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Abstract 

Streams in a lake watershed are important landscape corridors which link the lake and terrestrial ecosystems. Therefore, the ecosystem health 

of streams is usually used to indicate aquatic biodiversity of the lake ecosystem, as well as being affected by aquatic environmental factors in 

response to changes in land use cover of the terrestrial ecosystem due to natural geographic characteristics of the watershed with the closure of 

ridge lines. This study was carried out at a shallow freshwater lake watershed in the Yunnan-Guizhou Plateau of China, the Dianchi Lake 

watershed (DLW). Field survey of periphytic algal and macrozoobenthic biodiversity during July and August of 2009, as well as monthly 

monitoring of water temperature, pH, TSS, DO, TN, TP, NH3N, NO3N, CODMn, BOD, TOC, and the heavy metals Zn (II), Cd (II), Pb (II), Cu 

(II), and Cr (VI) from January to December 2009 was carried out in 29 streams flowing into Dianchi lake. Multivariate statistical techniques 

such as factor analysis and canonical correspondence analysis were applied to analyze the structure of the aquatic community in relation to 

aquatic environmental factors in order to provide controlling objectives for integrated watershed management and improvement of stream 

rehabilitation in the DLW. The results showed that the structure of the periphytic algal and macrozoobenthic communities were dominated by 

pollution-tolerant genera, namely the bacillariophytes Navicula and the annelids Tubificidae respectively, and TN, NH3N and TP were key 

aquatic environmental factors affecting the ecosystem health of streams in the DLW. 

 
© 2010 Published by Elsevier Ltd. 
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1. Introduction 

In a lake watershed, streams are important landscape corridors that link the land and the lake[1]. The ecosystem health of 

streams is usually used to indicate the aquatic biodiversity of the lake ecosystem, as well as being affected by water pollution 

factors in response to changes in land use of the terrestrial ecosystem due to natural geographic characteristics of the watershed 

[2-3]. The closure of ridge lines determines the lake as the sink of the watershed to assemble the discharge of point and non-point 

source pollutants from the terrestrial ecosystem through streams flowing into the lake. Therefore, streams are ecohydrological 

channels of the lake watershed to impose anthropogenic stress on the lake ecosystem and eventually to cause the lake 

eutrophication. 

Biological communities reflect overall ecological integrity, integrate the effects of different stressors and provide a broad 

measure for their aggregate impact [4-5].  Therefore, aquatic assemblages, generally including phytoplanktonic, zooplanktonic, 

periphytic algal, macrozoobenthic*, fish, and bacterioplanktonic assemblages, have been commonly used as bioindicators for 
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water quality monitoring to directly assess marine, coastal and estuary, stream, or lake ecosystem health in relation to the water 

pollution [6-9]. However, there are more advantages of using periphytic algal and macrozoobenthic. For instance, periphytic 

algal assemblages are sensitive to some pollutants which may not visibly affect other aquatic assemblages, or may only affect 

other organisms at higher concentrations (i.e., herbicides) [10-11]; macrozoobenthic assemblages provide strong information for 

interpreting cumulative effects by species that constitute a broad range of pollution tolerances [12]. Hence, it is necessary to 

identify the key water pollution factors affecting these assemblages in streams of the lake watershed in order to provide 

controlling action for integrated watershed management and stream rehabilitation activities. 

Lake Dianchi watershed (LDW) is a shallow plateau freshwater lake watershed in Kunming City, the capital of Yunnan 

Province of China. There are 29 streams radially flowing into Lake Dianchi (LD). The water quality of 29 streams continued 

degrading from the level of drinking water in 1975 to worse than that of landscape-use water in 2009 due to the rapid 

urbanization and socioeconomic development in the watershed since 1980s, which has resulted in the extinction of fish in all of 

the streams and annual algal bloom in the LD in the last decade. Numerous studies currently focused on water quality assessment 

and water pollution control in the LDW paying more attention to the LD [13-16] rather than the streams. Furthermore, seldom 

information on the correlation of the water pollution factors to the aquatic assemblages in the streams has been published. 

Therefore, this study intends to figure out the key water pollution factors in 29 streams of the LDW affecting all of the periphytic 

algal and macrozoobenthic, and then to investigate the relationship of spatial distributions between these assemblages and the 

integrated water pollution. 

 

2. Methodology 

2.1 Site Description 

The LDW is located in the  middle of the Yunnan-Guizhou Plateau, with a total watershed area of 2920 km2 and an altitude 

of 1880 m. Its geographic coordinates are 102°29’ to 103°01’ E in longitude, and 24°29’ to 25°28’ N in latitude. The climate is 

characterised by a pronounced rainy season from May to October with an annual rainfall of 947mm. The LD is nearly 40.4 km in 

length from north to south, and 7 km from west to east, with a total area of 309.5 km2. The 29 streams from north to south are 

respectively River Wangjiaduiqu (R1), River Xinyunlianghe (R2), River Laoyunlianghe (R3), River Wulonghe (R4), River 

Daguanhe (R5), River Xibahe (R6),River Chuanfanghe (R7), River Cailianhe (R8), River Jinjiahe (R9), River Panlongjiang 

(R10), River Daqinghe (R11), River Haihe (R12), River Liujiabaoxianghe (R13), River Xiaoqinghe (R14), River 

Wujiabaoxianghe (R15), River Xiabahe (R16), River Laobaoxianghe (R17), River Xinbaoxianghe (R18), River Maliaohe (R19), 

River Luolonghe (R20), River  Laoyuhe (R21), River Nanchonghe (R22), River Yunihe (R23), River Laochaihe (R24), River 

Baiyuhe (R25), River Cixianghe (R26), River DongDahe (R27), River Zhonghe (R28) and River Guchenghe (R29). According 

to ecohydrological integrity of the LDW, the sampling sites for biosurvey are the same as water quality monitoring selected in 

the lower reaches of 29 streams, far from 15-20 m of the estuarine region with the LD backwater (Figure 1). 
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Figure 1 Map of 29 sampling sites in streams of the LDW 

 
2.2 Enviromental data 

Water quality monitoring was mensally carried out at 29 sampling sites from January to December 2009. It included 16 

physicochemical parameters, which were temperature (WT), pH, total suspended solids (TSS), dissolved oxygen (DO), ammonia 

nitrogen (NH3N), total nitrogen (TN), total phosphorus (TP), permanganate indices (CODMn), biochemical oxygen demand 

(BOD), nitrate nitrogen (NO3N), total organic carbon (TOC), and the heavy metals Zn (II), Cd (II), Pb (II), Cu (II), and Cr (VI). 

Field collection and storage, and laboratory proceeding of water samples followed the procedures of Surface Water Quality 

Standards for the People's Republic of China (GB3838-2002) [17]. 

 
2.3 Biological data 

Biosurveys of aquatic assemblages during July and August 2009 were carried out at 29 sampling sites, due to the low-

latitude plateau monsoon climate causing about 80% of the whole-year precipitation distributed in the wet season during May to 

October in the LDW. 
Periphytic algae investigation and analysis followed the standard laboratory-based approach for multihabitat sampling 

procedures of periphytic algae with the 15cm×15cm ceramic tiles (artificial substrates) with the surface[18]. By using the wire, 

the substrates were hung vertically in the streams at about 5-10 cm depth. After 14 days’ culturing, the substrates were taken 
back to the liboratory for analysing. The periphytic algae were collected from the substrate by brushing the surface of the 

substrate with a stiff-bristled toothbrush into a sample bottle with distilled water. The sample bottles were preserved with Lugols 

solution. After 24 hours’ precipitation, the volume of the samples was set to 30 mL. After 24 hours’ standing, 1.2 mL (4%) 
buffered formalin was added for saving. Sorting procedures were conducted with a stereomicroscope with 20cm×20cm, 0.1mL 

capacity count box. And the density of periphytic algaewas recorded in the form of the number of algae per square centimeter. 

All periphytic algae were identified to the genus level according to taxonomic references [19] and [20], because genus provides 

more accurate information on ecological/environmental relationships and sensitivity to impairment. 

Macrozoobenthos investigation and analysis followed the standard laboratory-based approach for multihabitat sampling 

procedures of macrozoobenthos with a 1/16 m2 van Peterson grap at each station[18]. All sediment samples for macrozoobenthic 

identification were washed through a 450μm mesh size sieze and fixed in 7% buffered formalin in 30mL polyethylene bottles. 
All macrofauna samples were identified to the lowest taxonomic level whenever possible. All macrozoobenthos were identified 

to the genus level according to taxonomic references [21] and [22]. 
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2.4 Data analysis 

There are manymethods of relating species abundance to enviromental data. When various environmental factors have been 

measured, just like the present study, it is necessary and possible to use multiple regression for the analysis between the 

multiateral factors. 

Factor analysis is a "data reduction" technique that supposes that correlations between pairs of measured variables can be 

explained by the connections of the measured variables to a small number of non-measurable (latent), but meaningful variables, 

which are termed factors. FA has been widely used in water research of streams as assessing seasonal variations of water quality 

and pinpointing pollution sources [23-24]. Therefore, this study opted for principle component analysis and varimax rotation of 

FA to extract the parameters that were most important in assessing water pollution in streams of the LDW. The statistical 

analyses were performed by SPSS 17.0. 

Detrended correspondence analysis (DCA) was used to dectect the length of the enviromental gradient. After DCA, 

Canonical correspondence analysis (CCA) was applied because the data set was relatively heterogeneous and the length of 

ordination axes was relatively long [25]. CCA is one of the main uses of correspondence analysis in ecology, which visualizes a 

matrix of biological data in relation to a set of concomitant environmental variables, which could be measured on continuous 

and/or discrete scales [25-26]. To optimise the data for ecological assessment the particular ecology of the taxonomic group 

should be considered. For periphytic algal and macrozoobenthic species less than 1% to the abundance or less than twice 

occurrence to the sampling sites were excluded from the analysis; meanwhile, it was also necessary for the canonical eigenvalues 

and the significance of the relationships between the parameters and the canonical axes tested by Monte Carlo permutations  

(p<0.05),  using 499 permulations as implemented in canoco [26]. Hence, this study identified the key water pollution factors in 

streams of the LDW with CCA, affecting all of periphytic algal and macrozoobenthic assemblages. The statistical analyses were 

performed by CANOCO for Windows 4.5. 

 

3.Results 

3.1 Composition of periphytic algal and macrozoobenthic assemblages 

Biosurveys in the wet season totally identified 5 divisions, 18 families, and 24 genera of periphytic algae;and 3 divisions, 7 

families, and 8 genera of macrozoobenthos at 29 sampling sites in the study area. 

Periphytic algal assemblages consisted of 7 families and 10 genera of Bacillariophyta, 6 families and 7 genera of 

Chlorophyta, 2 families and 4 genera of Cyanophyta, 2 families and 2 genera of Chrysophyta, and 1 family and 1 genus of 

Euglenophyta. Among these, Navicula (Bacillariophyta) was the dominant genus, and followed by Pinnularia, Synedra, and 

Gomphonema of Bacillariophyta; Chlorella, Ulothrix, Scenedesmus, Schroederia, and Cosmarium of Chlorophyta; and 

Oscillatoria of Cyanophyta. 

Macrozoobenthic assemblages were constituted of 4 families and 5 genera of Annelida, 2 families and 2 genera of Mollusca, 

and 1 family and 1 genus of Arthropoda. Among these, Limnodrilus (Annelida) was the dominant genus, and followed by 

Glossiphonia and Branchiura of Annelida; and Procladius of Arthropoda. 

 
3.2 Characteristics of physicochemical parameters of water quality 

Based on mensal physicochemical parameters, the average of WT and pH at 29 sampling sites of the LDW in 2009 were 

11.8-18.9 oC and 7.27-8.31, as well as TSS, DO, NH3N, TN, TP, CODMn, BOD, NO3N, TOC, Zn (II), Cd (II), Pb (II), Cu (II), 

and Cr (VI) were respectively 4.00-86.00, 0.10-7.10, 0.34-28.96, 1.83-35.91, 0.07-2.28, 2.13-25.19, 1.84-94.45, 0.24-5.97, 0.00-

1.41, 0.000-1.405, 0.000-0.085, 0.000-0.081, 0.000-0.185, and 0.000-0.003 mg·L-1 (Table 1). 
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Table 1 Physicochemical parameters of water quality in streams of the LDW in 2009 

 
WT 
(oC) 

pH 
TSS  

(mg·L-1) 
DO 

(mg·L-1) 
NH3N 

(mg·L-1) 
TN 

(mg·L-1) 
TP 

(mg·L-1) 
CODMn 

(mg·L-1) 
BOD 

(mg·L-1) 
NO3N 

(mg·L-1) 
TOC 

(mg·L-1) 
Zn (II) 

(mg·L-1) 
Cd (II) 

(mg·L-1) 
Pb (II) 

(mg·L-1) 
Cu (II) 

(mg·L-1) 
Cr (VI) 
(mg·L-1) 

R1 16.6 7.40 17.70 0.76D 17.15D 24.35D 2.23D 17.49D 23.30D 0.27 27.30 0.024A 0.000A 0.000A 0.000A 0.000A 

R2 16.2 7.50 55.70 0.10D 28.96D 35.91D 2.28D 23.22D 94.45D 0.29 27.10 1.405C 0.085C 0.080B 0.124A 0.000A 

R3 17.0 7.30 21.70 3.47C 10.47D 19.59D 1.76D 11.70D 19.53D 2.62 12.40 0.797A 0.068C 0.000A 0.078A 0.000A 

R4 15.9 7.40 12.70 4.57C 9.16D 14.54D 0.94D 11.96D 27.56D 0.52 11.30 0.103A 0.001A 0.000A 0.000A 0.000A 

R5 16.4 7.50 31.80 4.07C 9.85D 16.20D 1.30D 9.50D 16.55D 0.81 13.40 0.029A 0.000A 0.000A 0.000A 0.000A 

R6 11.8 7.80 86.00 1.43D 13.77D 28.30D 1.12D 19.33D 34.30D 0.38 17.20 0.147A 0.000A 0.000A 0.014A 0.000A 

R7 17.0 7.70 4.00 5.08B 7.58D 12.98D 0.47D 9.38C 6.38D 1.10 16.20 0.029A 0.000A 0.000A 0.000A 0.000A 

R8 18.2 7.60 24.60 2.26D 19.69D 25.50D 1.88D 19.59D 32.52D 0.39 17.20 0.016A 0.000A 0.000A 0.000A 0.000A 

R9 16.9 7.60 23.10 1.02D 13.67D 21.85D 1.41D 16.09D 18.50D 0.37 30.60 0.007A 0.000A 0.000A 0.000A 0.000A 

R10 18.9 7.40 8.50 3.57C 6.53D 10.96D 0.58D 5.95B 6.60D 1.04 39.00 0.029A 0.000A 0.000A 0.006A 0.000A 

R11 16.1 7.60 21.10 1.42D 23.44D 29.68D 2.21D 20.41D 26.23D 0.24 37.40 0.063A 0.000A 0.000A 0.082A 0.000A 

R12 16.3 7.60 18.00 1.07D 21.24D 26.45D 1.99D 22.04D 24.05D 0.47 24.30 0.146A 0.003A 0.000A 0.022A 0.000A 

R13 16.4 8.00 27.90 2.72D 17.73D 22.13D 1.42D 25.19D 30.77D 0.28 23.30 0.061A 0.000A 0.000A 0.093A 0.000A 

R14 16.5 7.90 15.20 2.31D 15.26D 21.68D 0.91D 19.25D 19.23D 0.48 25.20 0.005A 0.000A 0.000A 0.001A 0.000A 

R15 16.4 7.90 15.30 4.29C 5.62D 8.94D 0.66D 18.09D 19.25D 0.46 22.70 0.100A 0.000A 0.000A 0.023A 0.000A 

R16 16.7 8.00 22.10 3.38C 2.21D 5.02D 0.29C 22.76D 14.37D 0.43 20.70 0.000A 0.000A 0.000A 0.125A 0.000A 

R17 16.8 8.10 11.40 7.11A 1.46C 2.79D 1.56D 6.45C 5.71C 0.74 16.40 0.005A 0.000A 0.000A 0.090A 0.000A 

R18 17.1 7.90 11.80 5.92B 4.30D 7.73D 0.60D 10.38D 9.73D 0.80 15.70 0.049A 0.000A 0.000A 0.185A 0.000A 

R19 17.0 8.00 14.10 4.99C 7.85D 12.66D 0.71D 12.61D 11.71D 3.14 14.20 0.000A 0.000A 0.000A 0.000A 0.003A 

R20 18.1 7.80 17.30 4.82C 0.36A 4.58D 0.08A 2.13A 1.84A 1.43 12.90 0.008A 0.000A 0.000A 0.003A 0.001A 

R21 17.0 7.80 50.40 6.08A 0.34A 7.06D 0.12B 3.74A 2.37B 4.31 7.50 0.051A 0.000A 0.000A 0.007A 0.002A 

R22 17.0 7.60 43.90 6.54A 0.81B 10.26D 0.14B 5.88B 3.40B 4.97 7.40 0.216A 0.000A 0.000A 0.050A 0.001A 
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R23 18.1 7.70 47.30 7.01A 1.19C 4.45D 0.10B 4.88B 2.97B 1.65 18.50 0.126A 0.000A 0.000A 0.008A 0.000A 

R24 16.7 8.30 43.90 5.66B 1.99D 3.78D 0.23C 10.25D 7.33D 0.57 10.80 0.373A 0.001A 0.010A 0.045A 0.000A 

R25 17.6 7.70 37.80 6.30A 1.52D 5.22D 0.18B 6.84C 3.64B 1.80 17.80 0.174A 0.001A 0.020A 0.018A 0.000A 

R26 17.0 7.60 43.40 6.43A 4.95D 14.38D 0.36D 4.37B 3.33B 5.97 12.10 0.337A 0.002A 0.030A 0.075A 0.000A 

R27 17.8 7.90 30.50 6.90A 0.48A 1.83D 0.07A 3.53A 2.78B 0.52 7.60 0.080A 0.000A 0.080B 0.000A 0.000A 

R28 18.1 7.40 86.00 3.04C 4.15D 9.54D 0.28C 5.46B 8.04D 1.99 13.00 0.109A 0.000A 0.010A 0.003A 0.000A 

R29 15.5 7.60 4.00 5.79B 0.59B 3.29D 0.39D 3.71A 3.79B 0.94 8.60 0.064A 0.000A 0.020A 0.008A 0.000A 

* A, B, C, and D meant the results of water quality assessment as clean, slight pollution, medium pollution, and heavy pollution respectively according to Surface Water Quality Standards for 
the People's Republic of China (GB3838-2002)[17].  
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3.3 Identification of the key water pollution factors affecting aquatic assemblages 

FA was computed for all the environmental viriables shoun in Table 2. The data were tranformed for 

standardization in order to produce a greater spread of the sites. Five significant factors (eigenvalue>1) were 

extracted from 16 physicochemical parameters by FA to assess water pollution in streams of the LDW, accounting 

for 83.728% of the total rotated variance. Meanwhile, the absolute loadings of varimax-rotated factor matrix were 

used to indicate the strong, moderate, or weak correlation of physicochemical parameters to water pollution factors. 

Liu et al classified that factor loadings as ‘strong’, ‘moderate’, and ‘weak’ while the absolute loading values 
were >0.75, 0.75-0.50 and 0.50-0.30, respectively [27]. Table 2 demonstrated that except for BOD, TOC, Pb (II), 

and Cu (II), the other parameters were the dominant indicators in assessing water pollution in streams of the LDW 

with the absolute loadings of over 0.750.  

Table 2 Loadings of rotated water-quality physicochemical parameters in streams of the LDW 

Rotated matrix F1 F2 F3 F4 F5 

NH3N 0.940 0.195 0.051 -0.104 -0.071 

TN 0.921 0.190 0.191 0.019 -0.175 

DO -0.910 -0.035 -0.093 0.173 0.157 

TP 0.880 0.169 -0.074 -0.103 -0.036 

CODMn 0.857 -0.016 0.143 -0.167 0.322 

BOD 0.736 0.536 0.222 -0.123 0.084 

TOC 0.690 -0.117 -0.309 -0.325 -0.020 

Zn (II) 0.222 0.930 0.103 0.066 0.020 

Cd (II) 0.325 0.877 -0.041 0.092 -0.008 

Pb (II) -0.181 0.740 0.183 -0.265 -0.060 

WT -0.342 0.088 -0.813 0.047 -0.181 

TSS -0.109 0.335 0.809 0.086 -0.190 

Cr (VI) -0.126 -0.165 0.016 0.860 0.072 

NO3N -0.428 0.159 0.023 0.752 -0.217 

Cu (II) -0.289 -0.307 0.092 -0.041 0.797 

 
The CCA between 12 dominant water quality indicators as WT, pH, TSS, DO, NH3N, TN, TP, CODMn, NO3N, 

Zn (II), Cd (II), and Cr (VI), and periphytic algal and  macrozoobenthic assemblages in the wet season respectively 

were used to indentify the key water pollution factors affecting aquatic ecosystem health in streams of the LDW 

integratedly. In Figure 2, the eigenvalues of axis 1 and axis 2 were 0.386 and 0.111 respectively, which explained 

cumulative 49.3% of the total variance. Eigenvalues calculated for each axis show the degree of species separation 

along the axis and serve as a measure of the axis significance, so axis 1 and axis 2 indicated the influences of 

dominant indicators on periphytic algal assemblages, as well as axis 1 was better to explain the dominant factors as 

higher eigenvalues. Meanwhile, the two species axes were nearly vertical to each other as their correlation 

coefficient was -0.0078, and the correlation coefficient of the two environmental axes was 0, which denoted the 
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reliability of the CCA results. Enviromental variables represented as arrows from the orgin in the line of most effect. 

And the length of arrow is proportional to its influence on the sites and species. Considering the distances of the 

environmental arrows and the angles between them and axis 1, the correlation order of the dominant factors 

affecting periphytic algal assemblages in the wet season was NH3N>TN>TP>TSS> Zn 

(II)>WT>CODMn>NO3N>DO>Cd (II)>pH>Cr (VI).  

 

 

* Abbreviations: CHL- Chlrella, CHR- Chrysocapsa, COC- Cocconeis, COS- Cosmarium, CYM- Cymbella, EUG- Euglena, FRA- 
Fragilaria, GOE- Goelosphaerium, GOM- Gomphonema, MEL- Melosira, MER-Merismopedia, NAV- Navicula, OSC- Oscillatoria, 

PHA- Phaeothamnion, PIN- Pinnularia, RHI- Rhizosolenia, SCE- Scenedesmus, SCH- Schroederia, SYN- Synedra, and ULO- 
Ulothrix. 

Figure 2 CCA results of dominant water quality indicators and periphytic algal assemblages in the wet season in streams of the LDW 

 
In Figure 3, the eigenvalues of axis 1 and axis 2 were 0.870 and 0.535 respectively, which explained 

cumulative 77.3% of the total variance. So axis 1 and axis 2 indicated the influences of dominant indicators on 

macrozoobenthic assemblages, and axis 1 was better to explain the dominant factors as well. Meanwhile, the two 

species axes were nearly vertical to each other as their correlation coefficient was 0.0201, and the correlation 

coefficient of the two environmental axes was 0, which denoted the reliability of the CCA results. Considering the 

distances of the environmental arrows and the angles between them and axis 1, the correlation order of the dominant 

factors affecting macrozoobenthic assemblages in the wet season was TP>TN>NH3N>Cr 

(VI)>CODMn>pH>DO>WT> NO3N>Zn (II)>TSS>Cd (II). 

 



876 YI HUANG et al. / Procedia Environmental Sciences 2 (2010) 868–880

 
* Abbreviations: BRA- Branchiura, CIP- Cipangopaludina, DIN- Dina, GLO- Glossiphonia, LIM- Limnodrilus, PRO- Procladius, 

and UNI- Unio. 

Figure 3 CCA results of dominant water quality indicators and  

macrozoobenthic assemblages in the wet season in streams of the LDW 

 
After tested by the Monte Carlo permutations of CCA, 3 dominant water quality indicators TN, NH3N and TP 

had significant impact on all of the periphytic algal, macrozoobenthic, and bacterioplanktonic assemblages (Table 3). 

Therefore, TN, NH3N and TP were the key water pollution factors in streams of the LDW. 

Table 3 Correlation coefficients of dominant water quality indicators to periphytic algal and macrozoobenthic assemblages in streams of the 

LDW 

Dominant water quality indicators 
Periphytic algal 

assemblages 
Macrozoobenthic 

assemblages 

WT 0.101 -0.4714 

pH -0.0186 -0.6107m 

DO 0.0441 -0.7572n 

CODMn -0.0736 0.8256n 

NH3N -0.6628n 0.9480n 

TP -0.5566m 0.9421n 

TN -0.6152m 0.9363n 

TSS -0.2645 0.1521 

NO3N 0.0142 -0.442 

Zn (II) -0.1505 -0.176 

Cd (II) -0.0049 -0.0041 

Cr (VI) 0.0074 -0.058 

* M and n represented p<0.05 and p<0.01 respectively. 
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4. Discussion 

The integrated water pollution was assessed by the normalized assignment of the key water pollution factors 

TN, NH3N and TP in streams of the LDW according to Surface Water Quality Standards for the People's Republic 

of China (GB3838-2002) [17]. Table 4 showed the 4 categories as clean, slight pollution, medium pollution, and 

heavy pollution respectively evaluated from 1 to 4 with different concentrations of TN, NH3N and TP, as well as the 

integrated water pollution index that was the sum of the normalized TN, NH3N and TP. Thus, the spatial distribution 

of the integrated water pollution in streams of the LDW was distinctly divided into the north LDW from R1 to R19 

and the south LDW from R20 to R29, and the integrated water pollution in streams of the north LDW was more 

severe than the south LDW (Figure 4). 

Table 4 Normalized assignment of TN, NH3N and TP, and the integrated water pollution index in streams of the LDW 

Value Category TN (mg·L-1) 
NH3N 

(mg·L-1) 
TP (mg·L-1) Integrated water pollution index 

1 clean 0.5 0.5 0.1 3 

2 slight pollution (0.5, 1.0] (0.5, 1.0] (0.1, 0.2] 4, 5, 6 

3 medium pollution (1.0, 1.5] (1.0, 1.5] (0.2, 0.3] 7, 8, 9 

4 heavy pollution >1.5 >1.5 >0.3 10, 11, 12 

0 1 2 3 4
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Figure 4 Spatial distribution of integrated water pollution in streams of the LDW 

 

Figure 5 and 6 indicated the spatial distributions of the key water pollution factors TN, NH3N and TP affecting 

periphytic algal and macrozoobenthic assemblages in streams of the LDW respectively. They were approximately 

the same as the spatial distribution of the integrated water pollution. Therefore, the ecosystem health in streams of 
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the north LDW from R1 to R19 was weaker than the south LDW from R20 to R29, while the integrated water 

pollution in streams of the north LDW was more severe than the south LDW. 

 

 
* The number of 1-29 represented R1 to R29 respectively. 

Figure 5 CCA results of spatial distribution of TN, NH3N and TP affecting periphytic algal assemblages in streams of the LDW 

 
* The number of 1-29 represented R1 to R29 respectively. 

Figure 6 CCA results of spatial distribution of TN, NH3N and TP affecting macrozoobenthic assemblages in streams of the LDW 
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