The structure of $K_{3,3}$-subdivision-free toroidal graphs ${ }^{2 \pi}$

Andrei Gagarin, Gilbert Labelle, Pierre Leroux
Laboratoire de Combinatoire et d'Informatique Mathématique (LaCIM), Université du Québec à Montréal, Montréal, Qué, Canada H3C 3P8

Received 22 November 2004; received in revised form 26 December 2006; accepted 11 March 2007
Available online 21 April 2007

Abstract

We consider the class \mathscr{T} of 2-connected non-planar $K_{3,3}$-subdivision-free graphs that are embeddable in the torus. We show that any graph in \mathscr{T} admits a unique decomposition as a basic toroidal graph (the toroidal core) where the edges are replaced by two-pole networks constructed from 2-connected planar graphs. The structure theorem provides a practical algorithm to recognize toroidal graphs with no $K_{3,3}$-subdivisions in linear time. Labelled toroidal cores are enumerated, using matching polynomials of cycle graphs. As a result, we enumerate labelled graphs in \mathscr{T} having vertex degree at least two or three, according to their number of vertices and edges. We also show that the number m of edges of graphs in \mathscr{T} satisfies the bound $m \leqslant 3 n-6$, for $n \geqslant 6$ vertices, $n \neq 8$.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Toroidal graphs; $K_{3,3}$-subdivisions; 2-Pole networks; Planar networks; Edge substitution; Toroidal core; Structure theorem; Labelled enumeration

1. Introduction

We are interested in the structure of non-planar simple graphs that can be embedded on the torus. By Kuratowski's theorem [17], such a graph G must contain a subdivision of K_{5} or $K_{3,3}$. Fig. 1 shows a graph embedded on the torus and containing subdivisions of both K_{5} and $K_{3,3}$.

As a first step in the study of toroidal graphs, it is natural to restrict ourselves to the smaller class of graphs with no $K_{3,3}$-subdivisions. Since $K_{3,3}$ is 3 -regular, the graphs with no $K_{3,3}$-subdivisions coincide with the graphs with no $K_{3,3^{-}}$ minors. These graphs will be referred to as $K_{3,3}$-free graphs. By Wagner's theorem [20], a graph G is planar if and only if it does not have a minor isomorphic to K_{5} or $K_{3,3}$. Recently, Gagarin et al. [11,12] have extended both Kuratowski's and Wagner's theorems to toroidal $K_{3,3}$-free graphs by giving complete lists of (11) forbidden subdivisions and (four) forbidden minors.

In this paper we give a structural characterization of non-planar 2-connected toroidal $K_{3,3}$-free graphs, using the substitution of strongly planar networks for the edges of certain basic graphs called toroidal cores, following an analogous work for projective-planar graphs [9]. We denote by \mathscr{T} the class of non-planar 2-connected toroidal $K_{3,3^{-}}$ free graphs. The restriction to 2 -connected graphs is natural since a graph G is toroidal if and only if it contains at

[^0]

Fig. 1. Graph embedded on the torus.

Fig. 2. (i) a series-parallel network, (ii) a $K_{5} \backslash e$-network.
most one non-planar toroidal 2-connected component, while all the other 2-connected components of G are planar. Our structure theorem is formally stated in Section 2 as the equation

$$
\begin{equation*}
\mathscr{T}=\mathscr{T}_{\mathrm{C}} \uparrow \mathscr{N}_{\mathrm{P}} \tag{1}
\end{equation*}
$$

where \mathscr{T}_{C} denotes the class of toroidal cores, \mathscr{N}_{P}, that of strongly planar networks and the uparrow \uparrow denotes the operation of substitution of networks for edges (see Definition 1 below). The proof given in Section 3 is based on a refinement of the algorithmic results of Gagarin and Kocay [8]. We also improve known bounds for the number of edges of 2-connected toroidal $K_{3,3}$-free graphs in Section 3. The structure theorem provides a practical algorithm to recognize toroidal graphs with no $K_{3,3}$-subdivisions in linear time.

Labelled toroidal cores are enumerated, using matching polynomials of cycle graphs, in Section 4, and also strongly planar networks. As a result, we enumerate labelled graphs in \mathscr{T} as well as in the subclass of homeomorphically irreducible graphs in \mathscr{T}, according to their number of vertices and edges. Computations were carried out using Maple and results are presented in Tables 1-3. Unlabelled graphs in \mathscr{T} have also been enumerated recently in [10] using the structural relationship (1).

2. The structure theorem

We use basic graph-theoretic terminology from Bondy and Murty [5] and Diestel [6]. By convention, the graph K_{2} is considered as a 2-connected (non-separable) graph in this paper. A two-pole network (or more simply, a network) is a connected graph N with two distinguished vertices 0 and 1 , such that the graph $N \cup 01$ is 2 -connected, where the notation $N \cup a b$ is used for the graph obtained from N by adding the edge $a b$ if it is not already there. The vertices 0 and 1 are called the poles of N, and all the other vertices of N are called internal vertices. Examples of networks are given by series-parallel networks (see [9] for a formal definition) and by the $K_{5} \backslash e$-network as illustrated in Fig. 2.

A network N is strongly planar if the graph $N \cup 01$ is planar. This means that N can be embedded on the sphere so that the two poles belong to the same face. We denote by \mathscr{N}_{P} the class of strongly planar networks. Note that the trivial network with no edge should be excluded from \mathscr{N}_{P}.

Fig. 3. Example of a $\left(C_{4} \uparrow \mathscr{N}\right)$-structure $\left(G, G_{0}\right)$.

Fig. 4. The trivial networks: (i) $\mathbb{1}$, (ii) $y \mathbb{1}$.

We define an operator τ acting on 2-pole networks, $N \mapsto \tau \cdot N$, which interchanges the poles 0 and 1 . A class \mathcal{N} of networks is called symmetric if $N \in \mathcal{N} \Longrightarrow \tau \cdot N \in \mathcal{N}$. Examples of symmetric classes of networks are given by the classes \mathscr{N}_{P}, of strongly planar networks, and \mathscr{R}, of series-parallel networks (see [9,21]).

Definition 1. Let \mathscr{G} be a class of graphs and \mathscr{N} be a symmetric class of networks. We denote by $\mathscr{G} \uparrow \mathscr{N}$ the class of pairs of graphs (G, G_{0}), such that

1. the graph G_{0} is in \mathscr{G} (called the core),
2. the vertex set $V\left(G_{0}\right)$ is a subset of $V(G)$,
3. there exists a family $\left\{N_{e}: e \in E\left(G_{0}\right)\right\}$ of networks in \mathcal{N} (called the components) such that the graph G can be obtained from G_{0} by substituting N_{e} for each edge $e \in E\left(G_{0}\right)$, identifying the poles of N_{e} with the extremities of e according to some orientation.

Such pairs $\left(G, G_{0}\right)$ are called $(\mathscr{G} \uparrow \mathcal{N})$-structures.
Notice that the components $\left\{N_{e}: e \in E\left(G_{0}\right)\right\}$ are uniquely determined up to orientation (i.e. pole interchange) by the pair $\left(G, G_{0}\right)$. An example of a $(\mathscr{G} \uparrow \mathcal{N})$-structure $\left(G, G_{0}\right)$, with $\mathscr{G}=C_{4}$, the class of 4-cycle graphs, and $\mathcal{N}=\{$ all networks \}, is given in Fig. 3.

As another example, take $\mathscr{G}=K_{2}$ and $\mathscr{N}=\mathscr{N}_{\mathrm{P}}$, the class of strongly planar networks, then the ($K_{2} \uparrow \mathscr{N}_{\mathrm{P}}$)structures consist of graphs G together with two selected (adjacent or not) vertices a and b, such that the graph $G \cup a b$ is 2 -connected and planar.

Definition 2. We say that the composition $\mathscr{G} \uparrow \mathscr{N}$ is canonical if for any structure $\left(G, G_{0}\right) \in \mathscr{G} \uparrow \mathscr{N}$, the core $G_{0} \in \mathscr{G}$ is uniquely determined (and hence also the components) by the graph G.

In the case of a canonical composition, we can identify $\mathscr{G} \uparrow \mathscr{N}$ with the class of resulting graphs G. For example, we can take $\mathscr{G}=K$, the class of complete graphs, $\mathcal{N}=1+y \mathbb{1}$, the class of trivial networks (see Fig. 4), where the operation " + " denotes the disjoint union. Let \mathscr{G}_{a} denote the class of all graphs. Then we have

$$
K \uparrow(\mathbb{1}+y \mathfrak{1})=\mathscr{G}_{\mathrm{a}},
$$

the composition being canonical.

Fig. 5. (a) M-graph, (b) M^{*}-graph.

Fig. 6. A toroidal crown obtained from C_{5}.

In a previous work, we have proved the following structure theorem for 2-connected non-planar projective-planar $K_{3,3}$-free graphs.

Theorem 1 (Gagarin et al. [9]). The class \mathscr{F} of 2-connected non-planar projective-planar $K_{3,3}$-free graphs can be expressed as a canonical composition

$$
\begin{equation*}
\mathscr{F}=K_{5} \uparrow \mathscr{N}_{\mathrm{P}} \tag{2}
\end{equation*}
$$

where K_{5} denotes the class of complete graphs with five vertices.
Our goal is to give a similar structural result for the class \mathscr{T}. In order to do this, more fundamental core graphs have to be considered.

Definition 3. Given two K_{5}-graphs, the graph obtained by identifying an edge of one of the K_{5} 's with an edge of the other is called an M-graph (see Fig. 5a), and, when the edge of identification is deleted, an M^{*}-graph (see Fig. 5b).

Definition 4. A toroidal crown is a graph H obtained from a cycle $C_{i}, i \geqslant 3$, by substituting $K_{5} \backslash e$-networks for some edges of C_{i} in such a way that no pair of unsubstituted edges of C_{i} are adjacent in H (see Fig. 6). We denote by \mathscr{H} the class of toroidal crowns.

Definition 5. A toroidal core is a graph H which is isomorphic to either K_{5}, an M-graph, an M^{*}-graph, or a toroidal crown. We denote by \mathscr{T}_{C} the class of toroidal cores. In other words, we have

$$
\begin{equation*}
\mathscr{T}_{\mathrm{C}}=K_{5}+M+M^{*}+\mathscr{H} . \tag{3}
\end{equation*}
$$

Note that the graphs K_{5} and M^{*} can be viewed as special cases of toroidal crowns, based on a degenerate cycle C_{2}. The main result of this paper is the following structure theorem.

Theorem 2. The class \mathscr{T} of 2-connected non-planar $K_{3,3}$-free toroidal graphs is characterized by the relation

$$
\begin{equation*}
\mathscr{T}=\mathscr{T}_{\mathrm{C}} \uparrow \mathscr{N}_{\mathrm{P}} \tag{4}
\end{equation*}
$$

the composition being canonical.
The proof of Theorem 2 is given in Section 3. It is clear that if G is a 2-connected non-planar $K_{3,3}$-free graph then so is any graph obtained from G by replacing its edges by strongly planar networks. The theorem states first that any toroidal core is a 2-connected non-planar $K_{3,3}$-free graph, so that any graph G arising from a ($\mathscr{T}_{\mathrm{C}} \uparrow \mathscr{N}_{\mathrm{P}}$)-structure (G, G_{0}) is in \mathscr{T}, and that moreover, this is the only possibility and the decomposition of a graph in \mathscr{T} as a $\left(\mathscr{T}_{\mathrm{C}} \uparrow \mathscr{N}_{\mathrm{P}}\right)$-structure is unique.

3. Proof of the structure theorem

We first give an overview of the structural results for toroidal graphs described in [8]. Following Diestel [6], a K_{5}-subdivision is denoted by $T K_{5}$. The vertices of degree 4 in $T K_{5}$ are the corners and the vertices of degree 2 are the inner vertices of $T K_{5}$. For a pair of corners a and b, the path $P_{a b}$ between a and b with all other vertices being inner vertices is called a side of the K_{5}-subdivision.

Let G be a non-planar graph containing a fixed K_{5}-subdivision $T K_{5}$. A path p in G with one endpoint an inner vertex of $T K_{5}$, the other endpoint on a different side of $T K_{5}$, and all other vertices and edges in $G \backslash T K_{5}$ is called a short cut of the K_{5}-subdivision. A vertex $u \in G \backslash T K_{5}$ is called a 3-corner vertex with respect to $T K_{5}$ if $G \backslash T K_{5}$ contains internally disjoint paths connecting u with at least three corners of the K_{5}-subdivision.

Proposition 1 (Asano [1], Fellows and Kaschube [7], Gagarin and Kocay [8]). Let G be a non-planar graph with a K_{5}-subdivision $T K_{5}$ for which there is either a short cut or a 3-corner vertex. Then G contains a $K_{3,3}$-subdivision.

Proposition 2 (Fellows and Kaschube [7], Gagarin and Kocay [8]). Let G be a 2-connected graph with a $T K_{5}$ having no short cut or 3-corner vertex. Let K denote the set of corners of $T K_{5}$. Then any connected component C of $G \backslash K$ contains inner vertices of at most one side of $T K_{5}$, and C is connected in G to exactly two corners of $T K_{5}$.

Given a graph G satisfying the hypothesis of Proposition 2, a side component of $T K_{5}$ is defined as the subgraph of G induced by a pair of corners a and b in K and the connected components of $G \backslash K$ which are connected to both a and b in G.

Corollary 1 (Fellows and Kaschube [7], Gagarin and Kocay [8]). For a 2-connected graph G with a $T K_{5}$ having no short cut or 3 -corner vertex, two side components of $T K_{5}$ in G have at most one vertex in common. The common vertex is the corner of intersection of two corresponding sides of $T K_{5}$.

Thus we see that a graph G satisfying the hypothesis of Proposition 2 can be decomposed into side components corresponding to the sides of $T K_{5}$. Each side component S contains exactly two corners a and b corresponding to a side of $T K_{5}$. The graph $S \cup a b$ obtained by adding the edge $a b$ to S if it is not already there is called an augmented side component of $T K_{5}$ in G. Side components of a subdivision of an M-graph are defined in a similar manner.

A side component S of $T K_{5}$ in G with two corners a and b is called cylindrical if the edge $a b \notin S, S$ is planar but the augmented side component $S \cup a b$ is non-planar. It is easy to see that a cylindrical side component S is embeddable in a cylindrical section of the torus, with the vertices a and b on opposite sides. Indeed, given an embedding of S on the sphere, two distinct faces, one containing the vertex a and the other, the vertex b, can be chosen and declared to be the two external sides of a cylindrical embedding of S. Fig. 1 shows an embedding of K_{5} on the torus, where one edge has been replaced by a cylindrical side component $S=K_{3,3} \backslash e$ (the shaded area).

Now, if a graph G is $K_{3,3}$-free, then Proposition 2 and its corollary can be applied, in virtue of Proposition 1. In this case, we have the following result:

Fig. 7. Block-cutpoint decomposition for the cylindrical side component S.

Proposition 3 (Gagarin and Kocay [8]). A 2-connected $K_{3,3}$-free graph G containing a K_{5}-subdivision $T K_{5}$ is toroidal if and only if:
(i) all the augmented side components of $T K_{5}$ in G are planar graphs, or
(ii) nine augmented side components of $T K_{5}$ in G are planar, and the remaining side component S is cylindrical, or
(iii) G contains a subdivision TM of an M-graph, and all the augmented side components of TM in G are planar.

Further analysis of the cylindrical side component S of Proposition 3(ii) will provide a proof of Theorem 2. A side component S having two corners a and b can be considered as a network, with poles a and b instead of 0 and 1 . We use the notation $\operatorname{Int}(S)$ to denote the interior of S, that is the subgraph generated by the internal vertices of the network.

By analogy with side components, a network N is called cylindrical if $01 \notin N, N$ is a planar graph, but $N \cup 01$ is non-planar. Recall that a network N is called strongly planar if $N \cup 01$ is planar. Thus a planar network is either strongly planar or cylindrical.

A block is a maximal 2-connected subgraph of a graph. The block-cutpoint tree bc (G) of a connected graph G is the graph whose set of vertices is the union of the set of blocks and the set of cutpoints of G, with two vertices adjacent if one corresponds to a block of G and the other to a cutpoint of G in that block. See for example [3,6].

Proposition 4. Let G be a 2-connected non-planar toroidal $K_{3,3}$-free graph satisfying Proposition 3(ii), with the cylindrical side component S having corners a and b. Then the block-cutpoint tree bc(S) forms a path

$$
\left(a=a_{1}\right) S_{1}\left(b_{1}=a_{2}\right) S_{2}\left(b_{2}=a_{3}\right) \ldots S_{k}\left(b_{k}=b\right)
$$

as in a series composition of networks, with $k \geqslant 1$ (see Fig. 7). Moreover, the networks S_{i}, with poles a_{i}, b_{i}, for $i=1, \ldots, k$, are either cylindrical or strongly planar, with at least one cylindrical, and the cylindrical networks are formed of a $K_{5} \backslash e$-network where the edges have been replaced by strongly planar networks.

Proof. Since G is 2-connected, each cut-vertex of S belongs to exactly two blocks and lies on the corresponding side $P_{a b}$ of $T K_{5}$. Therefore the blocks of S form a path as in Fig. 7. Suppose that each network S_{i} is strongly planar. Then, clearly, $S \cup a b$ is planar as well. Hence the fact that S is cylindrical implies that at least one of the networks S_{i} is itself a cylindrical network.

Suppose that the network S_{j} is cylindrical. Then, by Kuratowski's theorem, adding the (new) edge $a_{j} b_{j}$ to S_{j}, the graph $S_{j} \cup a_{j} b_{j}$ contains a K_{5}-subdivision $T K_{5}^{\prime}$. Clearly, the edge $a_{j} b_{j}$ is a side of this $T K_{5}^{\prime}$. Now replace the edge $a_{j} b_{j}$ by a more complex side component: $G \backslash \operatorname{Int}\left(S_{j}\right)$, thus transforming $T K_{5}^{\prime}$ into a new K_{5}-subdivision in G, denoted by $T K_{5}^{\prime \prime}$ to avoid confusion.

Since G is toroidal and the side component $G \backslash \operatorname{Int}\left(S_{j}\right)$ of $T K_{5}^{\prime \prime}$ is cylindrical, all the other side components of $T K_{5}^{\prime \prime}$ in G must be strongly planar networks by Proposition 3(ii). But these are precisely the side components of $T K_{5}^{\prime}$, except one provided by $a_{j} b_{j}$. This concludes the proof.

Proposition 5. Any graph G in the class \mathscr{T}_{C} of toroidal cores is non-planar, 2-connected, $K_{3,3}$-free, and toroidal.
Proof. Recall that $\mathscr{T}_{\mathrm{C}}=K_{5}+M+M^{*}+\mathscr{H}$, where \mathscr{H} denotes the class of toroidal crowns. Certainly, all those graphs are non-planar, 2-connected, and $K_{3,3}$-free. Fig. 1 shows that K_{5} is toroidal. It also shows how to replace an edge of K_{5} in this embedding by a cylindrical network, in that case a $K_{3,3} \backslash e$-network. It is clear that any other cylindrical network, for example a $K_{5} \backslash e$-network can be embedded in this way on the torus, and in fact that several cylindrical networks can also be embedded in series. Thus the graph M^{*} and the toroidal crowns are toroidal. There remains to see that the graph M is toroidal. This fact is illustrated in Fig. 8, where the torus is represented as a rectangle with opposite sides identified.

Fig. 8. Embedding of the graph M on the torus.

Proof of Theorem 2. Since all graphs in \mathscr{T}_{C} are non-planar, 2-connected, $K_{3,3}$-free, and toroidal, by Proposition 5, it is clear that any graph G arising from a $\mathscr{T}_{C} \uparrow \mathscr{N}_{\mathrm{P}}$-structure $\left(G, G_{0}\right)$ is in \mathscr{T}.

Conversely, we have to show that any graph G in \mathscr{T} admits a representation as a core graph G_{0} in \mathscr{T}_{C}, where the edges are replaced by strongly planar networks and that moreover the core G_{0} is uniquely determined by G. So let G be a 2-connected non-planar $K_{3,3}$-free toroidal graph. By Kuratowski's theorem, G contains a K_{5}-subdivision $T K_{5}$ and Proposition 3 can be applied. Clearly, the sets of graphs corresponding to the cases (i), (ii) and (iii) of this proposition are mutually disjoint.

In case (i), the core is K_{5} itself and the side components are strongly planar networks. The unicity of the core follows from the fact that the corners of the $T K_{5}$ are uniquely determined, by Corollary 1. Case (iii) is similar: the core is an M-graph and it is easily seen that the set of corners of the M-graph-subdivision is uniquely defined as in Corollary 1.

In case (ii), there is a unique cylindrical side component S of $T K_{5}$ in G. Notice that $G \backslash \operatorname{Int}(S)$ itself is a cylindrical network of the form $K_{5} \backslash e \uparrow \mathscr{N}_{\mathrm{P}}$. Applying Proposition 4, the block-cutpoint decomposition of S forms a path (series composition) of networks $S_{1}, S_{2}, \ldots, S_{k}, k \geqslant 1$, as in Fig. 7, and at least one of the networks S_{i} is cylindrical. In this path we can regroup maximal series of consecutive strongly planar networks into single strongly planar networks so that at most one strongly planar network N^{\prime} is separating two cylindrical networks in the resulting path, and the poles of the strongly planar network N^{\prime} are uniquely defined by maximality. By Proposition 4 , the cylindrical networks in the path are of the form $K_{5} \backslash e \uparrow \mathcal{N}_{\mathrm{P}}$ and the corners are uniquely defined with respect to the corresponding K_{5}-subdivision $T K_{5}^{\prime \prime}$ in G. Therefore, globally taken, the unique set of corners of G completely defines a toroidal core G_{0}, where G_{0} is either a M^{*}-graph or a toroidal crown so that $G \in M^{*} \uparrow \mathscr{N}_{\mathrm{P}}$ or $G \in \mathscr{H} \uparrow \mathscr{N}_{\mathrm{P}}$.

Euler's formula for connected graphs on an orientable surface of genus g (see, for example [19]), $n+f-m=2-2 g$, where f is the number of faces, implies that a connected planar graph with $n \geqslant 3$ vertices can have at most $3 n-6$ edges. Let us state this for 2-connected planar graphs with n vertices and m edges as follows:

$$
m \leqslant \begin{cases}3 n-5 & \text { if } n=2 \tag{5}\\ 3 n-6 & \text { if } n \geqslant 3\end{cases}
$$

In fact, if $n=2, m=3 n-5=1$.
Euler's formula also implies that a connected toroidal graph G with n vertices can have at most $3 n$ edges. However, an arbitrary $K_{3,3}$-free graph G is known to have at most $3 n-5$ edges (see [1]). The following proposition shows that toroidal graphs with no $K_{3,3}$-subdivisions satisfy a stronger relation, which is analogous to planar graphs. An analogous result for projective-planar graphs can be found in [9]. Also note that Corollary 8.3 .5 of [6] implies that graphs with no K_{5}-minors can have at most $3 n-6$ edges.

Proposition 6. The number m of edges of a non-planar $K_{3,3}$-free toroidal n-vertex graph G satisfies $m \leqslant 3 n-5$ if $n=5$ or 8 , and

$$
\begin{equation*}
m \leqslant 3 n-6 \text { if } n \geqslant 6 \text { and } n \neq 8 \tag{6}
\end{equation*}
$$

Proof. It is sufficient to prove the result when G is 2-connected, so that G is in \mathscr{T} and Proposition 3 can be applied. If G belongs to the cases (i) or (ii), each side component S_{i} of $T K_{5}$ in $G, i=1,2, \ldots, 10$, satisfies condition (5) with
$n=n_{i}$, the number of vertices, and $m=m_{i}$, the number of edges of $S_{i}, i=1,2, \ldots, 10$. Since each corner of $T K_{5}$ is in precisely 4 side components, we have $\sum_{i=1}^{10} n_{i}=n+15$ and we obtain, by summing these 10 inequalities,

$$
m=\sum_{i=1}^{10} m_{i} \leqslant \begin{cases}3 \sum_{i=1}^{10} n_{i}-50=3(n+15)-50=3 n-5 & \text { if } n=5, \\ 3 \sum_{i=1}^{10} n_{i}-51=3(n+15)-51=3 n-6 & \text { if } n \geqslant 6,\end{cases}
$$

since $n=5$ iff $n_{i}=2, i=1,2, \ldots, 10$, and $n \geqslant 6$ if and only if at least one $n_{j} \geqslant 3, j=1,2, \ldots, 10$.
Similarly, in case (iii), each side component S_{i} of $T M$ in $G, i=1,2, \ldots, 19$, satisfies the condition (5) with $n=n_{i}$, the number of vertices, and $m=m_{i}$, the number of edges of $S_{i}, i=1,2, \ldots, 19$. Since 2 vertices of $T M$ are in precisely 7 side components, 6 vertices of $T M$ are in precisely 4 side components, and all the other vertices of G are in a unique side component, we have $\sum_{i=1}^{19} n_{i}=n+30$ and we obtain, by summing these 19 inequalities,

$$
m=\sum_{i=1}^{19} m_{i} \leqslant \begin{cases}3 \sum_{i=1}^{19} n_{i}-95=3(n+30)-95=3 n-5 & \text { if } n=8 \\ 3 \sum_{i=1}^{19} n_{i}-96=3(n+30)-96=3 n-6 & \text { if } n \geqslant 9\end{cases}
$$

since $n=8$ iff $n_{i}=2, i=1,2, \ldots, 19$, and $n \geqslant 9$ if and only if at least one $n_{j} \geqslant 3, j=1,2, \ldots, 19$.

4. Counting labelled $K_{3,3}$-subdivision-free toroidal graphs

Now let us consider the question of the labelled enumeration of toroidal graphs with no $K_{3,3}$-subdivisions according to the numbers of vertices and edges. First, we review some basic notions and terminology of labelled enumeration together with the counting methods and technique used in [9,21]. The reader should have some familiarity with exponential generating functions and their operations (addition, multiplication and composition). For example, see [3,14,18,22].

By a labelled graph, we mean a simple graph $G=(V, E)$ where the set of vertices $V=V(G)$ is itself the set of labels and the labelling function is the identity function. V is called the underlying set of G. An edge e of G then consists of an unordered pair $e=u v$ of elements of V and $E=E(G)$ denotes the set of edges of G. If W is another set and $\sigma: V \underset{\rightarrow}{\rightarrow} W$ is a bijection, then any graph $G=(V, E)$ on V, can be transformed into a graph $G^{\prime}=\sigma(G)=(W, \sigma(E))$, where $\sigma(E)=\{\sigma(e)=\sigma(u) \sigma(v) \mid e \in E\}$. We say that G^{\prime} is obtained from G by vertex relabelling and that σ is a graph isomorphism $G \stackrel{\sim}{\rightarrow} G^{\prime}$. An unlabelled graph is then seen as an isomorphism class γ of labelled graphs. We write $\gamma=\gamma(G)$ if γ is the isomorphism class of G. By the number of ways to label an unlabelled graph $\gamma(G)$, where $G=(V, E)$, we mean the number of distinct graphs G^{\prime} on the underlying set V which are isomorphic to G. Recall that this number is given by $n!/|\operatorname{Aut}(G)|$, where $n=|V|$ and $\operatorname{Aut}(G)$ denotes the automorphism group of G.

A species of graphs is a class of labelled graphs which is closed under vertex relabellings. Thus any class \mathscr{G} of unlabelled graphs gives rise to a species, also denoted by \mathscr{G}, by taking the set union of the isomorphism classes in \mathscr{G}. For any species \mathscr{G} of graphs, we introduce its mixed (exponential) generating function $\mathscr{G}(x, y)$ as the formal power series

$$
\begin{equation*}
\mathscr{G}(x, y)=\sum_{n \geqslant 0} g_{n}(y) \frac{x^{n}}{n!} \quad \text { with } g_{n}(y)=\sum_{m \geqslant 0} g_{n, m} y^{m}, \tag{7}
\end{equation*}
$$

where $g_{n, m}$ is the number of graphs in \mathscr{G} with m edges over a given set of vertices V_{n} of size n. Here y is a formal variable which acts as an edge counter. For example, for the species $\mathscr{G}=K=\left\{K_{n}\right\}_{n} \geqslant 0$ of complete graphs, we have

$$
\begin{equation*}
K(x, y)=\sum_{n \geqslant 0} y^{\binom{n}{2}} x^{n} / n!, \tag{8}
\end{equation*}
$$

while for the species $\mathscr{G}=\mathscr{G}_{a}$ of all simple graphs, we have

$$
\begin{equation*}
\mathscr{G}_{a}(x, y)=K(x, 1+y) . \tag{9}
\end{equation*}
$$

A species of graphs is molecular if it contains only one isomorphism class. For a molecular species $\gamma=\gamma(G)$, where G has n vertices and m edges, we have $\gamma(x, y)=y^{m} n!/(|\operatorname{Aut}(G)|) x^{n} / n!=y^{m} x^{n} /|\operatorname{Aut}(G)|$. For example,

$$
\begin{equation*}
K_{5}(x, y)=\frac{x^{5} y^{10}}{5!} \tag{10}
\end{equation*}
$$

Also, for the graphs M and M^{*} described in Section 2, we have

$$
\begin{equation*}
M(x, y)=280 \frac{x^{8} y^{19}}{8!}, \quad M^{*}(x, y)=280 \frac{x^{8} y^{18}}{8!} \tag{11}
\end{equation*}
$$

since $|\operatorname{Aut}(M)|=\left|\operatorname{Aut}\left(M^{*}\right)\right|=144$.
For the enumeration of networks, we consider that the poles 0 and 1 are not labelled, or, in other words, that only the internal vertices form the underlying set. Hence the mixed generating function of a class (or species) \mathscr{N} of networks is defined by

$$
\begin{equation*}
\mathscr{N}(x, y)=\sum_{n \geqslant 0} v_{n}(y) \frac{x^{n}}{n!} \quad \text { with } v_{n}(y)=\sum_{m \geqslant 0} v_{n, m} y^{m} \tag{12}
\end{equation*}
$$

where $v_{n, m}$ is the number of networks in \mathscr{N} with m edges over a given set of size n, V_{n}, of internal vertices. For example, we have

$$
\begin{equation*}
\left(K_{5} \backslash e\right)(x, y)=\frac{x^{3} y^{9}}{3!} \tag{13}
\end{equation*}
$$

Lemma 1 (Gagarin et al. [9], Walsh [21]). Let \mathscr{G} be a species of graphs and \mathscr{N} be a symmetric species of networks. Then the following generating function identity holds:

$$
\begin{equation*}
(\mathscr{G} \uparrow \mathscr{N})(x, y)=\mathscr{G}(x, \mathcal{N}(x, y)) \tag{14}
\end{equation*}
$$

As a simple example, Eq. (9) reflects the fact that $\mathscr{G}_{\mathrm{a}}=K \uparrow(1+y \mathbb{1})$. We can now concentrate on the labelled enumeration of $K_{3,3}$-free toroidal graphs. By Theorem 2, we have the following corollary.

Proposition 7. The mixed generating function $\mathscr{T}(x, y)$ of labelled 2-connected non-planar $K_{3,3}$-free toroidal graphs is given by

$$
\begin{equation*}
\mathscr{T}(x, y)=\left(\mathscr{T}_{\mathrm{C}} \uparrow \mathscr{N}_{\mathrm{P}}\right)(x, y)=\mathscr{T}_{\mathrm{C}}\left(x, \mathscr{N}_{\mathrm{P}}(x, y)\right) \tag{15}
\end{equation*}
$$

where \mathscr{T}_{C} denotes the species of toroidal cores (see Definition 5).
Let P denote the species of 2-connected planar graphs. Then the mixed generating function of \mathscr{N}_{P}, the associated class of strongly planar networks, is given by

$$
\begin{equation*}
\mathscr{N}_{\mathrm{P}}(x, y)=(1+y) \frac{2}{x^{2}} \frac{\partial}{\partial y} P(x, y)-1 \tag{16}
\end{equation*}
$$

(see [9,21]). Methods for computing the generating function $P(x, y)$ of labelled 2-connected planar graphs are described in [2,4]. Formula (16) can then be used to compute $\mathscr{N}_{\mathrm{P}}(x, y)$.

Recall that $\mathscr{T}_{\mathrm{C}}=K_{5}+M+M^{*}+\mathscr{H}$, where \mathscr{H} denotes the class of toroidal crowns. There remains only to compute the mixed generating function $\mathscr{H}(x, y)$ for toroidal crowns. This will be done using matching polynomials. Recall that a matching μ of a finite graph G is a set of disjoint edges of G. We define the matching polynomial of G as

$$
\begin{equation*}
M_{G}(y)=\sum_{\mu \in \mathscr{M}(G)} y^{|\mu|} \tag{17}
\end{equation*}
$$

where $\mathscr{M}(G)$ denotes the set of matchings of G. In particular, the matching polynomials $U_{n}(y)$ and $T_{n}(y)$ for paths and cycles of size n are well known (see [13]). They are closely related to the Chebyshev polynomials. To be precise, let P_{n} denote the path graph (V, E) with $V=[n]=\{1,2, \ldots, n\}$ and $E=\{\{i, i+1\} \mid i=1,2, \ldots, n-1\}$ and C_{n} denote the cycle graph with $V=[n]$ and $E=\{\{i, i+1(\bmod n)\} \mid i=1,2, \ldots, n\}$. Then we have

$$
\begin{equation*}
U_{n}(y)=\sum_{\mu \in \mathscr{M}\left(P_{n}\right)} y^{|\mu|}, \quad T_{n}(y)=\sum_{\mu \in \mathscr{M}\left(C_{n}\right)} y^{|\mu|} \tag{18}
\end{equation*}
$$

Table 1
The number t_{n} (resp. i_{n}) of labelled non-planar 2-connected $K_{3,3}$-free toroidal (resp. and irreducible) graphs having n vertices

n	t_{n}	i_{n}
5	1	1
6	120	0
7	10920	420
8	989520	37520
9	99897840	3656520
10	11940037200	454406400
11	1737017325120	67651907400
12	307410206405280	11713973686800
13	64915089945797520	2309360318565300
14	15941442348672800960	509886615053415600
15	4446392119411980978240	124470953623133617500
16	1382470831306742435905920	33253861507512510664800
17	472436578501629382684767360	9642802738009988846098800
18	175569440215502279529214410240	3014293919820242935601325600
19	70373115034109453975811430602240	1009949253303428292707750898000
20	30226304060184007557277939796259840	360931928359726264215290579964000

The dichotomy caused by the membership of the edge $\{n-1, n\}$ in the matchings of the path P_{n} leads to the recurrence relation

$$
\begin{equation*}
U_{n}(y)=y U_{n-2}(y)+U_{n-1}(y) \tag{19}
\end{equation*}
$$

for $n \geqslant 2$, with $U_{0}(y)=U_{1}(y)=1$. It follows that the ordinary generating function of the matching polynomials $U_{n}(y)$ is rational. In fact, it is easily seen that

$$
\begin{equation*}
\sum_{n \geqslant 0} U_{n}(y) x^{n}=\frac{1}{1-x-y x^{2}} \tag{20}
\end{equation*}
$$

Now, the dichotomy caused by the membership of the edge $\{1, n\}$ in the matchings of the cycle C_{n} leads to the relation

$$
\begin{equation*}
T_{n}(y)=y U_{n-2}(y)+U_{n}(y) \tag{21}
\end{equation*}
$$

for $n \geqslant 3$. It is then a simple matter, using (20) and (21) to compute their ordinary generating function, denoted by $G(x, y)$. We find

$$
\begin{equation*}
G(x, y)=\sum_{n \geqslant 3} T_{n}(y) x^{n}=\frac{x^{3}\left(1+3 y+y x+2 y^{2} x\right)}{1-x-y x^{2}} \tag{22}
\end{equation*}
$$

In fact, we also need to consider the homogeneous matching polynomials

$$
\begin{equation*}
T_{n}(y, z)=z^{n} T_{n}\left(\frac{y}{z}\right)=\sum_{\mu \in \mathscr{M}\left(C_{n}\right)} y^{|\mu|} z^{n-|\mu|} \tag{23}
\end{equation*}
$$

where the variable z marks the edges which are not selected in the matchings, whose generating function $G(x, y, z)=$ $\sum_{n \geqslant 3} T_{n}(y, z) x^{n}$ is given by

$$
\begin{equation*}
G(x, y, z)=G\left(x z, \frac{y}{z}\right)=\frac{x^{3} z^{2}\left(z+3 y+x y z+2 x y^{2}\right)}{1-x z-x^{2} y z} \tag{24}
\end{equation*}
$$

We now introduce the species C^{m} of pairs (c, μ), where c is a cycle graph of length $n \geqslant 3$ and μ is a matching of c, with weight $y^{|\mu|} z^{n-|\mu|}$. Since there are $(n-1)!/ 2$ non-oriented cycles on a set of size $n \geqslant 3$, and all these cycles admit

Table 2
The number $t_{n, m}$ of labelled non-planar 2-connected $K_{3,3}$-free toroidal graphs having n vertices and m edges

n	m	$t_{n, m}$	n	m	$t_{n, m}$	n	m	$t_{n, m}$
5	10	1	11	16	1664863200	13	18	1261490630400
6	11	60	11	17	17556739200	13	19	21330659750400
6	12	60	11	18	78956539200	13	20	159781461840000
7	12	2310	11	19	202084621200	13	21	713882464495200
7	13	5250	11	20	334016949420	13	22	2168012582255520
7	14	3150	11	21	387916512060	13	23	4843734946530480
7	15	210	11	22	336903576240	13	24	8380128998022210
8	13	73920	11	23	223779124800	13	25	11537956984129290
8	14	283920	11	24	109666533900	13	26	12710849422805820
8	15	380240	11	25	36500148300	13	27	11091197779962300
8	16	205520	11	26	7300200600	13	28	7523040609294210
8	17	40320	11	27	671517000	13	29	3868223230962090
8	18	5320	12	17	45664819200	13	30	1454441069881800
8	19	280	12	18	617512896000	13	31	376789239426600
9	14	2162160	12	19	3642195110400	13	32	60029345376000
9	15	12383280	12	20	12576897194400	13	33	4429660435200
9	16	27592740	12	21	28943910959040	14	19	35321737651200
9	17	30616740	12	22	48151723490640	14	20	732123289497600
9	18	18419940	12	23	61179019743600	14	21	6797952466905600
9	19	6706980	12	24	60949737367200	14	22	38137563765100800
9	20	1771560	12	25	47362199346000	14	23	147357768378300480
9	21	244440	12	26	27882539962200	14	24	423704585721296880
10	15	60540480	12	27	11911924840200	14	25	952194383913853080
10	16	481572000	12	28	3475786545000	14	26	1719165782299705740
10	17	1578301200	12	29	620188569000	14	27	2519330273617857700
10	18	2810039400	12	30	50905562400	14	28	2992115301780284680
10	19	3055603320				14	29	2857231696936256640
10	20	2220031800				14	30	2168091732460633980
10	21	1170779400				14	31	1286490621084248580
10	22	447867000				14	32	583196381484116400
10	23	104781600				14	33	194805099201913200
10	24	10521000				14	34	45144355587130800
						14	35	6478057100314800
						14	36	433347847732800

the same homogeneous matching polynomial $T_{n}(y, z)$, the generating function of labelled C^{m}-structures is

$$
\begin{align*}
C^{\mathrm{m}}(x, y, z) & =\sum_{n \geqslant 3} \frac{(n-1)!}{2} T_{n}(y, z) \frac{x^{n}}{n!} \\
& =\frac{1}{2} \sum_{n \geqslant 3} T_{n}(y, z) \frac{x^{n}}{n} \\
& =\frac{1}{2} \int_{0}^{x} \frac{1}{t} G(t, y, z) \mathrm{d} t \\
& =-\frac{2 x z+2 x^{2} z y+x^{2} z^{2}+2 \ln \left(1-x z-x^{2} y z\right)}{4} . \tag{25}
\end{align*}
$$

Proposition 8. The mixed generating series $\mathscr{H}(x, y)$ of toroidal crowns is given by

$$
\begin{equation*}
\mathscr{H}(x, y)=-\frac{12 x^{4} y^{9}+12 x^{5} y^{10}+x^{8} y^{18}+72 \ln \left(1-x^{4} y^{9} / 6-x^{5} y^{10} / 6\right)}{144} . \tag{26}
\end{equation*}
$$

Table 3
The number $i_{n, m}$ of labelled non-planar toroidal 2-connected $K_{3,3}$-free graphs with no vertex of degree 2 , having n vertices and m edges

n	m	$i_{n, m}$	n	m	$i_{n, m}$	n	m	$i_{n, m}$
5	10	1	12	21	2025777600	15	25	7205830632000
7	14	210	12	22	44347564800	15	26	923081887728000
7	15	210	12	23	321609657600	15	27	21992072494392000
8	15	3360	12	24	1163345198400	15	28	226161061676550000
8	16	13440	12	25	2451538504800	15	29	1307818406288394000
8	17	15120	12	26	3217869547200	15	30	4820304955001936400
8	18	5320	12	27	2679196027200	15	31	12127842733266760500
8	19	280	12	28	1380518785800	15	32	21656100829701838500
9	16	15120	12	29	402617061000	15	33	28004986553485441500
9	17	257040	12	30	50905562400	15	34	26380390080138944850
9	18	948780	13	22	5772967200	15	35	17958176171082897750
9	19	1377180	13	23	462940077600	15	36	8617081622936787000
9	20	861840	13	24	7019020008000	15	37	2767688443795275000
9	21	196560	13	25	45947694592800	15	38	534515180727528000
10	18	2116800	13	26	167149913931000	15	39	46965224818512000
10	19	23511600	13	27	378523016071200	16	27	5038469339904000
10	20	85453200	13	28	563775314152050	16	28	277876008393984000
10	21	145681200	13	29	564008061667050	16	29	5018911980001920000
10	22	129124800	13	30	376553969391600	16	30	45918223239784896000
10	23	57997800	13	31	161308779231600	16	31	254992509548208432000
10	24	10521000	13	32	40176176040000	16	32	945457303873642560000
11	19	6652800	13	33	4429660435200	16	33	2474573372205558624000
11	20	301039200	14	24	2746116172800	16	34	4727240139887673408000
11	21	2559249000	14	25	100222343020800	16	35	6716649016178905003200
11	22	9235749600	14	26	1207927570449600	16	36	7153242188461303334400
11	23	17763669000	14	27	7362531794217600	16	37	5696806114991150359200
11	24	19766508300	14	28	26961446454742800	16	38	3346766076216793230000
11	25	12824865900	14	29	64693543016302200	16	39	1408983208995652290000
11	26	4522656600	14	30	106495506315198000	16	40	402452373740088672000
11	27	671517000	14	31	122840238008287800	16	41	69902581386429792000
			14	32	99468461823330600	16	42	5576572329584256000
			14	33	55515218486527800			
			14	34	20373871298180400			
			14	35	4431553979252400			
			14	36	433347847732800			

Proof. Notice that in a toroidal crown, the unsubstituted edges are not adjacent, by definition, and hence form a matching of the underlying cycle, while the substituted edges are replaced by $K_{5} \backslash e$-networks. We can thus write

$$
\begin{equation*}
\mathscr{H}=C^{\mathrm{m}} \uparrow_{z}\left(K_{5} \backslash e\right), \tag{27}
\end{equation*}
$$

where the notation \uparrow_{z} means that only the edges marked by z are replaced by $K_{5} \backslash e$-networks. Hence we have, by analogy with Lemma 1,

$$
\begin{equation*}
\mathscr{H}(x, y)=C^{\mathrm{m}}\left(x, y,\left(K_{5} \backslash e\right)(x, y)\right), \tag{28}
\end{equation*}
$$

which implies (26) using (25) and (13).
A substitution of the generating function $\mathscr{N}_{\mathrm{P}}(x, y)$ (16) counting the strongly planar networks for the variable y in (10), (11) and (26) gives the generating function for labelled 2 -connected non-planar toroidal graphs with no $K_{3,3}$-subdivisions, i.e.

$$
\begin{equation*}
\mathscr{T}(x, y)=K_{5}\left(x, \mathscr{N}_{\mathrm{P}}(x, y)\right)+M\left(x, \mathscr{N}_{\mathrm{P}}(x, y)\right)+M^{*}\left(x, \mathscr{N}_{\mathrm{P}}(x, y)\right)+\mathscr{H}\left(x, \mathscr{N}_{\mathrm{P}}(x, y)\right) . \tag{29}
\end{equation*}
$$

Numerical results are presented in Tables 1 and 2，where

$$
\mathscr{T}(x, y)=\sum_{n \geqslant 5} \sum_{m} t_{n, m} x^{n} y^{m} / n!
$$

and $t_{n}=\sum_{m} t_{n, m}$ count labelled graphs in \mathscr{T} ．Notice that the term $K_{5}\left(x, \mathscr{N}_{\mathrm{P}}(x, y)\right)$ in（29）also enumerates non－planar 2－connected $K_{3,3}$－free projective－planar graphs and that corresponding tables are given in［9］．
The homeomorphically irreducible graphs in \mathscr{T} ，i．e．the graphs having no vertex of degree two，can be counted by using several methods described in detail in Section 4 of［9］．We used the approach of Proposition 8 of［9］to obtain the numerical data presented in Tables 1 and 3 for labelled homeomorphically irreducible graphs in \mathscr{T} ．

5．Concluding remarks

Notice that graphs with six or more vertices satisfying Proposition 3 are not 3－connected．Therefore a 3－connected non－planar toroidal graph different from K_{5} must contain a $K_{3,3}$－subdivision，a result also obtained by Asano［1］．

Theorems 1 and 2 imply that a projective－planar graph with no $K_{3,3}$－subdivisions is toroidal．However an arbitrary projective－planar graph can be non－toroidal．For an example，see［16，p．368］．

The characterization of Theorem 2 can be used to detect if a graph is toroidal and $K_{3,3}$－free in linear time．The implementation of this algorithm can be derived from［8］by using a breadth－first or depth－first search technique for the decomposition and by doing a linear－time planarity testing．The linear－time complexity follows from the linear－time complexity of the decomposition and from the fact that each vertex of the initial graph can appear in at most seven different components．

References

［1］T．Asano，An approach to the subgraph homeomorphism problem，Theoret．Comput．Sci． 38 （1985）249－267．
［2］E．A．Bender，Zh．Gao，N．C．Wormald，The number of labeled 2－connected planar graphs，Electron．J．Combin． 9 （2002）Research Paper 43， 13pp（electronic）．
［3］F．Bergeron，G．Labelle，P．Leroux，Combinatorial Species and Tree－like Structures，Cambridge University Press，Cambridge， 1998.
［4］M．Bodirsky，C．Gröpl，M．Kang，Generating labeled planar graphs uniformly at random，in：J．C．M．Baeten，J．K．Lenstra，J．Parrow， G．J．Woeginger（Eds．），Automata，Languages and Programming，Lecture Notes in Computer Science，vol．2719，Springer，Berlin，2003， pp．1095－1107．
［5］J．A．Bondy，U．S．R．Murty，Graph Theory with Applications，Elsevier，New York， 1976.
［6］R．Diestel，Graph Theory，second ed．，Springer，Berlin， 2000.
［7］M．Fellows，P．Kaschube，Searching for $K_{3,3}$ in linear time，Linear and Multilinear Algebra 29 （1991）279－290．
［8］A．Gagarin，W．Kocay，Embedding graphs containing K_{5}－subdivisions，Ars Combin． 64 （2002）33－49．
［9］A．Gagarin，G．Labelle，P．Leroux，The structure and labelled enumeration of $K_{3,3}$－subdivision－free projective－planar graphs，Pure Math．Appl． 16 （3）（2005）267－286，preprint available at：〈http：／／arxiv．org／abs／math．CO／0406140〉．
［10］A．Gagarin，G．Labelle，P．Leroux，Counting unlabelled toroidal graphs with no $K_{3,3}$－subdivisions，Adv．in Appl．Math．39（1）（2007）51－75， preprint available at：〈http：／／arxiv．org／abs／math．CO／0509004〉．
［11］A．Gagarin，W．Myrvold，J．Chambers，Forbidden minors and subdivisions for toroidal graphs with no $K_{3,3}$＇s，Proceedings of the seventh International Colloquium on Graph Theory（ICGT＇05），Electron．Notes Discrete Math． 22 （2005）151－156．
［12］A．Gagarin，W．Myrvold，J．Chambers，The obstructions for toroidal graphs with no $K_{3,3}$＇s，Discrete Math．，to appear，preprint available at：〈http：／／arxiv．org／abs／math．CO／0411488〉．
［13］C．D．Godsil，Algebraic Combinatorics，Chapman \＆Hall，New York， 1993.
［14］I．P．Goulden，D．M．Jackson，Combinatorial Enumeration，Wiley，New York， 1983.
［16］W．Kocay，D．L．Kreher，Graphs，Algorithms and Optimization，Chapman \＆Hall，CRC，Boca Raton，FL， 2005.
［17］K．Kuratowski，Sur le problème des courbes gauches en topologie，Fund．Math． 15 （1930）271－283．
［18］R．P．Stanley，Enumerative Combinatorics，vol．1，Wadsworth Brooks，Cole，Pacific Grove，CA，1986．Reedited in：Cambridge Studies in Advanced Mathematics，vol．49，Cambridge University Press，Cambridge， 1997.
［19］C．Thomassen，The Jordan－Schönflies theorem and the classification of surfaces，Amer．Math．Monthly 99 （2）（1992）116－131．
［20］K．Wagner，Über eine Erweiterung eines Satzes von Kuratowski，Deutsche Math． 2 （1937）280－285（in German）．
［21］T．R．S．Walsh，Counting labelled three－connected and homeomorphically irreducible two－connected graphs，J．Combin．Theory Ser．B 32 （1982） $1-11$ ．
［22］H．S．Wilf，Generatingfunctionology，Academic Press，New York， 1990.

[^0]: 4. With the partial support of NSERC (Canada).

 E-mail addresses: gagarin@math.uqam.ca (A. Gagarin), labelle.gilbert@uqam.ca (G. Labelle), leroux.pierre@uqam.ca, leroux @lacim.uqam.ca (P. Leroux).

