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1. INTRODUCTION AND DEFINITIONS 

If A is a set of positive integers with positive upper uniform density, then 
A must contain arbitrarily large cubes, i.e., sets of the form 

This fact is an essential step in Szemertdi’s proof that any set with positive 
upper uniform density contains arbitrarily large arithmetic progressions. 

In this paper we consider several other properties of a set of positive 
integers, each of which generalizes the notion of having arbitrarily long 
arithmetic progressions. We call these properties QP (having arbitrarily 
large “quasi-progressions”), CP (having arbitrarily large “combinatorial 
progressions”), and D W (having arbitrarily large “descending waves”). The 
definitions of these properties will appear at the end of this section. 

Let us denote by AP and by C the properties of having arbitrarily long 
arithmetic pogressions and arbitrarily large cubes, respectively. Then, in 
Section 2, we will show that 

AP*QP=>CP*C=-DW, 

and that none of these implications is reversible. 
By using Szemertdi’s method for obtaining cubes, we can show that, if 

the sum of the reciprocals of the elements of a set A is infinite, then ,4 has 
property C. While we cannot, at present, show that a set with infinite 
reciprocal sum must have properties CP or QP, we have a good excuse for 
the last failure: we show that Erdiis’ famous conjecture (that every set of 
positive integers with infinite reciprocal sum has property AP) is equivalent 
to the statement that every set with infinite reciprocal sum has property 
QP. These are done in Section 3. 
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In Section 4 we consider descending waves. We obtain upper and lower 
bounds for f(k), the smallest integer such that, if { 1,2, . . . . f(k)} = A u B, 
then A or B contains a k-term descending wave. We also obtain an upper 
bound for 

max{ ISI: SE { 1,2, . . . . m} and S contains no k-term descending wave}. 

(The upper bound is c,(log m)kP 2.) 
We also consider in Section 4 how the growth rate of a sequene {a, 1 

influences the presence of descending waves in the set {a,}. We show that 
arbitrarily long descending waves must be present even in certain sets with 
rather large growth rates, but that sets {a,} with LI, + ,/a, 3 1 + E for all n 
have descending waves of bounded length. 

We conclude the paper with some remarks and questions in Section 5. 
We now define the properties QP, CP, and D W. A finite sequence 

x1 < x2 < . . < xk will be called a k-term quasi-progression of diameter d 
(abbreviated k - QP(d)) if 

Diam(J,+,-x;:ldidk-l)dd, 

i.e., 

3N such that N<xi+, - xidN+dfor ldi,<k-1. 

A set of positive integers has property QP if, for some fixed d, the set 
contains a k- QP(d) for each k Z 1. Noting that a k-term arithmetic 
progression is just a k - QP(0) we get immediately that AP * QP. 

The sequence x, < x2 < . . . < xk will be called a k-term combinatorial 
progression of order d (abbreviated k - CP(d)) if 

I(C-xi+, -x;l: 1 di<k-l)(dd. 

(The integer function is present for the cases, mentioned below, when the 
xi may not be integers.) A set of positive integers has property CP if, for 
some fixed d, the set contains a k - CP(d) for each k 3 1. Clearly, when the 
xi are integers, a k - QP(d) is a k - CP(d+ 1) and so QP = CP. 

Finally, a sequence x, < x2 < . . . < xk, is called a k-term descending wave 
(k-D W) if the difference sequence is non-increasing, i.e., 

xj+l -XjBXj+2-Xj+l for 1 <j<k-2. 

If a set of positive integers contains arbitrarily large descending waves then 
we say that it has property D W. 

We observe that the definitions of k-QP(d), k - CP(d), and k-D W can 
be applied to a sequence x, <x2 < . . < xk even if the terms of this 
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sequence are not integer valued. Thus a countable set of real numbers 
R = (yl < rz < _..) can be said to have properties QP, CP, or D W. However, 
it is easy to prove that, if R satisfies the reasonable condition that 
r it1 - ri> 1 for sufficiently large i, then R has property QP, CP, D W 
exactly when the corresponding set of integers A = { [ri]: i3 1) has the 
same property. 

2. RELATIONS BETWEEN AP, QP, CP, C, DW 

Let us restate our claim in the form of a theorem. The proof will occupy 
the remainder of this section. 

THEOREM 1. AP 3 QP 3 CP =s. C 3 D W, and none of these implications 
is reversible. 

Proof: We have already seen that AP* QP* CP. The implication 
C =S D W is also easy to see: If a set A contains the m-cube (*) above, where 
we may assume that y, > y, 3 . . >, y,, then A also contains the 
(m+ I)-DW 

a, a+y,+yz ,..., a+y,+y,+ ... +ym. 

We proceed to prove CP 3 C. This easily follows from the statement: 
For all m, d> 1, there exists r = r(d, m) such that, if x1, x2, . . . . x, is an 
r - CP(d), then {x1, x 2, . . . . xr} contains an m-cube. The proof of this is by 
induction on m. For m = 1 we let r = 2. Any 2 - CP(d) is a l-cube. For 
m + 1 we take r = r(d, m + 1) = t. r(d, m), where t is determined presently. 
Let r’ = r(d, m) and let x,, .Y?, . . . . x,,, be an r - CP(d). Each block, 

-Ykr’ + 1 , -xk,’ + 2 5 ‘.., x(k + I )r’ for Odkd t- 1, 

is an r’-CP(d) with the same set {f,,fi, . . . . fd} of possible differences. By 
the inductive hypothesis, each of these blocks contains an m-cube. Any 
generator ~~~ of an m-cube in a block is of the form 

s,, +f;?+ ... +f,, 

where j < r’. Hence there are less than (d + 1)” different generators and so 
less than (d+ l)“, m-tuples of generators. Hence, if t = (d+ 1 )““‘, then two 
of the blocks in x1, .x2, . . . . x,,, will have m-cubes with the same set of gener- 
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ators. If these two are (xi, JJ~, y2, . . . . y,) and (xi, .~i, y2, . . . . y,) with 
-xi < x,, then 

is an (m+ 1)-cube in {x,, x2, . . . . x,). 
We now proceed to show that none of the reverse implications hold. 

First D W PC. Rearrange the sequence 1, 2,4, 8, . . . . of powers of two, 
forming a sequence d,, n, , d2, . . . which has arbitrarily long decreasing 
blocks (e.g., 1, 4, 2, 32, 16, 8, 512, 256, . ..). Next define 

a,= 1, a,,, =a,+d, 

and let A = { ai: i 3 01. Clearly A has D W. If A contains a 2-cube 
(6, y,, yz), thenv,=b+y,-b=a,,-ai=di+d,+,+ ... +dj-, andy,= 
b+y,+y,-(b+y,)=a,-ua,=d,,+ds+lf ... +d,-,. Sums of distinct 
powers of two are unique and so j = t which contradicts a, > aj. 

Proof that C PCP. Let A be the set of all positive integers whose 
decimal representation uses only zeros and ones, i.e., 

A= k:k= g s,lO’,s,=Oor 1, N>O, k>O 
i=O 

It is clear from this definition that A has property C. Let 
b, < 6, < 6, < . . < 6, be an increasing sequence in A and suppose 
bi+l-bz=br+l - b,, where i < r. It follows that there exists j, i< j< r, 
such that b,+l-bj>bi+l - bi. Now assume that A has property CP for 
order d. If 6, < 6, <b, < ... < 6, is an n-CP(d) in A, then by assumption 
b , + i - b, can take on at most d different values. But if n is very large, say 
n = d(“+ I’, we can find dd indices i with the same b,, , - bi and in between 
these indices dcJp” other indices j with a larger b,, 1 -b,, and so on. In 
this way we get more than d differences appearing in the sequence (b, 1 
contrary to our supposition. 

Next CP +QP. We will make use of a remarkable sequence of zeros and 
ones, {z,, z2, z3, . . . }, which has the property that there do not exist five 
adjacent blocks of equal composition. (This means that, for any a > 0 and 
da 1, not all of the five numbers 

c =o+kd+i, Odk,<4, 
i= 1 
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are the same.) The existence of such a sequence is due to J. Justin [4]. For 
each t > 1 let S(t) be the following set of t positive integers, 

S(t)={5’+t+z,,5r+2t+z,+z,,...,5’+t*+z,+z2+ ‘.. +q}. 

Let B(t) be the set tS( t) = (tx: x E S( 1)). One easily checks that the first 
member of S(t + 1) (resp. B(t + 1)) is more than twice as large as 
the greatest member of S(t) (resp. B(t)). Each B(t) is a t-CP(2) since a 
difference is 

t5’+(k+l)t*+t(z,+ ... +z~+,)-(t5’fkt’+t(z,+ . . . +zk)) 

= t* + tz, + , = t* or t* + t. 

We define A = B( 1) u B( 2) u . . . Clearly A has property CP. Now suppose 
that A has property QP for diameter d. Let to> d. Let 
P = (6, < b, <b, < ... <b,} be an n-QP(d) in A. Suppose {b,} intersects 
B(t,), II( and B(t,), where t,<t, <t2< t,. Let hi be a member of 
P n B( t ,) and hi be the largest member of P n B( t2). Then 
lb,+ 1 - bi) - (b,, 1 -b;)>b,-(bi+] - hi) > bi > t r 5” > d and this con- 
tradicts P being a QP(d). Hence, if n is sufftcientiy large, we may assume 
that P contains six terms, bi, b,, , , . . . . bi+ 5 in some B(t), where r 3 t,,. Now, 
for suitable u > u > M’, 

= (t5’+ut’+t(z, + ... +z,)-2(t5’+ot2+t(z,+ . . . +z,)) 

+ t5’ + wt2 + t(z, + . ‘. + z,, )I 

=((u+w-2u)t’+t((z,,+,+ . ..+z.)--(~,a+,+ . ..+z.))l<d<t. 

If follows that u-u=u--uj and ;,,+,+ . . . +z,=z,+r+ . . . +z, so that 
the above six members of P determine five adjacent blocks of (2,) which 
have the same composition, a contradiction. 

Finally we show that QP PAP. Here let A = S(l)u S(2)u S(3) u . . . . 
where S(t) is defined above. Clearly A has QP since each S(t) is a t-Qp( 1). 
An argument similar to the above would show that, if an arithmetic 
progression, P = (b, < b2 < b, < . . < b,}, in A were sufficiently long, then 
P would have to contain six terms in some S(t). This, in turn, would again 
produce five adjacent blocks of (zi} which have the same composition. 

3. SETS WITH INFINITE RECIPROCAL SUM 

Here we prove the two results on sets with infinite reciprocal sum 
mentioned in the Introduction. (Some other results on sets with infinite 
reciprocal sum can be found in [I].) 
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THEOREM 2. The following two statements are equivalent: 

1. (Erdiis’ conjecture). If A is any set of positive integers such that the 
sum of the reciprocals of the elements of A is infinite, then A has property 
AP. 

2. If A is any set of positive integers such that the sum of the recipro- 
cals of the elements of A is infinite, then A has property QP. 

Proof Clearly 1 = 2. We show that “not 1” implies “not 2.” Assume 
that A is a set of positive integers with Cit A l/i= co and which contains 
no k-term arithmetic progression for a fixed k. We will construct a set B 
with infinite reciprocal sum which does not have property QP. We note 
that, for each n>l, g>O, the set nA+g={nai+gIibl} does not con- 
tain any k - QP(n - 1). For otherwise we have elements a,, az, . . . . ak in A 
with 

N<((na,+,+g)-((nai+g)6N+(n-l), ldjdk-1, 

which implies that all a,+, - aj are equal, contrary to assumption. 
We construct finite sets B,, B,, B,, . . . as follows. Let B, consist of 

enough terms of A so that CicB, l/i > 1. Having chosen B,, Bzr . . . . B,- , , 
we let g 3 3 . max( B, ~, ) and B, consist of enough terms of nA + g so that 

C l/i> 1. 
itB, 

We set B = B, v B, u B, v .. , and note that B, does not contain any 
k-QP(n - 1) and that B has infinite reciprocal sum. We need only show 
that, for each d>O, B does not contain arbitrarily long QP(d). Let 
S= {b,, b,, .,., b,} be a t-QP(d) in B where, for some N 3 1, 

Ndb,,, -b,dN+d, ldjdt-1. 

If i32 and b,, b,+l belong to different sets B,, then, for j< i, 

N+d>b;+, - b; 2 2b, 2 2(bj+, - b,) > 2N. 

It follows that, if S intersects with h + 1 different sets B,, then we would 
obtain N + d B 2hN, which implies h d log,( d + 1). Hence, if B has property 
QP for diameter d then no t-QP(d) in B can meet more than 
log,(d+ 1) + 1 different sets B,. Hence, by choosing t sufficiently large, we 
may assure that S has at least k consecutive terms in some B, where 
n>d+ 1. But these k terms are a k-QP(d) which is a k-QP(n- 1) in B,. 
This contradiction completes the proof. 

THEOREM 3. If A is a set of positive integers with infinite reciprocal sum, 
then A has property C (and therefore also property D W). 
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Proof. It is shown in [3, p. 191 that, if 

c(=2+J5, qq=&n’-““k’, 

A = {a, < a2 < . . < a,), A c { 1,2, . . . . n}, and t 3 I(k), then A contains a 
k-cube. Thus, if A = {a,, a,, us, . . . } is any set of positive integers which 
does not contain any k-cube, we get, for n 3 1, A(n) < L(k), where A(n) = 
IA n (1, 2, . . . . n}I. Hence 

n=A(u,)<~ .a;-(‘@) 

so that a, 2 cn’ + ‘, where c and E are positive constants. This implies that 

IL ll4l< co. 

4. DESCENDING WAVES 

We shall approach the problem of descending waves from several points 
of view. Our first is analogous to a result of van der Waerden. Let f(k) be 
the smallest positive integer such that, if { 1,2, . . . . f(k)} is 2-colored, then 
there must be a monochromatic k-DW. Our first result boundsf(k) above 
and below. 

THEOREM 4. k’ - k + 1 <f(k) < k3/3 - 4k/3 + 3. 

Proof: For the lower bound, we need only observe that the 2-coloring 

oo...o 1 l...l oo...o 1 l...l...OO 1 10 1 ---II YYUU 
k-l k-l k-2 k-2 2 2 II 

of { 1, 2, . ..) k’- k} has no monochromatic k-D W. 
For the upper bound we first prove a simple lemma: If B, , B,, . . . . B, are. 

consecutive blocks of integers (i.e., O<b,<b,< ... <b,+,, 
B,=[b,+f,bi+11)7 IB113IB213 . ..>.IB,(, t>,s2--s+l, and x;EB, for 
1 < i< t, then the set {x,, x2, . . . . x, 1 contains an s-DW {xjl, xI1, . . . . xi,> with 
x;,=x~and-u,,-x,~~,>IB,~,). 

TO see this, just let i, = t - (s--j)(s -j+ 1) for 1 <j<s. Then 
xi,, xiz, . . . . xi, is an s-D W with the last term =x,. This is easily shown by 
the following calculations: 

i,+,-i,=2(s-j); 

I ,i+,-~~,‘I~,I+,I+I~,I,zl+ ‘.. +lB,,+,~,l3(2(s-j)-1)/B,,+,l 

2 IB,/+,l + lB$+,+ll + lBi,,1+21 + ‘.. + lBt,+*l 2x$+z--xt,+, 

Sincei,_,=t-2,weobtainx,,-x,? l>\B,.,l. 
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Next we suppose that n 3 k3/3 -4k/3 + 3 = d and that (1, 2, . . . . n} is 
2-colored such that there is no monochromatic k-D W. We partition the 
first d integers of this set into consecutive blocks of decreasing 
order, B,, 4, . . . . B,, where t= k2-3k+4, as follows: lB,l =k 
1 B?I = 1 B,I = k - 1; . . . . (B,( = 1. Here, in general, there will be 2j blocks of 
length k - j for 1 < j d k - 2 (only one block, the first, of length k and one 
block, the last, of length one.) Hence the number of blocks is 
1+2+4+6+ ... + 2(k - 2) + 1 = t. Also, the number of consecutive 
integers contained in the union of all these blocks is, as stated, 

k-2 

k+ 1 + c 2j(k-j)=;-?+3. 
/=I 

If B, is of length k-s (~31) then u>1+2+4+ ... +2(s-1)= 
sz -s + 1. It follows from the assumption about the coloring and the above 
lemma that no block of our partition can be monochromatic. For, suppos- 
ing B, to be the first monochromatic block (say all l’s), if U= 1, then the 
k integers of B, form a k-D W. On the other hand, if 1~ u < t, then each 
block which comes before B, must contain an integer colored 1 and, if 
(B,j = k -s, the lemma implies that there is an s-D W, x1, x2, . . . . x,, of 
integers colored 1 such that x, E B, ~. ]. Let x,, i , x,~+ 2, . . . . xk be the k-s 
elements of B,. From the construction used in the proof of the lemma, we 
see that x,-xx,-, > lBUP21 > 18,-,1 2.x,+, -x,. Hence x,, x2, . . . . xk is a 
monochromatic k-D W contrary to assumption. The theorem is proved by 
observing that B, is necessarily monochromatic. 

If one defines f(k) requiring a monochromatic strict descending wave 
(i.e., the differences form a strictly decreasing sequence d, > d, > ‘. . > 
dkp i), then the above method will yield lower and upper bounds ci k3 and 
c2 k4, respectively. 

Further, if we consider the above method but use intervals each of length 
k, then we obtain the result: If { 1, 2, . . . . k3 - 3k2 +4k} is 2-colored, then 
there are either k consecutive monochrome integers or there is a 
monochromatic k-D W. 

Next we proceed to find an upper bound on the order of a subset of 
{ 1, 2, . . . . n} which has no k-D W. 

THEOREM 5. Let SG { 1, 2, . . . . 2”) and suppose that S contains no k-D W 
where 3 < k < n + 2. Then 

Proof: Since descending waves are invariant under translation we may 
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assume that min(S) = 1. We begin an induction at k = 3 by observing that, 
if S contains no 3-D W, then each interval I, = (2’+ 1, . . . . 2’+ ‘}, 
0 < t < n - 1, contains no more than one element of S (for, if a, b E I,, a < b, 
then (1, a, b} would be a 3-D W). Hence, 

ISI fn+ 1<2n=2 
n 

0 1 ’ 

provided that n > 1 (i.e., k = 3 d n + 2). 
Now fix k > 3 and let SC { 1, 2, . . . . 2”) be a set which contains no 

(k + 1)-D W. Then, as before, Z, n S cannot contain any k-D W (since 
adjoining 1 to such a D W would give a (k + 1)-D W in S). Thus by the 
induction hypothesis we have, for k d t + 2, 

ISn (2’+ 1,2’+2, . ..) ,‘+l}\ <2k-Z 

For k+! <n+2 we write 

n-1 

.( 1) . ..) 2”j={l,...,2km*}u ,=y (2’+ 1, . ..) ,‘+I). 
2 

Thus we obtain 

Three corollaries follow from Theorem 5. 

COROLLARY 1. Zf m > 2k-2 and S is a subset of { 1,2, . . . . m} which 
contains no k-D W, then 

2k-I 

ISI G(k- (log, m)k-2. 

COROLLARY 2. Zf an infinite sequence S = {a, < a, < a3 < . ..} contains no 
k-DW, then there is a constant c > 1 (in fact, c = 2”k-2’!/2k~““k~2) such that, 
for a,B2kp2, 

Hence, if for each E > 0 

a, < e”’ 
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for all sufficiently large n, then (a,} has D W. For example, if 

then (a,} has D W. Consequently, if {a,> is a sequence such that a, < p(n) 
for infinitely many n, where p(x) is a fixed polynomial, then (a,} has 
property D W. This last remark gives a proof, independent of Theorem 3, 
that CA l/a = co implies that A contains arbitrarily long descending waves. 

COROLLARY 3. Define g(E, k) to be the smallest n such that 
Ac(1,2,...,n)and(A(>&nimplythatAhasak-DW.Thenfork~4and 
E < 0.9 we have 

k’-k k-2 

TQAE, k)d 6” . 
0 E 

Proof: The left-hand inequality follows by taking the set colored “1” in 
the construction at the beginning of the proof of Theorem 4 as a subset of 
(1, 2, . . . . [(k’--)/2&l). F or the right-hand inequality we proceed as 
follows: Let n = [(6e/s)kP2], A E { 1,2, . . . . n}, IAl >En, and suppose that A 
has no k-D W. From Corollary 1 above we get 

(log “n) 
k 

-2<E,:“1,. 1’ 
2 

which, using kke Pk $% e”“2k + I) ,< k!, implies 

But this inequality is false if k 2 4 and E < 0.9. 
For k = 3 and any E, the beginning of the proof of Theorem 5 shows that 

if&2’>t+l, theng(s,3)<2’. 

We shall consider below the existence of descending waves contained in 
sequences {a1 <a2 <a3 < . ..) where the a,, are real numbers and 
a,+, -a, 2 1 for all large n (see Section 1). The remarks following 
Corollary 2 above show that if a,, increases slowly then {a,,} has D W. On 
the other hand, the next theorem shows that a, cannot grow as an 
exponential and still have that property 
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THEOREM 6. For each real E > 0, let k(E) be the maximum, over all 
sequences A = {a, < a2 < a3 < . ..) with a,,+ ,/a, 3 1 + E for all n, of the length 
of the longest descending wave in A. Then 

Proof Let 0 < b, < b, < . < b, be a D W in such a sequence A. Then 
b,=(b,-b, ,)+ ... +(b,-b,)+b,gt(b,-b,_,)+b,, so that 

Therefore t < 1 + l/s whence k(E) < l/r + 2. 
For the lower bound, given E < 1, define a, = i for i = 1, 2, . . . . t, where 

t= [l/a] and a,+k= t( 1 + E)~ for k 3 1. Then A satisfies the condition of 
the theorem and 1, 2, . . . . t, t( 1 + E) is a D W in A of length [l/s] + 1. Hence 
k(E) 2 [l/s] + 1. 

The case where (a,} is an exponential sequence is special: 

THEOREM 7. Let P(E) be the length of the longest DW in the sequence 
a,, = c”, where c = 1 + E. Then there exist constants A and B such that 

A/J 6 P(E 1 d B/d. 

Proof: For the lower bound consider the sequence (with t + 2 terms) 

1, C’+l, p+l)+‘, ..., C(I+l)+‘+l’-l)+ ‘. +I, 

This is a D W if and only if, for each s, 1 d s f t, we have 

These inequalities all hold if and only if 

and this inequality is equivalent to c’ d 1 + ,,/$. (For t = 1 this inequality 
requires that E d $8 - 1) N 0.61 and that E be smaller for larger values of 
t.) Hence, for given E, say E < 0.6, we may take t = [log( 1 + &)/log(c)]. 
This last quantity is asymptotic with l/A. For E <0.6 we may let 
A = 0.787. 
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For the upper bound we proceed as follows. First note that if crl, P, cr3 
is a 3-D W, then r3 - r2 < r2 -r,. Let R = l/A and let a,, a?, . . . . ak be a 
DWin {c”}. Lettingt=[R]+l wegeta,-a,+,<a,/R. Writea,=c”and 
a r+1=c ‘:. Clearly c” rl <(l/R) + 1 so that 

r 
2 

_ r < log((llR) + 1) _ R 
1 log c . 

It follows that k is less than, approximately, twice R. 

The sequences a, = exp(n”) of Corollary 2, as we shall see below, all have 
property D W even though they are upper bounds for sequences which do 
not have D W. More precisely, we prove the following. 

THEOREM 8. For any E > 0, there exists a sequence A = {a, > of positive 
integers such that A does not have property D W and, for all large n, 
a,, < exp(n”). (Compare the remarks folloou+ng Corollary 2.) 

Proof: The sequence (2”) does not contain a 3-D W and 2” < exp(n”) 
for all E 2 1. Let N> 1 and put 

A=AN= {2”1’+2”2’ + ... +2GN!i(l)>i(2)> ... >i(N)>O}. 

We first prove that if A = (a,} then a,, < exp(n”) for all large n, where 
6 > l/N. Let a,, = 2 iCI)+2fC?)+ ... +2iwI>2iclI Then 

n=A(a,)>A(2’“‘)= > C(i( l))N. 

Hence i( 1) < Dn’lN and 

a <2i(1J+1=2.2i(l)<2.2D”“N<enn 
n 

for suitable constants C, D, and all large n. Thus we choose N such that 
l/N < E. We can assume inductively that AN--’ does not have property 
D W. Suppose AN has D W and let a,, a?, . . . . aH, be a descending wave in AN. 
Write 

N 

a, = c ZP-‘) 
(t = 1, 2, . ..’ w). 

s=l 

Note that i( 1, t) 6 i( 1, t + 1). If equality holds for arbitrarily long blocks, 
then these blocks determine long D Ws in AN- ’ contrary to the inductive 
hypothesis. Hence we may assume (by taking w large enough) that 
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i( 1, t) < i( 1, t + 1) occurs at least N+ 2 times. Clearly then we have 
i(1, t+ 1)-N>i(l,2) for some t. Then 

This proves that AN does not have property D W. 

The sets AN above have rather irregular growth. The next theorem shows 
that if the growth pattern is sufficiently regular, then the sequence has 
property D W. First note the following remarks: Let ai= 1 + (l/2’). Then 
for all i2 1 we have (l/ai)+a,+, < 2. If E is small, then there exists a maxi- 
mal q(E) such that, for i= 1, 2, . . . . q(E), (l/u) + b d 2 whenever ai- E d a < ai 
and a,+I -c<b<a;. It is clear that q(E)--,00 as E+O+. 

THEOREM 9. Let B = {b, < h2 < b, < . } be a set with the following 
property: For each t > 1 there exist integers i, k, s such that 

(i) b,+,/bj<a,+,for idjdi+k, 

(ii) b, + Jbi 3 11 a, where the product is taken over s + 1 6 r 6 s + t, 
and 

(iii) s+t<q(E), wheres=2max{(bj+,/bj)-1: i<j<i+k}. 

Then B has property D W. 

Proof: Let t > 1. Take i, k, and s to satisfy the above three properties. 
Let aI = bi+,(,,, where n( 1) is the largest integer > 0 such that 
bi+.(l,lbida,+l. Next take a, = bifnt2), where n(2) is the largest > n(1) 
such that bi+.(2,/bj+.,1,6a.s+2. Continue in this manner forming the sub- 
sequence (a,, a,, . . . . a,} of B. Condition (i) assures us that each n(g) exists 
as long as n(g) d k. But condition (ii) implies that n(t) f k for, otherwise, 

Now we show a,, a,, . . . . a, is a D W. For this we need only show that 

%+I 2aj+aj+2 for each j = 1, 2, . . . . t  - 2. This is equivalent to 

1 
ai+,/aj+Zj+,’ ’ 

r+2<2 
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By the remarks preceding the theorem and condition (iii), it will suffice to 
show that 

CI.~+,-&~bi+.(j,lbi+.(j~))dcrs+, 

for each j = 1, 2, . . . . t (where n, = 0). This follows easily: 

COROLLARY 4. If bj+ ,/b, -+ 1 (i -+ GO), then B has property D W. 

Proof: We show that B satisfies the conditions of the Theorem. Let 
t > 1. Choose s = 0. Next choose i large enough so that (i) holds (for all 
j> i) and t <q(c), where E= 2 supi>,{ (b,, ,/b.j) - 1). Finally choose k so 

that bi+klbr~n,...,a,. 

From Corollary 4 it follows that a sequence of the form a, = exp(n”) has 
D W. Conditions which are both necessary and sufhcient for a set to possess 
property D W appear to be difficult to state. 

5. REMARKS 

It would be nice to prove either Theorem 2, replacing QP by CP, or 
Theorem 3, replacing C by CP. (It is, of course, very unlikely that we 
would prove both of these modified theorems as that would give us Erdos’ 
Conjecture.) 

It is known that the sequence of squares {n’} does not have property 
AP. Does it have property QP, CP, or C? 

Professors Joel Spencer and Noga Alon have announced that, in 
Theorem 4, ck3 <f(k) for a suitable constant c. They have, evidently, also 
significantly improved both bounds for g(s, k) in Corollary 3: For suitable 
constants c and d (depending only on E) 

ckif2 < g(&, k) < dk’12 log k. 

Besides descending waves, one can also consider ascending waves. A 
sequence (a, < ... <ak} will be a k-AW if ai+,-aa,<ai+,-ai+, for 
1 < i < k - 2. There are arbitrarily large finite sets with no 3-A W and yet 
every infinite set has property A W, in fact, any infinite set will contain an 
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infinite subsequence which is an ascending wave. We can show that for 
each k there is a smallest number h(k) such that for n>,h(k) any set 
i a, < . . . < a,} of integers has a k-A W or a k-D W. In fact, P. Erdiis and 
Gy. Szekeres [Z] showed that, if ,f(k, t) denotes the smallest positive 
integer such that any set {ai <a, -=c ... -C LZ,.(~,,)) contains either a k-A W or 
a t-DW, then ,f(k,t)=f(k-l,t)+f(k,t-1)-l (k>2,t32). This 
immediately gives 

f(k d=(k;i;4)+, (ka2, r>2), 

so that h(k)=f(k,k)-4”p2/Jnk. 
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