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Favorable domain size in proteins
Dong Xu'™ and Ruth Nussinov'+2

Background: It has been observed that single-domain proteins and domains in
multidomain proteins favor a chain length in the range 100—-150 amino acids.
To understand the origin of the favored size, we construct an empirical function
for the free energy of unfolding versus the chain length. The parameters in the
function are derived by fitting to the energy of hydration, entropy and enthalpy of
unfolding of nine proteins. Our energy function cannot be used to calculate the
energetics accurately for individual proteins because the energetics also
depend on other factors, such as the composition and the conformation of the
protein. Nevertheless, the energy function statistically characterizes the general
relationship between the free energy of unfolding and the size of the protein.

Results: The predicted optimal number of residues, which corresponds to the
maximum free energy of unfolding, is 100. This is in agreement with a statistical
analysis of protein domains derived from their experimental structures. When a
chain is too short, our energy function indicates that the change in enthalpy of
internal interactions is not favorable enough for folding because of the limited
number of inter-residue contacts. A long chain is also unfavorable for a single
domain because the cost of configurational entropy increases quadratically as a
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function of the chain length, whereas the favorable change in enthalpy of

internal interactions increases linearly.

Conclusions: Our study shows that the energetic balance is the dominant
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factor governing protein sizes and it forces a large protein to break into several

domains during folding.

Introduction

It has been widely recognized that proteins are often
divided into domains having 100-150 amino acids [1-4].
Given the regular size of these protein building blocks, a
periodicity in protein sizes is expected. Indeed, cluster-
ing of molecular sizes around multiples of a unit size,
~14 kDa, has been observed in FEscherichia coli proteins
by gel electrophoresis [5]. A statistical analysis of a large
collection of nonredundant protein sequences indicates
that proteins consist of sequence units with character-
istic lengths of 125 residues for eukaryotes and 150
residues for prokaryotes [6]. It has been proposed that
multidomain proteins may have evolved from proteins
having single domains via domain insertion [7]. For
example, mammalian aspartic proteases, which contain
two structurally homologous lobes, are suggested to
have arisen during evolution from a homodimer enzyme
via gene duplication and fusion [8,9]. Similarly, the
reverse transcriptase may have evolved from domain
fusion of ancestors of the type I ribonuclease H and the
polymerase domain [10]. During the folding process,
large proteins are thought to form several stable col-
lapsed hydrophobic folding units or domains, which
then assemble [11,12]. The folding of each stable
domain in a multidomain protein is similar to the folding
of a single-domain protein [13].

The rather uniform size of this structural unit suggests
that a general principle such as geometrical or physical
optimization at the DNA or protein level is responsible
[S]. Berman ez a/. [6] proposed a possible recombinational
origin of the domain structure. Because the optimal
number of residues in protein domains corresponds to the
optimal size for circularization of DNA circles [14], the
authors suggest that a DNA circle could be an elementary
recombinational unit in the early evolution of protein-
coding sequences. Although this hypothesis may be valid,
the optimization at the gene level during evolution has
been under the pressure of the genes’ products (i.e. pro-
teins). Hence, it is reasonable to assume that there is a
fundamental base in energetics for protein domains to
favor a particular size. Dill developed a lattice model to
account for the energetics of protein folding [15]. The
model predicts an optimal chain length for maximal
protein stability. If a chain is too short, the protein would
have too little interior volume to form enough favorable
contacts between hydrophobic residues. If a chain is too
long, the protein is forced to bury many unfavorable
hydrophilic residues in the interior of the protein, given a
particular ratio between the number of hydrophobic and
hydrophilic residues. But because the theory indicates
that the optimal domain size can increase rapidly with
increasing the ratio between hydrophobic and hydrophilic
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residues, it failed to explain why during evolution favor-
able large protein domains have not been generated by
increasing the fraction of hydrophobic residues in a chain.

In order to study the folding thermodynamics as a func-
tion of protein chain length it is important and feasible to
employ a more realistic model of protein energetics than
the highly simplified lattice model. Such a study will
provide a quantitative rationale for protein domains to
have a preferable size. It will also shed some light on
domain formation in large proteins. Here, we provide a
statistical description of the energy terms as a function of
chain length, matched through thermodynamic data char-
acterized by Makhatadze and Privalov [16]. It is not our
intention to derive a universal free energy function for the
chain length for individual proteins because folding ther-
modynamics not only depends on the chain length, but
also on other factors such as the shape of the protein and
its disulfide bonds. Nevertheless, the statistical energy
function of chain length reflects the average trend in
protein energetics. In particular, as we show below, the
optimal chain length in protein domains, predicted from
the statistical energy function, is in agreement with the
observation on experimental protein structures.

In this paper, we first introduce the theory and the methods.
Then we present the results of the derived energy function
and its prediction of optimal domain size, compared with
the statistical analysis of protein structures. Finally we
discuss the validity and implications of our results.

Results

Theory and methodology

We first describe our energy terms as a function of chain
length and the assumptions that they entail. Next we
provide the data used in fitting the energy functions.
Finally we introduce the method employed in the statistical
analysis of the protein structures.

Thermodynamics of protein unfolding

Let us consider a protein unfolding at temperature T. The
overall change in free energy for the protein unfolding,
AG, can be described by [16]:

AG = AGhyd + AHjm - TASconf (1)

where AG,, is the change in the free energy of hydration
on unfolding, AH, . is the change in the enthalpy of inter-
nal interactions on unfolding in the gaseous phase, and
AS, ¢ 1s the configurational contribution to the entropy
change during the unfolding. The sign of AG governs the
folding process. If AG > 0, the peptide chain can fold into

a folded protein; if AG < 0, the chain cannot fold.

AG,,y4 is the free energy change of unfolding due to the
transfer of the protein from the gaseous phase to water. If
the change in free energy is AG” in the gaseous phase for

the hypothetical unfolding process that forms the same
native protein structure then:

AGyq = AG - AG’ )

where AG is the change in free energy for the native
protein unfolding, as used in Equation 1. The value of
AGy,y4 1s proportional to AASA, the change in the solvent
accessible surface area on unfolding [16]. For globular
proteins, AASA, in units of /0\2, can be written as [17]:

AASA = 1.48 M, - 6.3 M 073 3)

where M, is the molecular weight of the protein in units
of Dalton. The average molecular weight of the residues
in globular proteins is 119.40 Da [18]. Hence, M, can be
approximated by:

M,, = 119.407 (4)
where 7 is the number of residues. Taken together:
AGyyq = @ (176.712 - 206.80173) )

where « is a constant to be determined.

The change in the enthalpy of intramolecular interactions

on unfolding in the gaseous phase, AH; , can be written as:

AH, =bn+c (6)

where 4 and ¢ are constants.

As shown in [16], the specific configurational entropy of
protein unfolding, S, /7 increases with increasing 7. Thus:

Sconf/” =f” +4 (7

where fand g are constants. We shall come back to justify
the functional forms of AH,  and S_ /7.

Thermodynamic data

To determine the parameters 4, 4, ¢, f and g in Equations
5-7, we have employed a data set of nine single-domain
proteins and we use AG, , AH;  and AS_ ., all of which
were derived from the experimental free energy of unfold-

ing AG [16]. The physiological temperature (37°C) is used:
T =310K (8)

The thermodynamic quantities in [16] were measured at
25°C and 50°C. Because the interval between 25°C and
50°C is small, we linearly extrapolated a quantity at 37°C
[0(37)] from the corresponding values at 25°C [Q(25)] and
50°C [O(50)]:

067) = 52 0025) + 52 0(50) )
The values of AG,,4, AH;,, and AS_ (/7 at 37°C in nine

y int
proteins are listed in Table 1.

Domain size
Islam er a/. [19] assigned the domains in the 284 non-
redundant protein chains based on inter-residue contacts
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Table 1

Thermodynamics characteristics of the studied proteins at 37°C.

AGhyd AH;, ASgon/n

Protein n (kJ mol-1) (kJ mol-1) JK-"mol 1)

BPTI 58 -1784 (-1467) 2349 (2345) 46.92 (49.09)
Ubiquitin 76 -1776 (-2009) 2960 (3246) 48.69 (50.49)
RNase T1 104 -2652 (-2877) 4338 (4648) 51.57 (52.68)
Cytochrome ¢ 104 -3408 (-2877) 5282 (4648) 57.14 (52.68)
Barnase 110 -2990 (-3065) 4939 (4949) 56.14 (53.15)
RNase A 124 -3544 (-3509) 5658 (5650) 54.66 (54.24)
Lysozyme 129 -3824 (-3669) 6151 (5900) 56.27 (54.63)
Interleukin 1B 153 -3835 (-4442) 6296 (7102) 51.62 (56.51)
Myoglobin 153 -4875 (-4442) 7618 (7102) 57.06 (56.51)

n, Number of amino acids; AGy, 4, change in free energy of hydration on unfolding; AH

unfolding; AS ¢,
at 37°C; the numbers in brackets were calculated using Equations 5-7.

in experimental protein structures. There are 197 single-
domain proteins and 202 domains in multidomain pro-
teins. We have employed the sizes of the domains in their
domain assignment. Assume there are M(z) domains,
where 7 is the number of residues and /=1, 2, 3, ..., N.
The distribution of protein domains around a domain of
residues in length, P(m), can be calculated by:

1 i=m+v
Pm)= ——— M 10
=Gk | 2MO (10)
i=m—-0v
where K is the total number of protein domains, and 2o + 1
is the window size, in number of amino acids.

We now present the empirical free energy of unfolding as a
function of the number of residues 7. From this function,
we will derive the optimal length of amino acids in a
protein domain and compare it with the statistical analysis
of experimental protein structures.

Matching the parameters

The data in Table 1 are matched by Equations 5-7
through the least squares fit. The parameters obtained are
as follows:

a =-0.2353 k] mol-! (11)
4 =50.07 k] mol-! ¢ =-559.2 k] mol-! (12)
£=0.07809 ] K-' mol! g = 44.56 ] K- mol-! (13)

Figure 1 and Table 1 show the comparison between the
experimental values and the fitting results derived from
Equations 5-7 and the parameters given in Equations
11-13. The correlation coefficients between the values in
[16] and those calculated by our energy function are 0.934
for AG, 4 and 0.964 for AH; , both values indicating a very

y int
good fit. The correlation coefficient of AS__ ./n is 0.655,

conf

inv Change in the enthalpy for internal interactions on

configurational contribution to the entropy for protein unfolding. The numbers that are not in brackets derive from the data in [16]

which is not as good as the values for AG,, and AH; , but
is still significant. The relatively weak correlation of
AS,, .¢/7 1s due to the less sensitive dependence of AS_ ¢/#
on 7. Overall, the quality of the fittings shows the validity
of the functional forms in Equations 5-7. In particular,
there is a constant term ¢ in AH; , as shown in Equation 6.
The functional form of AH, , can be understood from a
heuristic illustration. AH, . describes the change in
enthalpy of internal interactions on unfolding in the
gaseous phase. If a peptide chain is too short, it cannot
form enough inter-residue contacts for intramolecular
interactions to contribute a positive AH, . 'This is
reflected in the negative constant ¢ in AH;,, which
ensures the minimum number of residues to establish
stable interactions (i.e. AH, >0 onlyif »>11; AH, <0 in
the range of # < 11 is an artifact of the fitting, but it is irrel-
evant to our subject). Once the stable interactions are
established, the contribution of a particular residue to
AH, . is mostly from its neighboring residues. Because the
density is homogenous in proteins, the number of neigh-
boring residues is basically constant. Hence, it is not sur-
prising that AH,  linearly correlates with the number of
residues 7.

Optimal domain size derived from the fitting function

By using Equation 1 and Equations 5-7 together with the
fitting parameters, the free energy of unfolding can be
written as:

AG(n) = -0.02422n% - 5.333n + 48.602°73 - 559.2 (k] mol")
(14)

Figure 2a shows AG(#) and its three energy components,
AG, . AH, . and =TAS__ ,, derived from Equations 5-7.
AGh;,d and —TAS_ ¢ destabilize the folded protein. AH,
contributes to the protein stability when 7 > 11. The three

components are very large compared to AG(#z) itself.
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The data derived from [16] (filled circles) and theoretical fitting curves
of Equations 5-7 (lines) as a function of the number of residues (n), at
37°C. (a) The change in the free energy of hydration on unfolding,
AGhyd; (b) the change in the enthalpy of internal interactions on
unfolding, AH,,; and (c) the configurational component of the change

in entropy of protein unfolding per residue (AS,,/n).

Figure 2b indicates that there is only a narrow region of #
(i.e. 7, <n<n,,) in which AG(#) > 0. AG(z) reaches its
maximum value at 7 = - The values obtained for #

70 And My ATE:

n, =604, 2

min’

= 1430, oy, =1004 (15

max
Hence, the optimal length of a single-domain protein is

100 residues, and folded single-domain proteins are stable
in the range 61-143 residues.

Statistical analysis of protein domains

The distributions of protein domain sizes are shown in
Figure 3. Figure 3a compares the distributions of single-
domain protein chains with those of domains in multi-
domain chains, over intervals of 50 amino acids. The
figure illustrates that the two distributions are similar.
When the two distributions are combined, we obtain the
average domain size:

My = 148 (16)

To determine the optimal # value (#,,,) for the maximum
P(#), we have calculated P(#) for contiguous » with a
window size of 21, as shown in Figure 3b. The optimal #
value is:

Ngom = 106 (17)

Figure 3b indicates that P(#) is asymmetrical.

Discussion

We now discuss the validity of our energy function, the
optimal chain length of proteins based on the free energy
function, and the entropic contribution, which is crucial
for determining the range of favorable chain lengths in a
domain. We also analyze the thermodynamic origin of the
division of a large protein into several domains. Finally,
we address some limitations of our study and possible
further explorations along our approach.

Energy functions

We have derived the energy functions for the change in
free energy of hydration for unfolding (AGhyd), the change
in enthalpy of internal interactions for unfolding (AH; ),
and the configurational contribution to the entropy of
protein unfolding (AS_ o) at 37°C for nine single-domain
proteins. There are alternative fitting approaches establish-
ing the relationship between the energetics of the folding
of a protein sequence and its corresponding protein struc-
ture. For example, one may fit the energy terms by the
change of the hydrophobic and hydrophilic surface areas
during unfolding [20] and then convert the surface areas to
the number of residues #. Such indirect conversions may,
however, lead to an unreliable dependence of # due to the
strong correlation between the hydrophobic surface area and
the hydrophilic one. For studying #-dependent energetics,
it is important to fit the experimental thermodynamic data
directly to 7, as we have done here. Our energy functions
do not presume a dielectric constant of the protein, a par-
ticular shape of its domains, or a particular ratio between
the number of hydrophobic and hydrophilic residues.

Our assumed energy functions fit well with the data of
AGyg, AH;, and AS /7 in nine proteins. On the other

int conf
hand, the absolute value of the free energy of unfolding is
much less than its components AGy, 4, AH; and “TAS .
T'ypical values for the free energy of unfolding are in the

order of tens of k] mol-!, whereas the three components
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Energy terms as a function of the number of residues n, at 37°C.
(a) AG(n) based on Equation 14 (dashed line) and its components
(AGy, 4 AH,  and =TAS ; solid lines) based on Equations 5-7.

(b) The solid line is a magnification of (a) for AG(n). The dashed line

marks AG = 0. n;, and n,,, are the cross points between the two
lines (i.e. AG(n) > O for n,,, <n<n,,) and n,, is the optimal value at
which AG(n) reaches its maximum.

are usually two orders higher. Hence, one cannot use our
free energy function to calculate the free energy of unfold-
ing for an individual protein. Nevertheless, the free energy
function, derived from the three components, reflects well
the statistical profile of domain stability versus chain length,
as well as the involvement of each free energy component.

Optimal chain length in proteins

Our free energy function predicts that the optimal number
of residues in a single-domain protein is 100. This is in
agreement with a statistical analysis of protein domains,
which indicates an optimal length of 106. The quantitative

agreement substantiates the notion that the ‘foldability’ of
a chain governs the preferred length of protein domains.

The optimal free energy of unfolding at » = 100 originates
from the balance of three components, AG, , AH,  and
—TAS, ¢ Both AG, 4 and “TAS_ . destabilize folded pro-
teins. As 7 becomes larger, AH, . gradually overcomes the
two unfavorable free energy components and drives the
total free energy to be favorable for folding. If a peptide
chain is too short, there are insufficient inter-residue con-
tacts to have a large enough AH,  for a stable folded
protein, similar to the scenario depicted by Dill [15]. When

Figure 3

(a) 7 5 _l T T T T T (b) 7 5 _l T T T T T i
6.0 | 6.0 - .

&> —

| &
© 45+t o 45t .

b =

— c
0 30+ o 30 .
1.5 1.5 .

Ngom
oow 0.0t 1 1 1 1 FA
0 0 100 200 300 400 500
n Folding & Design

Domain length distribution P(n) as a function of the number of
residues n. (a) P(n) for residues 1-50, 51-100, 101-150, ... with a
window of 50 amino acids. The solid line represents the single-domain
chains (197 chains) and the dashed line represents the domains in the
multidomain chains (202 domains). (b) P(n) versus the domain size of

n residues, for the domains in both the single-domain chains and the
multidomain chains (399 domains). P(n) is calculated for a window
size of 21 (i.e. in the range of n + 10). n,,, indicates the n value at
which P(n) reaches its maximum.
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7>100, because —TAS_ ¢ has a quadratic form as a func-
tion of #, “T'AS_ ; decreases the free energy of unfolding
faster with respect to #» than AH, _ increases the free energy
of unfolding; AH,, increases only linearly versus 7. Hence,
a single-domain protein cannot be too large. This explana-
tion differs from Dill’s suggestion that a long chain is unfa-
vorable for a single-domain protein because it has to bury
many unfavorable hydrophilic residues in the interior [15].
Compared with Dill’s theory, our model is based on a more
realistic energy function rather than a simplified lattice
model, and our quantitative prediction does not require any
presumed composition between the hydrophobic residues
and the hydrophilic residues.

The dominant factor in governing the size of single-domain
proteins is the quadratic form of AS_ (»). If AS_ () were
linear, the larger (or the smaller) the protein size the better.
The origin of the #* dependence of AS_ () has been sug-
gested to account for the surface residues, which are less
compact than the internal residues [16]. The number of
surface residues is proportional to 72 rather than 7%, how-
ever. We therefore propose another mechanism for the 72
dependence in AS_ (7). As a protein folds, the first entropy
loss is the restraint in the movement of each residue, for
both its backbone and its sidechain. This term is propor-
tional to #. In addition, a sequence has to fold into a unique
configuration. There is only a limited number of energeti-
cally allowed conformational categories or protein folds for a
single domain [21,22]. The protein folds impose restraints
on the inter-residue distances. The longer a sequence, the
more restraints it has. This additional cost in configurational
entropy during folding increases dramatically as # increases,
and may result in the #? dependence in AS__ ().

Our free energy function predicts that folded single-
domain proteins only stabilize in the range 61-143
residues. Although most protein domains in the statistical
analysis of protein structures fall into this range, there are
some single-domain proteins beyond it. We suggest the
following reasons for the discrepancy. First, there may be
errors originating from the data in [16] and the fitting of
the energy terms, so that the free energy function is not
accurate enough. Second, some of the proteins in our sta-
tistical analysis are transmembrane or membrane-bound
proteins. For example, the M segment of the transmem-
brane protein photosynthetic reaction center has 333
residues; and cytochrome P450, which is a membrane-
bound protein, has 457 residues. Because our energy func-
tion was derived from globular proteins, it cannot describe
transmembrane or membrane-bound proteins. Third, di-
sulfide bonds can reduce the entropy cost so that the
range of favorable chain length can be widened. Small
proteins, in particular, usually have disulfide bonds ([18];
e.g. there are three disulfide bonds in the protein BPTI
with 58 residues), but very large proteins also have disulfide
bonds (e.g. there are nine disulfide bonds in the protein

neuraminidase with 388 residues). Fourth, some large
single-domain proteins consist of loops which do not pack
compactly around the protein core. For example, in the
large protein purine nucleoside phosphorylase (289
residues; PDB code 1ula), the loop regions 59-65, 248-256
and 284-289 hang around the protein core and only loosely
connect to other parts of the protein. Such uncompact
packing can also reduce the entropic cost of protein folding
so as to increase the upper bound of single-domain protein
size. Finally, the method of Islam ¢7 4/. [19] may not be
sensitive enough to find all the possible domains in pro-
teins. Some of the assigned large single-domain proteins
may have two or more domains in the actual folding.

Multiple domains in large proteins

Analysis based on known protein structures shows that a
peptide chain larger than 250 amino acids barely folds
cooperatively into just one domain [23]. Multidomain pro-
teins form through the ‘docking’ of domains, which are the
compact, hydrophobic, independently folding nuclei [12]
during the protein folding process. The distribution of the
chain lengths in single-domain proteins is similar to the dis-
tribution of the number of amino acids in domains of mul-
tidomain proteins, (Figure 3a). The periodicity observed in
protein sizes [5,6] reflects the distribution of domain sizes.
The period of chain length, according to the distribution in
Figure 3b, should be between the optimal 7 value for
maximum P(#) (zy,.,, =106) and the average domain size
(7,,. = 148). This is in agreement with the studies in [5,6].
The thermodynamic origin for large proteins to divide into
several domains in folding is revealed in our energy func-
tions. T'he entropic cost for protein folding increases qua-
dratically with increasing chain length in a single-domain
protein. By dividing the protein into several domains, the
sum of the entropic cost of each domain is substantially less
than the cost in forming a single-domain protein.

Some limitations

Our model provides a new perspective for further studies
on the structure—energetics relationship of proteins, in
particular on the thermodynamic origin of protein sizes.
The conceptual framework of our study does not depend
on the details of the energy functions. Nevertheless, there
are some limitations in our studies due to the limited size
and quality of the thermodynamic data. Furthermore, dif-
ferent methods vary in partitioning the free energy of
unfolding, especially for the assessment of the configura-
tional entropy [24-28]. Although our energy functions fit
the data well, the model is based on statistics rather than
on an ab initio method. Hence, the functional forms of
energetics can be improved from further studies. As more
data become available, the new energy functions may
result in more accurate estimates of the domain size and
enable studies of additional aspects of protein sizes, such
as the relationship between the size and the composition
of a protein, its shape, or its disulfide bonds.
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