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Abstract

We characterize the solution set S of real linear systems Ax = b by a set of inequalities if b lies between
some given bounds b; 4b and if the n × n coe5cient matrix A varies similarly between two bounds A and
4A. In addition, we restrict A to a particular class of matrices, for instance the class of the symmetric, the
skew-symmetric, the persymmetric, the Toeplitz, and the Hankel matrices, respectively. In this way, we gen-
eralize the famous Oettli–Prager criterion (Numer. Math. 6 (1964) 405), results by Hart>el (Numer. Math. 35
(1980) 355) and the contents of the papers (in: R.B. Kearfott, V. Kreinovich (Eds.), Applications of Interval
Computations, Kluwer, Boston, MA, 1996, pp. 61–79) and (SIAM J. Matrix Anal. Appl. 18 (1997) 693).
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1. Introduction

When solving n × n linear systems Ax = b on a computer, the coe5cients of the matrix A and
the right-hand side b are not always representable by machine numbers. Therefore, one often solves
linear systems Ãx= b̃ with input data Ã; b̃ which diGer slightly from the original ones, i.e., with Ã
and b̃ from some interval quantities [A] and [b], respectively, which also contain A; b. Sometimes
one is also interested in the solutions of linear systems in which, in advance, the input data A and b
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are containing uncertainties in the coe5cients. In this case, they normally are also limited to some
n × n interval matrix [A] and to some interval vector [b] with n components. Therefore, it is an
interesting question to discuss how the set

S := {x∈Rn |Ax = b; A∈ [A]; b∈ [b]} (1)

looks like provided that [A] does not contain a singular matrix. This question was answered in [5,8],
e.g., where it was shown that the intersection of S with any orthant O of Rn can be described by a
set of linear inequalities which characterize a compact, convex polyhedron in O. The union of the
corresponding polyhedrons of all orthants forms the set S which needs no longer to be convex but
which remains a compact polyhedron and is therefore a connected set. This result was generalized
in [2,3], where only linear systems with symmetric matrices A∈ [A] were considered. It was shown
that in each orthant O the corresponding set

Ssym := {x∈Rn |Ax = b; A= AT ∈ [A]; b∈ [b]} ⊆ S (2)

is the intersection of S with compact sets whose boundaries are quadrics, i.e., Ssym ∩O is described
by a set of linear and quadratic inequalities. A similar result holds for the skew-symmetric matrices
from [A] and for the persymmetric ones, respectively, as was proved in [3].

A. Neumaier already drew attention to Ssym in a letter to Rohn on 23rd December, 1985 [9].
Bounds for Ssym can be obtained by methods in [1,6]; see also [10], where linear dependencies of
the entries in A, b are allowed.

In [4] it was shown, that each projection of the solution set of linear systems Ax=b with A∈ [A],
b∈ [b], on any coordinate subspace of Rn can be described by means of algebraic inequalities if the
coe5cients of A and b depend linearly on at most >nitely many additional parameters, i.e.,

aij = aij;0 +
m∑
�=1

aij;�u� and bi = bi;0 +
m∑
�=1

bi;�u�; (3)

where aij;�; bi;�; �= 0; : : : ; m, are real constants and where u� ∈R; �= 1; : : : m, are real parameters
which vary in given compact intervals [u]� = [u�; 4u�]. It was shown that even the converse holds,
i.e., that every >nite union of subsets each of which is described by algebraic inequalities can be
represented as a projection of the solution set of linear equations Ax = b of the above-mentioned
form. This result was proved without presenting the constructive process explicitly which leads to
the inequalities.

In the present paper, we will >ll this gap. To this end we derive a central theorem in Section
3.1 which is basic for all the subsequent considerations and which resembles the Fourier-Motzkin
elimination (see [11], e.g.). It shows how parameters in a set of inequalities can be removed suc-
cessively. This result can be applied to general matrices, to symmetric matrices, skew-symmetric
matrices, persymmetric matrices, Hankel and Toeplitz matrices contained in a given interval matrix
[A] in order to characterize the corresponding solution set by a set of inequalities. For the symmetric,
persymmetric, and skew-symmetric matrices the starting point diGers now from that in [2,1]; this
time, it is more elementary. We also will outline the particularities which occur, when describing
these solution sets. Thus, it is interesting to see that for particular solution sets the degree of the
polynomials in the algebraic inequalities can be greater than two and that these inequalities seem to
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change in a >xed orthant O in contrast to the case S ∩ O and Ssym ∩ O. We will address to these
problems in Section 3.

2. Notations

By Rn; Rn×n; IR; IRn; IRn×n we denote the set of real vectors with n components, the set
of real n × n matrices, the set of intervals, the set of interval vectors with n components and the
set of n × n interval matrices, respectively. By interval we always mean a real compact interval.
Interval vectors and interval matrices are vectors and matrices, respectively, with interval entries.
As usual, we denote the lower and upper bound of an interval [a] by a and 4a, respectively. Simi-
larly, we write [A] = [A; 4A] = ([a]ij) = ([aij; 4aij])∈ IRn×n, [b] = ([b]i) = ([bi; 4bi]∈ IRn, A= (aij)∈Rn×n
and b = (bi)∈Rn without further reference. We call [A]∈ IRn×n regular if it contains no singular
matrix A∈Rn×n.

We denote any orthant of Rn by O and the >rst orthant by O1. As usual, we call A∈Rn×n
persymmetric if aij = akl for k = n+ 1 − j, l= n+ 1 − i, i.e., if it is symmetric with respect to the
northeast–southwest diagonal, we call it a Hankel matrix if aij = akl for i + j = k + l, i.e., if its
entries are constant along each northeast–southwest diagonal, and a Toeplitz matrix if aij = akl for
i − j = k − l, i.e., if its entries are constant along each northwest–southeast diagonal for all indices
i; j; k; l∈{1; : : : ; n}. A nonsingular matrix A∈Rn×n is termed an M matrix if aij6 0 for all i 
= j
and if all the entries of the inverse A−1 are nonnegative. We >nally de>ne the interval hull of a
non-empty set M ⊆ Rn as the smallest interval vector which contains M .

3. Results

3.1. A central theorem

We start this section with a theorem, which forms the basis for our subsequent considerations.
It contains the constructive process which, for >xed x, is just the Fourier–Motzkin elimination
(cf. [11]) and which leads to the inequalities mentioned in Section 1. In order to motivate the theo-
rem we start by an example which shows how to describe S from (1) in a >xed orthant by means
of inequalities as was done by Hart>el in [5]. For simplicity we restrict ourselves to S1 := S ∩ D
where D := O1. Trivially, S1 is characterized by

S1 = {x∈D | ∃ aij; bi ∈R : (4)–(6) hold};
where

n∑
j=1

aijxj6 bi6
n∑
j=1

aijxj; i = 1; : : : ; n; (4)

aij6 aij6 4aij; i; j = 1; : : : ; n; (5)

bi6 bi6 4bi; i = 1; : : : ; n: (6)
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Those inequalities in (4)–(5) which contain a11 can be rewritten as

b1 −
n∑
j=2

a1jxj6 a11x1; (7)

a116 a11; (8)

a11x16 b1 −
n∑
j=2

a1jxj; (9)

a116 4a11: (10)

Multiply (8) and (10) by x1 and combine each left-hand side of (7), (8) with each right-hand side
of (9), (10) and drop the two trivial inequalities. Then this action results in the two nontrivial
inequalities

b1 −
n∑
j=2

a1jxj6 4a11x1; (11)

a11x16 b1 −
n∑
j=2

a1jxj; (12)

which are supplemented by

the original a11-free inequalities: (13)

Hence

S1 ⊆ S2 := {x∈D | ∃aij (i 
= 1 if i = j); bi ∈R : (11)–(13) hold}:
Since the converse S2 ⊆ S1 is also true (see the proof of the subsequent theorem) one ends up with
S1 = S2, where in S2 the entry a11 is replaced by the bounds a11; 4a11 of the given interval [a]11. It
is obvious that this process can be repeated for the remaining entries aij and bi. One >nally gets the
inequalities in [5] which were derived there in a diGerent manner.

We will generalize this elimination procedure in the subsequent theorem. There we do no longer
distinguish between aij and bi but introduce parameters u�; �=1; : : : ; m, instead. Moreover, we replace
the constants 1 in front of bi and aij in (5) and (6) (which we did not write down, of course) and
the linear expressions xj behind aij in (4) by more general expressions f��(x); x∈D ⊆ Rn, and
the constants aij; 4aij; bi; 4bi by expressions g�(x) which are independent on the parameters u�. For
simplicity we also cancel the inequalities of the form (13) since they remain unchanged in S1 as
well as in S2.

Theorem 1. Let f��, g�, �=1; : : : ; k (¿ 2), �=1; : : : ; m, be real-valued functions of x=(x1; : : : ; xn)T

on some subset D ⊆ Rn. Assume that there is a positive integer k1¡k such that

f�1(x) 
≡ 0 for all �∈{1; : : : ; k}; (14)
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f�1(x)¿ 0 for all x∈D and all �∈{1; : : : ; k}; (15)

for each x∈D there is an index �∗ = �∗(x)∈{1; : : : ; k1} with f�∗1(x)¿ 0

and an index "∗ = "∗(x)∈{k1 + 1; : : : ; k} with f"∗1(x)¿ 0: (16)

For m parameters u1; : : : ; um varying in R and for x varying in D de=ne the sets S1; S2 by

S1 := {x∈D | ∃u� ∈R; � = 1; : : : ; m : (17); (18) hold};
S2 := {x∈D | ∃u� ∈R; � = 2; : : : ; m : (19) holds};

where Inequalities (17), (18) and (19), respectively, are given by

g�(x) +
m∑
�=2

f��(x)u�6f�1(x)u1; � = 1; : : : ; k1; (17)

f"1(x)u16 g"(x) +
m∑
�=2

f"�(x)u�; "= k1 + 1; : : : ; k (18)

and

g�(x)f"1(x) +
m∑
�=2

f��(x)f"1(x)u�6 g"(x)f�1(x) +
m∑
�=2

f"�(x)f�1(x)u�;

� = 1; : : : ; k1; "= k1 + 1; : : : ; k: (19)

(Trivial inequalities such as 06 0 can be omitted.)
Then

S1 = S2:

Before proving Theorem 1 we remark that the parameter u1 which occurs in the de>nition of S1

is no longer needed in order to describe S2. Therefore, we call the transition from inequalities (17),
(18) to inequalities in (19) the elimination of u1.

It is obvious that the assertion of Theorem 1 remains true if the inequalities in (17), (18) and
the inequalities in (19) are supplemented by inequalities which do not contain the parameter u1, as
long as these inequalities are the same in both cases.

Proof of Theorem 1. S1 ⊆ S2:
W.l.o.g. let S1 
= ∅, >x x∈ S1 and let u1; : : : um ∈R be such that inequalities (17), (18) hold for x.

Multiply (17) by f"1(x) and (18) by f�1(x). This implies

g�(x)f"1(x) +
m∑
�=2

f��(x)f"1(x)u�

6f�1(x)f"1(x)u16 g"(x)f�1(x) +
m∑
�=2

f"�(x)f�1(x)u�

for � = 1; : : : ; k1 and "= k1 + 1; : : : ; k. Dropping the middle term results in (19) whence S1 ⊆ S2.
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S1 ⊇ S2:
W.l.o.g. let S2 
= ∅, >x x∈ S2 and let u2; : : : um ∈R be such that inequalities (19) hold for x. Divide

(19) by f�1(x) if f�1(x)¿ 0, and by f"1(x) if f"1(x)¿ 0. Unless f�1(x) = 0 and f"1(x) = 0 (in this
case (19) reads 06 0 and can be omitted) one gets equivalently

g�(x) +
m∑
�=2

f��(x)u�6 0 if f�1(x) = 0 and f"1(x)¿ 0; (20)

06 g"(x) +
m∑
�=2

f"�u�; if f�1(x)¿ 0 and f"1(x) = 0; (21)


g�(x) +

m∑
�=2

f��(x)u�


/

f�1(x)6


g"(x) +

m∑
�=2

f"�(x)u�


/

f"1(x);

if f�1(x)f"1(x)¿ 0: (22)

Due to (16) there exists at least one pair (�∗; "∗)∈{1; : : : ; k1}×{k1+1; : : : ; k} such that f�∗1(x)f"∗1(x)
¿ 0. Let M1 be the maximum of the left-hand sides of all inequalities (22) and let M2 be the
minimum of the right-hand sides of all inequalities (22). Then M1; M2 are attained for some indices
� = �0 and " = "0, respectively. Since � and " vary independently there is an inequality (22) with
� = �0 and "= "0 simultaneously. This proves M16M2. Choose u1 ∈ [M1; M2] and apply (20) and
(22), respectively, with "= "0 (which implies f"01(x)¿ 0) and �= 1; : : : ; k1. If f�1(x) = 0 then (20)
yields to the corresponding inequality in (17). If f�1(x)¿ 0 then

g�(x) +
m∑
�=2

f��(x)u�


/f�1(x)6M16 u1

implies the corresponding inequality in (17). By applying (21) and (22), respectively, with � = �0

inequalities (18) can be seen analogously whence S2 ⊆ S1.

The inequalities in (19) arise by multiplying the corresponding inequalities (17) and (18) by
f"1(x) and f�1(x), respectively. Sometimes it is more convenient to write f�1(x) and f"1(x) in the
form

f�1(x) = h�"(x)f̃�1(x); f"1(x) = h�"(x)f̃"1(x)

with nonnegative functions f̃�1, f̃"1, h�" de>ned on D. Then the elimination procedure gives some
hope that it su5ces to multiply (17) and (18) only by f̃"1(x) and f̃�1(x), respectively, in order to
end up with the modi>cation

g�(x)f̃"1(x) +
m∑
�=2

f��(x)f̃"1(x)u�6 g"(x)f̃�1(x) +
m∑
�=2

f"�(x)f̃�1(x)u�

� = 1; : : : ; k1; "= k1 + 1; : : : ; k; (23)



G. Alefeld et al. / Journal of Computational and Applied Mathematics 152 (2003) 1–15 7

of the corresponding inequality in (19). This multiplication process shows, in particular, that the
inclusion

S1 ⊆ S3 := {x∈D | ∃ u� ∈R; � = 2; : : : ; m : (23) holds}
is true. In order to prove S3 ⊆ S1 >x x∈ S3 and choose u2; : : : ; um ∈R such that (23) holds
for x. Multiplying the corresponding inequality (23) by h�"(x) yields to (19), hence x∈ S2, and
Theorem 1 implies x∈ S1. Thus we have proved the following corollary.

Corollary 1. With the notation and the assumptions of Theorem 1 let

f�1(x) = h�"(x)f̃�1(x); f"1(x) = h�"(x)f̃"1(x)

with nonnegative functions f̃�1, f̃"1, h�" de=ned on D. Then the assertion of Theorem 1 remains
true if f�1(x), f"1(x) are replaced in (19) by f̃�1(x) and f̃"1(x), respectively.

Corollary 1 is particularly useful if f�1 = f"1¿ 0 where f¿ 0 means f(x)¿ 0 for all x∈D.
Then h�" := f�1 = f"1¿ 0, f̃�1 = f̃"1 := 1¿ 0 and the corresponding inequality in (19) reads

g�(x) +
m∑
�=2

f��(x)u�6 g"(x) +
m∑
�=2

f"�(x)u�:

Another typical application of Corollary 1 occurs if the functions f��; g� all are polynomials and if
f�1 and f"1 have a nonconstant polynomial as a common factor. We will meet these situations in
our subsequent examples.

We remark that no topological assumption such as continuity of f��, g� or connectivity of D
is required in Theorem 1. Assumption (14) prevents f�1 from being completely omitted in (17),
(18) and (19). If f�1(x)6 0 on D one can simply ful>ll (15) by multiplying the corresponding
inequality by −1. If neither f�1(x)¿ 0 nor f�1(x)6 0 holds uniformly on D on can split D in
several appropriate subdomains Di with

⋃
i Di = D for each of which the assumptions of

Theorem 1 hold. The restriction (16) cannot be dropped. This can be seen from the example

1 + x1u26 x2u1; x1u16 1 + x2u2; D = O1 := {(x1; x2) | x1¿ 0; x2¿ 0}; (24)

where f11(x)=f22(x) := x2, f12(x)=f21(x) := x1, g1(x)=g2(x) := 1 and where k=m=n=2; k1 =1.
Assumption (16) is not ful>lled for x= (0; 0) since f�1(0; 0) = 0 for �∈{1; 2}. Inequality (19) reads

x1 + x2
1u26 x2 + x2

2u2;

which is true for x1 = x2 = 0 while (24) apparently does not hold for x1 = x2 = 0 and any choice of
u1 ∈R.

Note that in our example the functions f�� are continuous. Therefore, the equivalence in Theorem 1
apparently cannot be forced by requiring continuity of f��; g� at the expense of dropping (16). We
will illustrate a possible reason in our example. To this end we choose D := O1\{(0; 0)} for the
moment. Then (16) holds and Theorem 1 can be applied. Choose x1 = x2 = #¿ 0. By (24) we get
1 + #u2 = #u1 whence u1 = 1=#+u2. Let # tend to +0 which means that (x1; x2) approaches the origin
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in O1 along the line x1 = x2. In order to ful>ll (24) the two parameters u1; u2 must necessarily
be chosen in such a way that the absolute value of at least one of them tends to in>nity. This
situation does, however, not occur in our subsequent considerations since our parameters u� will be
the matrix entries aij and the components bi of the right-hand side b of a linear system Ax=b. They
will be restricted to compact intervals by A∈ [A] and b∈ [b]. This generates inequalities of the form
a6 u�6 4a with a corresponding function f�� = 1. Since such an inequality depends on a single u�,
it is only used when this parameter is eliminated. Therefore, in the sequel assumption (16) will be
ful>lled for any domain D.

Under appropriate assumptions on the number of the given inequalities and on the signs of the
functions f�� Theorem 1 and Corollary 1 can be applied successively in order to eliminate some
or all expressions in which the parameters u� occur linearly. However, the number of inequalities
might then increase drastically as already simple examples show.

We shortly summarize the steps to be executed when eliminating the parameters in the inequalities
describing some set S1 ⊆ D:

3.1.1. Elimination process
Given a domain D ⊆ Rn and a set of >nitely many inequalities in x∈D with parameters u1; : : : um

which occur linearly. Denote D together with this set of inequalities as a record and store it on a
stack named Stack 1.
Step 1: Fetch the >rst record (i.e., the domain and the corresponding set of inequalities) from

Stack 1, >x a parameter, say u1, bring those inequalities into the form (17), (18) which contain u1.
(Renumber and rename eventually, in order to have a domain named D, a parameter named u1, and
subsequent inequalities according to (17), (18).)
Step 2: Check the assumptions of Theorem 1 for the inequalities which contain u1. If (15) is not

satis>ed then multiply the corresponding inequality by −1. If this does not help split D into >nitely
many appropriate subdomains Di and replace the record with D by corresponding ones with Di. If
(16) is not ful>lled for each Di then stop. Otherwise put the records to a stack named Stack 2.
Step 3: As long as Stack 2 is not empty fetch from it the last record and eliminate u1 according

to Theorem 1 or Corollary 1. If the new record does no longer contain any parameter u� then store
it into a >le. Otherwise put it to Stack 1 as last element. If Stack 1 is not empty go to Step 1.

Now we want to apply Theorem 1 and, whenever possible, Corollary 1 in order to characterize
particular subsets of S as announced in Section 1.

3.2. Symmetric linear systems

In order to characterize Ssym in (2) we >rst remark that Ssym apparently is empty if [A]∈ IRn×n
does not contain a symmetric matrix as an element. If A 
= AT or 4A 
= 4AT we could replace [A] by
the largest matrix [B] ⊆ [A] with [B] = [B]T since [A]\[B] does not contain a symmetric matrix as
an element and therefore does not inPuence Ssym. This is the reason why we will assume [A] = [A]T,
without loss of generality, from the beginning.

Let O be a >xed orthant. We start with D=O and (4)–(6), this time reducing the amount of free
parameters nearly to one half by using aij = aji. The elimination process for the bi and the diagonal
entries aii is the same as for S and is left to the reader. The elimination of the oG-diagonal entries
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aij, i¡ j, i; j= 1; : : : ; n diGers due to the dependency aij = aji. For instance, when handling a12 >rst,
one gets the (nontrivial) new inequalities

b1 − â+
11x1 −

n∑
j=3

a1jxj6 â+
12x2; (25)

â−12x26 4b1 − â−11x1 −
n∑
j=3

a1jxj; (26)

b2 − â+
22x2 −

n∑
j=3

a2jxj6 â+
12x1; (27)

â−12x16 4b2 − â−22x2 −
n∑
j=3

a2jxj; (28)

b−1 x1 − a+
11x

2
1 −

n∑
j=3

a1jx1xj6 b+
2 x2 − a−22x

2
2 −

n∑
j=3

a2jx2xj; (29)

b−2 x2 − a+
22x

2
2 −

n∑
j=3

a2jx2xj6 b+
1 x1 − a−11x

2
1 −

n∑
j=3

a1jx1xj; (30)

where

â−ij :=

{
4aij if xj ¡ 0;

aij if xj¿ 0;
â+
ij :=

{
aij if xj ¡ 0;

4aij if xj¿ 0;

a−ij :=

{
aij if xixj¿ 0;

4aij if xixj ¡ 0;
a+
ij :=

{
4aij if xixj¿ 0;

aij if xixj ¡ 0;

b−i :=

{
bi if xi¿ 0;

4bi if xi ¡ 0;
b+
i :=

{
4bi if xi¿ 0;

bi if xi ¡ 0:

Inequalities (25)–(28) coincide with those for S. Inequalities (29), (30) are new. They contain
quadratic polynomials. When eliminating a1j for j = 3; : : : ; n according to Corollary 1, the ith in-
equality in (4) has to be multiplied by xi for i= 3; : : : ; n. Afterwards, no additional multiplication is
needed in inequalities which have a form analogous to (29), (30). This is true because the function
f�� in front of aij reads f��(x) = xixj in these inequalities, and in the remaining (nonquadratic)
inequalities they are given by f��(x) = xi, f��(x) = xj and f��(x) = 1, respectively. Note that the
sign of the function xixj remains constant over a >xed orthant O. This is the reason, why no split-
ting is needed for D = O during the elimination process. Pursuing this process shows that the >nal
inequalities for Ssym ∩O consist of the inequalities which characterize S, and quadratic inequalities.
We thus get the following theorem (see also [2,3]).

Theorem 2. Let [A]=[A]T ∈ IRn×n (not necessarily regular) and let [b]∈ IRn. Then in each orthant
the symmetric solution set Ssym can be represented as the intersection of the solution set S and
sets with quadrics as boundaries.
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Skew-symmetric linear systems and persymmetric linear systems can be handled analogously and
yield to a result similar to Theorem 2. For details see [3].

3.3. Hankel and Toeplitz systems

Analogously to Section 3.2 we restrict A; 4A to be Hankel matrices in order to give some remarks
on the solution set

SHank := {x∈Rn |Ax = b; A∈ [A] Hankel matrix; b∈ [b]} ⊆ Ssym ⊆ S:

Again we do not require that [A] is regular. This time not only the way but also the results are
new and diGer essentially from the previous ones. The reason consists in a possible increase of the
polynomial degree of f�� during the elimination process. In addition, these polynomials have no
longer constant sign in a >xed orthant. This can be seen by the following example of a bidiagonal
Hankel interval matrix.

Example 1.

[A] :=




0 [s] [d]

[s] [d] 0

[d] 0


∈ IR3×3; [b]∈ IR3:

We start with

b16 sx2 + dx36 4b1; b26 sx1 + dx26 4b2; b36dx16 4b3;

d6d6 4d; s6 s6 4s

and, for simplicity, we restrict ourselves to the >rst orthant O1, i.e., we apply Corollary 1 with
D = O1. After having eliminated the s-terms we obtain

b1 − dx36 4sx2; sx26 4b1 − dx3;

b2 − dx26 4sx1; sx16 4b2 − dx2;

b1x1 − dx1x36 4b2x2 − dx2
2 ; b2x2 − dx2

2 6 4b1x1 − dx1x3;

b36dx16 4b3; d6d6 4d;

whence

b1 − 4sx26dx36 4b1 − sx2; b2 − 4sx16dx26 4b2 − sx1;

b1x1 − 4b2x26d(x1x3 − x2
2)6 4b1x1 − b2x2;

b36dx16 4b3; d6d6 4d:


 (31)

In order to eliminate the d-terms one has to take into account the signs of the expression x1x3 − x2
2.

The inequality

x1x3 − x2
2 ¿ 0; (32)
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describes a circular cone C which is independent of the coe5cients of [A] and [b]. 1 Its boundary
x1x3−x2

2 =0 can be rewritten as x2
2 +v2−u2 =0 where x1 =u+v and x3 =u−v. The axis of C is given

by (t; 0; t)T; t ∈R; in particular, C lies symmetric with respect to the x1x3-plane. It contains the x1-
and the x3-axis on its surface and divides O1 into two parts D1 := O1 ∩ C and D2 := (O1\D1). On
D1 inequality (32) holds while on D2 the inequality sign reverses in (32). From (31) we obtain as
description of SHank ∩ O1:

b1 − 4sx26 4dx3; b2 − 4sx16 4dx2; b36 4dx1;

b1x1 − 4sx2x16 4b3x3; b2x1 − 4sx2
1 6 4b3x2; b1x2 − 4sx2

2 6 4b2x3 − sx1x3;

b1x1 − 4b2x26 4d(x1x3 − x2
2); if x∈D1;

b1x1 − 4b2x26d(x1x3 − x2
2); if x∈D2;

b1x2
1 − 4b2x1x26 4b3(x1x3 − x2

2); if x∈D1;

b1x2
1 − 4b2x1x26 b3(x1x3 − x2

2); if x∈D2;

b1x1x2 − 4b2x2
2 ;6 ( 4b2 − sx1)(x1x3 − x2

2); if x∈D1;

b1x1x2 − 4b2x2
2 6 (b2 − 4sx1)(x1x3 − x2

2); if x∈D2;

b1x1x3 − 4b2x2x36 ( 4b1 − sx2)(x1x3 − x2
2); if x∈D1;

b1x1x3 − 4b2x2x36 (b1 − 4sx2)(x1x3 − x2
2); if x∈D2:

We have omitted here the dual inequalities, which are obtained by reversing the inequality signs
and by replacing the lower bars by upper ones and vice versa. These inequalities recommend, in
particular, that SHank ∩O1 should be better replaced by the two subsets SHank ∩D1 and SHank ∩D2 for
each of which the set of inequalities remains >xed. Note that for a complete characterization one
has to add the inequalities

x1x3 − x2
2 ¿ 0; (describes C)

xi¿ 0 for i = 1; 2; 3 (describes O1)

in the case of D1 and

x1x3 − x2
2 6 0; (describes R3\C)

xi¿ 0 for i = 1; 2; 3 (describes O1)

in the case of D2.

We consider now Toeplitz matrices. As can be seen from the de>nition in Section 2 a Toeplitz
matrix A becomes a Hankel matrix if it is multiplied from the left by the permutation matrix E,
which has ones in the northeast–southwest diagonal and zeros otherwise. Therefore, the solution set

SToep := {x∈Rn |Ax = b; A∈ [A] Toeplitz matrix; b∈ [b]} ⊆ S

1 Presently we do not know whether this independency always occurs when computing SHank for more general situations.
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is identical with SHank formed for EA and Eb. This means that for Toeplitz matrices and for Hankel
matrices the same phenomena occur in view of the solution set.

Now we address to the question how complicated the resulting shape of SToep can be.
When we have a linear interval system with independent coe5cients and with a regular interval

system matrix, then, due to the Oettli–Prager theorem [8], the solution set is a compact, convex
polyhedron in a >xed orthant O (to be more precise, a union of >nitely many compact, convex
polyhedrons that correspond to diGerent orthants).

In many applications, we are interested only in some of the variables x1; : : : ; xn. In this case, in
mathematical terms, we are interested in the projection of the solution set on a subspace formed
by the desired variables. For interval systems with independent coe5cients, this projection is a
projection of a polyhedron and thus, also a polyhedron.

In [4], we showed that for arbitrary interval linear systems with dependent coe5cients, we can
get projections that are described by algebraic dependencies of arbitrarily high degree (we even
showed that an arbitrary algebraic set can be thus represented).

A natural question is: if we restrict ourselves to Toeplitz matrices only, how complicated this
projection can be? The following simple example shows that for Toeplitz interval matrices we can
have, as two-dimensional projections, curves of degree n at least. To this end let us consider the
Toeplitz system Ax = b consisting of the following equations:

a · x1 = 1;

−x1 + a · x2 = 1;

−x1 − x2 + a · x3 = 1;

...

−x1 − x2 − : : :− xn−1 + a · xn = 1;

where a∈ [1; 2]. Therefore, a vector (x1; : : : ; xn)T belongs to the solution set if and only if there
exists an a for which a · x1 = 1; −x1 + a · x2 = 1; −x1 − x2 + a · x3 = 1, etc. From these equations,
we can explicitly express xi; i¿ 1, in terms of x1:

From the >rst equation, we get x1 = 1=a; hence, a= 1=x1.
From the second equation, we get x2 =(1+x1)=a=(1+x1)x1 =x1 +x2

1; this expression is quadratic
in x1.

Similarly, from the third equation, we get x3 = (1 + x1 + x2)=a= (1 + x1 + x1 + x2
1)x1 = (1 + x1)2x1 =

x1 + 2x2
1 + x3

1; this expression is cubic in x1.
: : :
Finally, for xn, we get an expression of nth degree in terms of x1:
xn = x1(1 + x1)n−1 = x1 + (n− 1)x2

1 + : : :+ xn1.
Thus, when we are only interested in the values of x1 and xn, we get a curve of nth degree.
A similar remark holds for Hankel systems.
It is worth noting that if we apply Theorem 1 to the interval system above, we get inequalities

of degrees less than n. There is no contradiction here, because a set of lower degree can have
higher-degree projections: e.g., for a curve described by two second-order equations x2 = x2

1 and
x3 = x2

2, its projection on (x1; x3) has the form x3 = x4
1 and is, therefore, of fourth order.
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In our next example we show that even the unprojected solution set SToep needs algebraic equations
whose order exceeds two.

Example 2. Let

[A] :=




[d] 0 0

[s] [d] 0

[l] [s] [d]


 ; [b] :=




1

0

0




with [d] = [1; 2]; [s] = [ − 4;−2] and [l] = [ − 8;−4]. Then each solution of a system Ax = b with
a Toeplitz matrix

A=



) 0 0

* ) 0

� * )


∈ [A] and b=




1

0

0




is given by

x1 =
1
)
¿ 0; (33)

x2 = −*
)
x1 = −*x2

1 ¿ 0; (34)

x3 = −*
)
x2 − �

)
x1 =

x2
2

x1
− �x2

1 ¿ 0; (35)

with )∈ [d]; *∈ [s] and �∈ [l]. The corresponding set of inequalities reads

1
2
6 x16 1; 2x2

1 6 x26 4x2
1 ;

x2
2

x1
+ 4x2

1 6 x36
x2

2

x1
+ 8x2

1

or, equivalently,

1
2
6 x16 1; 2x2

1 6 x26 4x2
1 ; 4x3

1 6 x1x3 − x2
2 6 8x3

1 : (36)

Thus SToep lies completely in O1; its boundary is part of the two planes x1 = 1
2 ; x1 = 1, part of

the two parabolic cylinders x2 = 2x2
1 ; x2 = 4x2

1 and part of the two algebraic surfaces x1x3 − x2
2 −

4x3
1 = 0; x1x3 − x2

2 − 8x3
1 = 0 which are of order three. Note that (36) was derived by decoupling the

parameters in equalities (33)–(35). Since the last inequality of (36) is the only one which contains
x3 the degree in (36) cannot be reduced. This shows that in the general case the boundary for the
solution set of Toeplitz matrices (and therefore also for Hankel matrices) cannot be characterized
by means of hyperplanes and quadrics.

Note that the interval hull of S and SToep, respectively, coincide in this example since A; 4A are
Toeplitz matrices and each matrix A∈ [A] is an M matrix. Hence ( 4A−1b)i6 (A−1b)i6 (A−1b)i for
i = 1; 2; 3, A∈ [A] and b= (1; 0; 0)T.
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If [A] is a lower triangular n × n interval matrix and if [b] is a degenerate interval vector, i.e.,
[b]=[b; b], then the ideas of Example 2 can be generalized. Using an inductive argument shows that
the boundary of the corresponding solution set SToep is composed by parts of algebraic surfaces which
have order n at most, with two of exact order n. A similar remark holds if [A] is an upper triangular
matrix, and for SHank provided that [A] is a triangular matrix with respect to the counterdiagonal.
At the moment we do not know how this degree behaves for SToep and SHank, respectively, when
[b] is non-degenerate or when [A] is not triangular. Neither can we answer a question of one of the
referees concerning a comparison between the interval hull of the solution set S and that of SToep or
SHank: As we saw the interval hulls in Example 2 coincide while in [7, Example 3.4.2, pp. 93–95],
the interval hull of Ssym = SHank diGers from that of S.

3.4. Linear systems with more general dependencies

The elimination process of Section 3.1 can even be applied to systems of linear equations with
dependencies according to (3). Such a system (which may be singular) reads

gi(x) +
m∑
�=1

fi�(x)u� = 0; i = 1; : : : ; n; (37)

where

gi(x) := −bi;0 +
n∑
j=1

aij;0xj;

fi�(x) := −bi;� +
n∑
j=1

aij;�xj;

u� ∈ [u]� = [u�; 4u�]; i = 1; : : : ; n; � = 1; : : : ; m: (38)

Replace (37) by the equivalent system of inequalities

gi(x) +
m∑
�=1

fi�(x)u�¿ 0; gi(x) +
m∑
�=1

fi�(x)u�6 0; i = 1; : : : ; n (39)

and (38) by

u�6 u�6 4u�; � = 1; : : : ; m: (40)

Then apply the elimination procedure from Section 3.1 to (39), (40) with D = Rn. In this case D
is expected to be split into >nitely many subdomains Di in Step 2. Such subdomains certainly exist
due to the particular shape of fi�. (In fact, fi�(x)¿ 0 determines here a half space in Rn.)

We emphasize that there is an ambiguity in the order of eliminating the parameters u1; : : : ; um
since we are free to permute the indices. In this respect it is clear by the equivalence of Theorem 1
that for any order and in each stage the inequalities describe the same set, namely the corresponding
solution set. But we are not sure whether the inequalities at the end coincide (up to their order of
appearance and after having deleted superPuous ones).
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