implies InI %A Z,,(r). 

Proofof(2): h is well-defined because, first, due to the construction of %A and to the 

surjectivity of ~1, : (Y,,), -+ A, for all s E In there exists for any a E Dom(%J a term 

t E T(C, Y,,) with [a] = [Z,,(t)] and, secondly, if [a] = [ZmI(t)] and [a] = [Z,,(r)], 

thenI,, ~~Z~~(r)and therefore,using(l),Zpl(t) +ZP1(r), i.e. [rol(t)] = [IpI(r It is 

easy to show that h is a C-homomorphism. 

In order to prove that h is a ,X-isomorphism we consider h’: B/% -+ Al%*, 

h’([b]) =&f [ZaI(t)] if t E T(C, Y,,) with [b] = [Z,,(t)]. Analogously to h, one can 
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show that h’ is a well-defined C-homomorphism. Moreover, we obtain as follows that 

h”J h is the identity on A/=*: 

Let [a] E A/z~ with [a] = [Ial(t Then h([a]) = [Z,,(t)]. Hence h’(h(a])) = 

h’( [Z,,(t)]) = [Z,,(t) = [a] (by definition of h’). Analogously, we obtain that ho h’ is 

the identity on B/z~. Hence, h and h’ are C-isomorphisms. 

“e”: Let h : A/z* + B/+ be a C-isomorphism. W.1.o.g. we assume that A and 

B are disjoint. Then let (Y,,), =def 0 for all s$In and (Y,,), =def A,u B, for all s E In 

(note that A, = Dom(z,& and B, = Dom(%)s for all s E In). Moreover, let for all 

s E In, ~1,: (Yi,), -+ A, be defined by c&(y) =def y if y E A,, al,(y) =def a if y E B, and 

h( [a]) = [y] and let /Ils: (Y,,), -+ B, be defined by pi,(y) =&f y if y E B,, /31(y) =&f b if 

y E A, and h( [y]) = [b]. Using definition of Y,,, al and pl, we can prove by structural 

induction on t that for all terms t E T(C, Yi,), h([Z,,(t)]) = [Z,,(t)] holds. Now, in 

order to prove A =obs.tn B we have to show that for all terms t, r E T(C, Y,,), of 

observable sort s E Obs, Z,r(t) = Z,i(r) iff Ipi = ZaI(r). Assume Z,,(t) = Z,,(r) holds. 

Since Z,i(t), Ial E Dom(%J then [ZR1(t)] = [Zal(r)] holds. Since h([ZnI(t)]) = 

CZ~IWI and h(CLl(r)l) = CIplb91, we obtain CZ~IWI = C~aIWl, i.e. Zpl(t) 7+ ZB1(r). 

Then Z,,(t) = Z,,(r) holds, by definition of c+, since r and r are of observable sort and 

Ipi( IpI E Dam(+). Analogously, one can show that for observable terms t and r, 

Z,,(t) = ZpI(r) implies Z,,(t) = Ial( Hence, A =0&t,, B. 

According to the correspondence between a family = of partial C-congruences and 

a factorizable equivalence relation = we can disregard whether we start from one 

point of view or from the other one. 

General Assumption 3. In the sequel of this paper, we consider arbitrary pairs (z , =) 

consisting of a family % = (%A)AEAlgCzJ of partial C-congruences and an equivalence 

relation = between C-algebras such that = is factorizable by z:. (We still assume that 

z is isomorphism compatible and that E is isomorphism protecting which are equiv- 

alent assumptions since E is factorizable by z.) 

5.2. Behuviourul generalization of Scott’s theorem 

The following proposition shows that an equivalence = which is factorizable by 

z is compatible with the behavioural satisfaction relation w.r.t. =. 

Proposition 5.5. Let A, B be two C-algebras. Zf A = B then for all C-formulas 4, A +- 4 

if and only zfBI== 4. 

(In particular, A and B are elementary equivalent w.r.t. the behuviourul satisfaction 

relation). 

Proof. Since A E B and since E is factorizable by z, A/=* and B/--, are isomorphic. 

By Theorem 3.11, we know that AI=, 4 iff A/+ + 4. Since isomorphic 
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C-algebras satisfy the same C-formulas, we have A/z~ k 4 iff B/% k C$ and again by 

Theorem 3.11 we obtain B/+ k C#I iff B I=- 4. 0 

Since C-formulas may be infinitary formulas of L,,, (cf. Section 2.3) we can state as 

a consequence of Proposition 5.5 a “behavioural” version of Scott’s theorem (cf. e.g. 

CW): 

Theorem 5.6. Let A, B be two C-algebras such that A/z~ and B/Z+ are countable. Then 

A = B holds if and only if A and B behaviourally satisfy w.r.t. z the same C-formulas 

4 (i.e. for all C-formulas 4, A += q5 if and only if B I=% 4.) 

Proof. Lb -“: Follows from Proposition 5.5. 

“G”: Assume that for all C-formulas 4, A kk C/I iff B I=% 4. Then, by Theorem 3.11, 

for all C-formulas 4, A/z:, k 4 iff B/z~ k 4. Since A/z~ and B/z~ are countable, we 

can now apply Scott’s theorem (cf. e.g. [15]) and we obtain that A/z~ and B/C+ are 

isomorphic. Then A = B holds since = is factorizable by M. 0 

Remark 5.7. Theorem 5.6 can be generalized to arbitrary C-algebras A and B if we use 

formulas 4 of the more powerful logic L, cu. This follows from a straightforward 

extension of the behavioural satisfaction relation and of Theorem 3.11 to formulas of 

L lxlx, and from the fact that L,, allows us to identify arbitrary algebras up to 

isomorphism (cf. [23] ). 

5.3. Semantical equivalence of behavioural and abstractor specifications 

According to our intuition, two Z-algebras are equivalent if they have the same 

behaviour and the behaviour of a C-algebra A is given by the algebra A/z*. Hence, we 

expect that any algebra A is equivalent to its behaviour, i.e. A = A/z~. The following 

lemma shows that this requirement is equivalent to the weak regularity of z (cf. 

Definition 3.14 (2): 

Lemma 5.8. The following conditions are equivalent: 

(1) For any C-algebra A, A = A/z*. 

(2) z is weakly regular. 

Proof. Since E is factorizable by CZ, (1) is equivalent to the fact that for any C-algebra 

A, A/z~ is isomorphic to (A/Q)/E~~~~~, which means, by definition, that % is weakly 

regular. 0 

General Assumption 4. In the following of this paper, we assume that zz is a weakly 

regular family of partial C-congruences. 

Then we know by Lemma 5.8 that A = A/C* for any C-algebra A which is the 

crucial fact needed to prove the relationships between behavioural and abstractor 
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specifications. As a first result, we show that the model class of a behavioural 
specification is included in the model class of the corresponding abstractor specifica- 
tion. Hence, behavioural specifications are in general more restrictive than abstractor 
specifications. 

Theorem 5.9. For any class C G Alg(C) of C-algebras and any specification SP of 
signature C, 

(1) Beh,(C) G Abs,(C), 
(2) Mod(behaviour SP wrt E) E Mod(abstract SP wrt -). 

Proof. (1) Let A E Beh= (C). Then A/z~ E C. Since E is weakly regular we have, by 

Lemma 5.8, A G A/z~. Hence, A E Abs,(C). 
(2) Follows from (1). 0 

In the next step, we will provide a characterization of the semantical equivalence of 
behavioural and abstractor specifications. For this purpose, we use the following 
lemma which shows that for behaviourally consistent specifications (cf. Definition 
3.19), the model class of an abstractor specification is included in the model class of the 
corresponding behavioural specification. 

Lemma 5.10. For any class C c Alg(C) of C-algebras and any spec$cation SP with 
signature C, 

(1) if C is closed under isomorphism then Abs E (C) E Beh, (C) if and only if C is 
behaviourally consistent w.r.t. z:, 

(2) Mod(abstract SP wrt -) G Mod(behaviour SP wrt z) if and only if SP is 
behaviourally consistent w.r.t. Z. 

Proof. (1) “=E-“: Obvious, since C c Abs,(C) always holds and hence C E Beh,(C). 
“err: Let A E Abs, (C). Then A = B for some B E C. By factorizability, A/q, is 

isomorphic to B/q. Since C is behaviourally consistent w.r.t. E:, B/E~ E C (cf. 
Proposition 3.21) and since C is isomorphically closed also A/z* E C. Hence, 
AE Beh,(C). 

(2) Follows from (1) since model classes are closed under isomorphism. 
(Note that we have not used weak regularity here.) Cl 

As a direct consequence of Theorem 5.9 and Lemma 5.10, we obtain that behav- 
ioural and abstractor specifications are semantically equivalent if and only if the 
underlying specification SP is behaviourally consistent. 

Theorem 5.11. For any class C G Alg(C) of C-algebras and any speciJication SP with 
signature C, 

(1) if C is closed under isomorphism then Beh, (C) = Abs,(C) if and only tf C is 
behaviourally consistent w.r.t. x, 
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(2) behaviour SP wrt z = abstract SP wrt 3 if and only if SP is behaviourally 

consistent w.r.t. z, 

where “ = ” stands for the semantical equivalence of specijcations (cf: Section 2.4). 

According to the characterization of behavioural consistency in Proposition 3.23, 

we see that for proving the equivalence of behavioural and abstractor specifications, it 

is enough to check whether the model class of the underlying specification SP is closed 

under the behavioural quotient construction. 

Example 5.12. We have pointed out in Example 3.24 that a basic specification SP is 

behaviourally consistent w.r.t the observational equality %obs,i,, if the axioms of SP 

are conditional equations with observable premises. Hence, in this case Theorem 5.11 

tells us that the observational behaviour specification behaviour SP wrt k&&, is 

semantically equivalent to the observational abstractor specification abstract SP wrt 

%bs,In (since %obs,i” is weakly regular and the observational equivalence +&in is 

factorizable by =obs,i”, cf. Example 5.4). 

In particular, if we use the observational equivalence =obs,S (cf. Example 4.4 (1)) 

which is factorizable by the family %obs,S (cf. Example 3.5 (l)), then we obtain, as one 

application of Theorem 5.11, the theorem of [22] which says that observational 

behaviour semantics is the same as observational abstractor semantics if the axioms of 

the specification SP are conditional equations with observable premises. Analogously, 

as a further application of Theorem 5.11, we obtain the theorem of [19] which 

says that in their approach (where the observable sorts are the input sorts and the 

axioms are equations) behavioural semantics and abstractor semantics coincide as 

well. 

Example 5.13. Let %E, in be the family of partial Z-congruences generated by a set E of 

equations and a set In of input sorts (cf. Example 3.6) and let =_,” be the equivalence 

relation associated to zE,in (cf. Remark 5.3). By definition, for any two C-algebras 

A and B, A +,_ B holds if A/cz~,,~,~ and B/z~,,,,~ are isomorphic. It is not obvious to 

find an interpretation for this equivalence relation. An intuition may be provided if we 

use the following notion of simulation of one algebra by another algebra (which was 

similarly defined in [25]): 

A C-algebra A simulates w.r.t. In a Z-algebra B if there exists a surjective C- 

homomorphism h: A[XJ -+ B. (Remember that A[X,,] is the reachable part of 

A generated over the values of input sorts and that Dom(%E,,,,.) = A [XI,].) The 

surjectivity requirement ensures that any element of B has a representation in 

A generated over the values of input sorts. 

Then one can prove that A =_,” B holds if and only if A and B simulate w.r.t. In 

a C-algebra C which satisfies the equations E and which satisfies the following 

universal properties (U,) and (U,). The universal property (U,) ((U,) resp.) says that 

C is an initial object among the algebras which satisfy E and are simulated w.r.t. In by 

A (by B resp.) 
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(U,): Let hA : A[X,,] -+ C be the surjective C-homomorphism used for the 

simulation of C by A. For any other C-algebra D which satisfies the equations E and 

which is simulated w.r.t. In by A with surjective C-homomorphism hD : A [XI,] + D 
there exists a unique C-homomorphismf: C + D such that the composition of hA and 

f yields hD. 
(U,): Analogous to (U,) using the simulation of C by B. 

Now assume that the specification init SP and the family ~,e are given as in 

Example 3.25(2). The specification init SP is behaviourally consistent w.r.t. q.0 since 

the quotient algebra I/z~,~,~ of an initial model I of SP is also an initial model of SP 

(cf. the characterization of behavioural consistency in Proposition 3.23). Then, by 

Theorem 5.11, the specifications behaviour (init SP) wrt %,0 and abstract (init SP) 

wrt = =z,m are semantically equivalent. Hence, abstract (init SP) wrt =+,@ describes 

also all C-algebras which can be considered as forget-restrict-identify implementa- 

tions of the initial model of SP (cf. Example 3.25(2)). 

Example 5.14 (Connection to terminal algebras). Assume that SP is a specification with 

signature C = (S, F) such that all models of SP are finitely generated, i.e. satisfy the 

reachability constraint 9 = (S, F). As usual, a model T of SP is called terminal model if 
for any model A E Mod(SP), there exists a unique C-homomorphism hA : A + T. The 

existence of a terminal model of SP can be characterized by the following equivalent 

conditions: 

(1) SP has a terminal model, 

(2) there exists a family z = (=,JAEAlg(r) of total C-congruences such that SP is 

behaviourally consistent w.r.t. z and all models A,B E Mod(SP) have isomorphic 

behaviours, i.e. A/z,., and B/z~ are isomorphic, 

(3) there exists a family z = (~_J~~~i~(z) of total C-congruences such that 

behaviour SP wrt z = abstract SP wrt == and all models A, B E Mod(SP) are equiva- 

lent, i.e. A =, B (where == is the equivalence relation associated to Z, cf. Remark 5.3). 

Note that for the equivalence of (1) and (2), it is not necessary to assume that z is 

weakly regular and isomorphism compatible. 

Proof of the equivalence of (l)-(3): 
(1) * (2): Let T be a terminal model of SP with unique C-homorphisms hA : A + T 

for all A E Mod(SP). For any A E Mod(SP) we define %A by a Q b iff h,(a) = h,(b) 
for a, b E A. If A is a C-algebra not belonging to Mod(SP) then we define Z~ as the 

set-theoretic equality =A on A. Obviously, z = (%JAEAlg(~) is a family of total C- 

congruences. By construction of z:, for any model AE Mod(SP), A/z~ is 

isomorphic to T. Hence, A/Fz~ E Mod(SP) and therefore, by Proposition 3.23, SP is 

behaviourally consistent w.r.t x. It is also clear that for any two models 

A, B E Mod(SP), A/z~ and B/z~ are isomorphic (because both quotient algebras are 

isomorphic to T ). 
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(1) = (2): Assume that (2) holds for z = (%.,JAEAlg(rJ. Now choose an arbitrary 

model A E Mod(SP) and let T =def A/q. Since SP is behaviourally consistent w.r.t z:, 

T E Mod(SP). Let B be an arbitrary model of SP. Then, by assumption, there exists an 

isomorphism g : B/Q -+ T and the composition of the canonical epimorphism 

rcg : B + B/q with g is a C-homomorphism hs : B + T. hs is unique since all models of 

SP are finitely generated. 

(2) o (3): Follows from Theorem 5.11 and from the definition of = 2. 

5.4. Characterization of behavioural and abstractor specijcations 

The following theorem shows that any behavioural specification can be expressed 

in terms of an abstractor specification. 

Theorem 5.15 (Characterization of behavioural specifications). For any class 
C E Alg(C) of C-algebras and any specijcation SP of signature C, 

(1) if C is closed under isomorphism, then Beh, (C) = Abs,(CnIso(C/= )), 

(2) behaviour SP wrt z = abstract (SP + SP/%) wrt =. 

Proof. (1) “ c “: Let A E Beh, (C). Then A/Z* E C. Since = is weakly regular, 

4%~ and (A/~AA)/~AJ+) are isomorphic. Hence, A/EA E Iso(C/Z) and 

therefore A/zA E CnIso(C/%). Moreover, by Lemma 5.8, A z A/zA. Thus, 

A E Abs E (CnIso(C/=)). 

‘I 2 “: Let A E Abs _ (C n Iso(C/%)). Then A = B for some B E C n Iso(c/~). Hence, 

BE C and B is isomorphic to some quotient D/E~. By factorizability, A/%A is 

isomorphic to B/-, and, by isomorphism compatibility of Z, B/G is isomorphic to 

(D/W~~D/~D) which, by weak regularity, is isomorphic to D/q, which in turn was 

isomorphic to B E C. Hence, B/% E C and then, since C is closed under isomorphism, 

A/zA E C, i.e. A E Beh, (C). 

(2) Obviously both specifications have the same signature. Moreover, 

the semantical definitions of + and behavioural quotient imply that 

Mod(SP + SP/%) = Mod(SP)nIso(Mod(SP)/% ). Then we obtain the desired result 

from (1). 0 

The next theorem shows that vice versa abstractor specifications can be expressed 

in terms of behavioural specifications. Hence, there exists a duality between 

behavioural and abstractor specifications. Each one can be expressed by the other 

one. 

Theorem 5.16 (Characterization of abstractor specijications). For any class C G Alg(C) 

of C-algebras and any s-peczjication SP with signature C, 
(1) Abs E (C) = Beh, (Iso(C/%)), 

(2) abstract SP wrt = = behaviour (SP/z) wrt x. 
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Proof. (1) “E”: Let A E Abs,(C). Then A z B for some B E C. By factorizability, 

A/z~ and B/N, are isomorphic. Hence, A/+ belongs to Iso(C/%) and therefore 

A E Beh, (Iso(C/=)). 

“2”: Let A E Beh, (Iso(C/%)). Then A/z~ is isomorphic to some B/Q with B E C. 

By factorizability, A s B and therefore A E Abs E (C). 

(2) Follows from (1). 0 

6. Fully abstract algebras 

A further characterization of (the model class of) behavioural specifications can be 

obtained using fully abstract algebras.’ Following Milner’s notion (cf. [18]), we define 

full abstractness with respect to a given family z of partial C-congruences in the 

following way. 

Definition 6.1 (Fully abstract algebra). (1) A C-algebra A is called fully abstract with 

respect to cz (or briefly fully abstract) if Z~ coincides with the set-theoretic equality 

over the carrier sets of A. (In particular Z~ is total.) 

(2) For any class C E Alg(C) of C-algebras, FA=(C) denotes the subclass of the 

fully abstract algebras of C, i.e. FA, (C) =def (A E Cl A is fully abstract w.r.t. z). 

Note that if A is fully abstract then the notation A/z~ denotes A/=*. 

Example 6.2. (1) In the observational framework, fully abstract algebras w.r.t %obs,In 

are generated over the values of input sorts; two elements are equal if and only if they 

are observationally equal. For instance, if we consider the signature of sets and the 

family of congruences %obs,obs used in Example 3.9(2) then the algebra Pri,(N) is fully 

abstract while N* is not. Note that the powerset algebra P( N) which contains not only 

finite but &O infinite subsets of N iS alSO not fully abstract w.r.t. %obS,obS, because 

infinite sets cannot be generated by the set operations. However, if we choose the 

family of congruences %obS,s where S = {bool, elem, set} then P(N) is fully abstract 

w.r.t . @,s,S because all sets can be used as input values and two sets are equal if and 

only if they are observationally equal. 

(2) If E is a set of C-equations and In is a set of input sorts then a C-algebra A is 

fully abstract w.r.t. z~,,,, (cf. Example 3.6) if and only if it is generated over the values 

of input sorts and satisfies the equations E (in the standard sense). 

As an obvious consequence of the property of full abstractness, we obtain that for 

fully abstract algebras there is no difference between standard satisfaction and 

behavioural satisfaction of formulas. 

’ Indeed, the investigation of the relationships between behavioural semantics and fully abstract algebras 

was originally the starting point of our study (cf. [S]). 
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Lemma 6.3. For any fully abstract C-algebra A and any C-formula q5, 

AI=,+ ifandonlyif A++. 

In particular, for any reachability constraint g over C, A k9 B if and only if A k 9. 

Example 6.4. In Example 3.3, we have noted that for arbitrary C-algebras A and 

equations t = r, A I= _Obs, In t = r if and only if A k c [o(t)] = c [a(r)] for all observable 

contexts c E T (C, X,, u Z) and for all substitutions c which replace the variables in 

t and r by terms of T(C, X,,). In the case of fully abstract algebras, behavioural 

satisfaction is the same as standard satisfaction and one can get rid of the substitutions 

rr since fully abstract algebras are generated over the values of input sorts. Hence, for 

any fully abstract algebra A and equation t = r, we have A /= t = r if and only if 

A I= c[t] = c[r] for all observable contexts c E T(C, X,,uZ). 

Definition 6.5 (Regularity). A family = = (zA)AEAlgCzj of partial C-congruences is 

called regular if for any C-algebra A, the quotient algebra A/x~ is fully abstract. 

Lemma 6.6. If z is regular then z is weakly regular. 

Proof. Let A E Alg(C).Since % is regular, A/z~ is 

(A/q)/q~Ia,j is the same as (A/zJ=(,+~A) which 

4%~. 0 

fully abstract. Therefore, 

is obviously isomorphic to 

Example 6.7. Any family zobs,in which is generated by a set obs of observable sorts 

and a set In of input sorts (cf. Example 3.3) and any family %a&, generated by a set E of 

equations and a set In of input sorts (cf. Example 3.6) is regular. In fact, it seems that 

all reasonable examples of families of partial C-congruences are regular. Examples of 

congruences which are weakly regular but not regular exist but are constructed in 

a rather artificial, nonuniform way. We will now prove the regularity of zobs,,” (the 

regularity of c+,” is obvious since any quotient algebra A/=,,,,,. satisfies the equa- 

tions E and is generated over the input values). 

.6 Proof of the regularity of zobs,l”. Let A be an arbitrary C-algebra and let 

B = +obs,in...i. We will briefly write Q instead of zobs, in, A (and similarly for B). We 

have to show that for all elements b, 6’ E B,, b + b’ iff b = b’ (for all s E S). By 

definition of B, there exist for any b, b’ E B, elements a, a’ E Dom(zA)s with b = [a], 
b’ = [a’]. Hence, it is enough to show that for all a, a’ E Dom(zJ,, [a] % [a’] iff 

[a] = [a’]. One direction is trivial. For the other direction, assume [a] % [a’]. We 

have to show a %A a’. Let c E T (C, X,, u Z) be an observable C-context containing zs, 

let c( : Xi, -+ A be an arbitrary valuation and let s(,, a,, : Xi, u {z,} + A be the unique 

6 In [6], we have pointed out that the regularity of sbr,,” is also a consequence of a given invariant 

axiomatization of the observational equality. 
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extensions of CI defined by a,(~,) =&f a, a,,(~,) =&f n’. We have to show Zcly(c) = Z,_,(c). 

Now define B: X1, -+ B by B(x) =def [a(x)] for all x E X,,. By assumption, 

Zbr.l(c) = Z~Jc) where Bw, Bra,1 : XI, u (4 + B are the unique extensions of p defined 

by &(z,) =def Cal, &&,) =def CO Obviously, up,., = CL,(c)1 and IBr. ,k) = 
C4&-31. Hence, CLk91 = CL,,kAI, i.e. L,,(c) %A Isa,(c). Since the sort of c is observ- 

able, we then know Ima = Z,,,(c). Thus, a %A a’. 

We are now prepared to prove a further important characterization of behavioural 

semantics which says that if % is a regular family of partial C-congruences, then the 

model class of a behavioural specification “bebaviour SP wrt z:” coincides with the 

closure of the class of the fully abstract models of SP under =. This result will be useful 

when considering behavioural theories in the next section. (Note that our general 

assumption that = is factorizable by E is still valid.) 

Theorem 6.8. Let z be a regular family of partial .J5-congruences. Then for any class 

C E Alg(C) of C-algebras and any specijcation SP of signature C the following holds: 

(1) Zf C is closed under isomorphism, then Beh, (C) = Abs,(FA= (C)), 

(2) Mod(behaviour SP wrt Z) = AbQFA, (Mod(SP))). 

Proof. (1) “ G “: Let A E Beh, (C). Then A/z* E C and, since % is regular, A/z~ is fully 

abstract, i.e. A/q E FA, (C). Moreover, since regularity implies weak regularity, we 

have, by Lemma 5.8, A = A/+. Hence, A E Abs _ (FA= (C)). 

“ I> “: Let A E Abs,(FA, (C)). Then A = B for some B E FA, (C). By fractorizabil- 

ity, A/E~ and B/G are isomorphic and since B is fully abstract, B/zB is the same as 

B/q, which is isomorphic to B. Hence, A/ %A is isomorphic to B E FA, (C). Since C is 

closed under isomorphism, we obtain A/z~ E C and therefore A E Beh T (C). 

(2) Follows from (1). 0 

Theorem 6.8 again shows that Mod(behaviour SP wrt Z) G Mod(abstract SP 

wrt =) (cf. Theorem 5.9) since Abs E (FA, (Mod(SP))) G Abs z (Mod(SP)) = 

Mod(abstract SP wrt =). The following corollary summarizes some further immedi- 

ate consequences of Theorem 6.8. We see that the fully abstract models of an 

underlying specification SP are also models of the corresponding behavioural speci- 

fication (cf. (1)) and that a behavioural specification has a model if and only if there 

exists a fully abstract model of the underlying specification SP (cf. (2)). In order to 

point out the analogy to the abstractor case, the corresponding properties of abstrac- 

tor specifications are given in (3) and (4). 

Corollary 6.9. Let z be a regularfamily of partial C-congruences. For any speciJication 

SP with signature C, 

(1) FA,(Mod(SP)) G Mod(behaviour SP wrt z), 

(2) Mod(behaviour SP wrt Z) # 0 if and only if FA,(Mod(SP)) # 0, 

(3) Mod(SP) 5 Mod(abstract SP wrt -), 

(4) Mod(abstract SP wrt =) # 8 if and only if Mod(SP) # 8. 
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We conclude this section by pointing out the connection between the character- 

ization of behavioural specifications given in Theorem 5.15 (where we have proved 

that bebaviour SP wrt z is semantically equivalent to abstract (SP + SP/%) wrt -) 

and the characterization of behavioural semantics in Theorem 6.8. The following 

proposition shows that the model class of (SP + SP/=) is just the isomorphic closure 

of the fully abstract models of SP. Hence, it is easy to see that the model class of 

abstract (SP + SP/z) wrt = is just the class Abs E (FA, (Mod(SP))) (using the as- 

sumption that = is isomorphism protecting). Thus, the results of Theorems 5.15 and 

6.8 are compatible with each other. 

Proposition 6.10. Let z be a regular family of partial C-congruences. For any class 
C G Alg(C) of C-algebras and any specijication SP with signature C, thefollowing holds: 

(1) Zf C is closed under isomorphism, then CnIso(c/~) = Iso(FA,(C)), 

(2) Mod(SP + SP/=) = Iso(FA, (Mod(SP))). 

Proof. (1) “G”: Let A E CnIso(c/~). Then A E C and A is isomorphic to some 

quotient B/q, with B E C. Since A E C and C is closed under isomorphism, B/% E C. 
Moreover, since z is regular, B/q, is fully abstract, i.e. B/z~ E FA, (C). Then, since 

A is isomorphic to B/%, we have A E Iso(FA, (C)). 

“ 2 “: Let A E Iso(FA Z (C)). Then A is isomorphic to some B E FA - (C). Since B E C 
and since C is assumed to be closed under isomorphism we have A E C. It remains to 

show that A E Iso(c/~). A is isomorphic to B which in turn is isomorphic to the trivial 

quotient B/=B. Since B is fully abstract, B/=B is the same as B/+ which belongs to the 

class C/Z. Hence, A E Iso(c/~). 

(2) Follows from (1) by definition of Mod(SP + SP/z). 0 

7. Bebavioural theories of behavioural and abstractor specifications 

According to the generalization of the standard satisfaction relation to the behav- 

ioural satisfaction relation (cf. Section 3.1) we will consider here for any class C of 

C-algebras the behavioural theory of C, i.e. the set of all C-formulas which are 

behaviourally satisfied w.r.t. z by all algebras in C. We recall that we still assume that 

(z, -) denotes a pair consisting of an isomorphism compatible and weakly regular 

family z of partial C-congruences and an equivalence relation = on Alg(C) which is 

factorizable by ZZ. 

General Assumption 5. Whenever we consider fully abstract algebras in the following, 

we assume that z is regular. 

We will consider here theories consisting of arbitrary C-formulas (finitary or not, cf. 

Section 2.3). However, all results remain valid if we restrict to first-order theories (i.e. 

theories consisting only of finitary C-formulas) because first-order theories are the 

intersection of infinitary theories with the set of finitary C-formulas. 
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Definition 7.1 (Behavioural theory). For any class C c Alg(Z) of C-algebras, Th, (C) 
denotes the set of all C-formulas 4 which are behaviourally satisfied w.r.t. z by all 
algebras of C, i.e. 

Th z (C) =&f {C-formula 4 1 A k= cj for all A E C>. 

Th, (C) is called behauioural theory of C. In particular, Th= (C) denotes the standard 
theory of C. 

Lemma 7.2. For any class C G Alg(C) the following holds: 
(1) Th,(C) = Th,(C/z), 
(2) Th=(Abs E (C)) = Th,(C), 
(3) Th,(FA,(C)) = Th=(FA,(C)), 
(4) If C is closed under isomorphism and behaviourally consistent w.r.t. z, then 

Th,(C) = Th=(FA= (C)). 

Proof. (1) follows from Theorem 3.11, (2) follows from Proposition 5.5 and (3) is 
a consequence of Lemma 6.3. For proving (4), assume that C is isomorphically closed 
and behaviourally consistent w.r.t. z’. Then, by Theorem 511(l), Beh,(C) = 
Abs E (C). Moreover, by Theorem 6.8, Beh, (C) = Abs E (FA= (C)). Hence, 

Abs E (C) = Abs E (FA, (C)). Then we have 

Th, (C) = Th, (Abs E (C)) (by (2)) 

= Th, (Abs E (FA, (C))) 

= Th,(FA,(C) (again by (2)) 

= Th=(FA,(C)) (by (3)). 0 

The next proposition shows how behavioural theories of classes of algebras which 
are constructed by the behaviour operator Beh, or by the abstractor operator Abs ~ 
can be reduced to standard theories. 

Proposition 7.3. For any class C E Alg(Z) the following holds: 
(1) 1f C is closed under isomorphism, then Th, (Beh, (C)) = Th = (FA, (C)), 
(2) Th,(Abs G (C)) = Th,(C/z). 

Proof. (1) We have 

Th, (Beh, (C)) = Th, (Abs E (FA, (C))) (by Theorem 6.8) 

= Th, (FA(C)) (by Lemma 7.2(2)) 

= Th=(FA,(C)) (by Lemma 7.2(3)). 

(2) We have 

Th, (Abs I (C)) = Th, (C) (by Lemma 7.2(2)) 

= Th,(C/z) (by Lemma 7.2(l)). 

This completes the proof. 0 
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Proposition 7.3 leads immediately to the following theorem which shows that the 

behavioural theories of behavioural and abstractor specifications can be characterized 

by standard theories. In particular, the first part of Theorem 7.4 says that the theory of 

a behavioural specification which is built on top of a specification SP is the same as 

the standard theory of the class of the fully abstract models of SP. Hence, we can apply 

standard proof calculi for proving behavioural theorems over a behavioural specifica- 

tion as soon as we have a (standard) finite axiomatization of the class of the fully 

abstract models of SP. How such finite axiomatizations can be derived in the case of 

observable behaviour specifications which are built on top of a basic specification SP 

is studied in [4]. More elaborated proof techniques for behavioural theories of 

arbitrary specifications are developed in [7]. 

Theorem 7.4. For any specification SP with signature C the following holds: 

(1) Th, (Mod(behaviour SP wrt x)) = Th, (FA= (Mod(SP))), 

(2) Th, (Mod(abstract SP wrt -)) = Th=(Mod(SP)/=) = Th, (Mod(SP/%)). 

Proof. Since Mod(behaviour SP wrt z:) = Beh,(Mod(SP)) and Mod(abstract SP 

wrt =) = AbQMod(SP)), the theorem is a consequence of Proposition 7.3 if we 

choose C = Mod(SP), which is closed under isomorphism. In particular, 

Th, (Mod(SP)/=) = Th= (Mod(SP/%)) holds since Mod(SP/%) = Iso(Mod(SP)/%) 

and since isomorphic algebras satisfy the same C-formulas. 0 

Example 7.5. Let behaviour SP wrt %obs, in be an observational behaviour specifica- 

tion. Then Th ,Obs,,m(Mod(behaviour SP wrt %obs,r”)) consists of all C-formulas which 

are observationally satisfied by the models of the observational behaviour specifica- 

tion. By Theorem 7.4 (l), this is the same as the standard theory of the fully abstract 

models of SP. In Example 6.4, we have shown that a fully abstract algebra satisfies (in 

the standard sense) an equation t = r if and only if it satisfies all equations c [t] = c [r] 

for all observable contexts c. Hence, for proving that an equation t = r is an 

observational theorem over an observational behaviour specification, it is enough to 

prove that for any observable context c, the equation c[t] = c[r] belongs to the 

standard theory of SP (and hence in particular is valid in all fully abstract models of 

SP). For this, one can use, for instance, the context induction proof technique (cf. 

[12]). In [4], it is shown how an explicit use of context induction can be avoided. The 

idea is that under a particular condition for SP (called observability kernel), the 

characterization of the equality x = y in the fully abstract models by the (usually) 

infinite set of equations c[x] = c[y] for all observable contexts c can be replaced by 

a finite set of equations cO[x] = cO [y] where cO ranges over a finite set CO of 

observable contexts. Then observational theorems are just standard theorems of the 

specification SP enriched by the finitary axiom 

( A YVar(c,).cO[x] = cO[y] * x = y. 
COSCO 1 
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As a concrete example consider the last two axioms add(x, add(y, s)) = 

add(y, add(x, s)) and add(x, add@, s)) = add(x, s) of the SET specification and 

assume that SET1 is obtained from SET by omitting these two equations and that 

SET2 = behaviour SET1 wrt q,bs,ln where Obs = {bool, elem) and In is arbitrary. 

According to [4] the equality of sets in the fully abstract models of SET1 can be 

characterized by the following finitary axiom: 

Vsl, ~2: set. [(Vx: elem. iselem(x, sl) = iselem(x, ~2)) * sl = ~21. 

Then observational theorems over SET2 are just standard theorems over the speci- 

fication SET1 enriched by the above axiom for full abstractness. For instance, using 

the axiom for full abstractness, it is now easy to prove that the omitted equations 

add(x, add(y, s)) = add(y, add(x, s)) and add(x, add(x, s)) = add(x, s) are valid in the 

fully abstract models of SET1 and hence are observational theorems over SET2. 

A detailed study of proof techniques for observational theorems over arbitrary (not 

only behavioural) specifications is given in [7]. 

Example 7.6. Consider the specification init SP and the family zE,O of partial C- 

congruences of Example 3.25(2). Since Modfinit SP) consists of the isomorphism class 

of the initial models of SP, all models of init SP are fully abstract (cf. Example 6.2(2)). 

Moreover, we know that behaviour (init SP) wrt ~.0 and abstract (init SP) wrt E _ 

are semantically equivalent (cf. Example 5.13). Hence, we have Th _ O(abstract (izl 

SP) wrt =,,,) = Thzt,Jhehaviour (init SP) wrt %,0) = (by Thkorem 7.4(l)) 

Th=(FA ,,JMod(init SP))) = Th, (Mod(init SP)). In particular9 an equation t = r 

belongs to the behavioural theory of behaviour (init SP) wrt ~~,0 iff t = I belongs to 

the standard theory of init SP. 

8. Conclusion 

We have presented a framework which clarifies the relationships between the two 

main approaches to observational semantics. In order to be applicable not only to the 

observational case but also to other specification formalisms, we have introduced 

a general notion of behavioural specification and abstractor specification and we have 

seen that there exists a duality between both concepts which allows to express each 

one by the other (provided that the underlying equivalence on algebras is factoriz- 

able). We have given necessary and sufficient conditions for the semantical equiva- 

lence of behavioural and abstractor specifications which subsume the theorems of 

Reichel and of Nivela and Orejas. An extension of our characterization theorem 

to higher-order logic was recently presented in [14]. As examples of factorizable 

equivalences, we have considered the observational equivalences of algebras 

w.r.t. a set of observable sorts and w.r.t. a set of input sorts for the observable 

computations. 
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Our semantical results lead to proof-theoretic considerations which show that 

behavioural theories of specifications can be reduced to standard theories of some 

classes of algebras. An elaborated study of proof techniques for behavioural theorems 

over arbitrary (structured) specifications, based on axiomatizations of behavioural 

equalities, is given in [7]. In [14], it is shown that a (finite) axiomatization of the 

observational equality exists using higher-order logical formulas. A different ap- 

proach providing a sound and complete proof system for structured specifications 

with observability operators, based on infinitary proof rules, is presented in [13]. 

An important application of behavioural or abstractor semantics is the formaliz- 

ation of correctness concepts in program development (cf. e.g. [24]). Using our 

concept of behavioural semantics, we have studied in [S] behavioural implementa- 

tions and we have investigated proof rules that allow us to establish the correctness of 

behavioural implementations of structured specifications in a modular way. 
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