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Designing putative metabolic pathways is of great interest in

synthetic biology. Retrobiosynthesis is a discipline that

involves the design, evaluation, and optimization of de novo

biosynthetic pathways for the production of high-value

compounds and drugs from renewable resources and natural

or engineered enzymes. The best candidate pathways are

then engineered within a metabolic network of

microorganisms that serve as synthetic platforms for synthetic

biology. The complexity of biological chemistry and

metabolism requires computational approaches to explore the

full possibilities of engineering synthetic pathways towards

target compounds. Herein, we discuss recent developments

in the design of computational tools for retrosynthetic

biochemistry  and outline the workflow and design elements for

such tools.
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Introduction
One of the principal aims of synthetic biology and

metabolic engineering is to design and build microbial

factories for the sustainable fabrication of high-value

compounds and industrial chemicals [1–4]. To create

efficient microbial factories and broaden the range of

biosynthetic pathways for the production of both natural

and non-natural compounds, it is necessary to go beyond

natural pathways by exploring the chemistry and synthet-

ic capabilities of biological systems [1,5]. The de novo
design of pathways is crucial for exploiting the incredible

natural diversity of enzymatic transformations.

Retrobiosynthesis, a promising approach for de novo path-

way design, is inspired by the retro-evolution hypothesis
www.sciencedirect.com 
that was first proposed in 1945 by Norman Horowitz [6,7]

and has its origins in retrosynthetic organic chemistry.

Retrosynthetic design starts by defining a target molecule

of interest to produce and then ‘walks’ backwards through

the known chemical transformation rules to modify the

target molecule and identify potential precursors and

reactions [8,9].

This basic concept of walking backwards from a molecule

and using the biotransformation rules to reconstruct bio-

chemical pathways is also used: (i) to find novel pathways

for the biodegradation of pollutants [10,11] to generate

hypothetical pathways for metabolites and lipids that are

found in metabolomics and lipidomics studies, but have

an unknown metabolism [12�]. Although retrosynthesis

and retrobiosynthesis are molecular design methods, the

term retrobiosynthesis was also initially used to describe

the analysis of experimental 13C labeling data for identi-

fying biosynthetic routes [13].

In retrobiosynthesis, the aim is to produce a target mole-

cule through enzymatic biotransformation steps that oc-

cur in a metabolic pathway of microorganisms. This

analysis results in de novo pathways that connect the

target molecule to either a cellular metabolite or a bio-

chemical feedstock using natural or engineered enzymes.

Before a de novo pathway can be built in the laboratory

and integrated in a microorganism, it should first be

designed and evaluated. Although intuition and manual

design can assist in postulating novel pathways, these are

not sufficient to guarantee the generation of all potentials

and to select the most efficient ones [1,2,14–19]. Hence,

computational prediction tools are indispensible for retro-

biosynthesis analysis, not only for assisting with generat-

ing novel hypotheses but also for screening for the most

efficient pathways. Computational frameworks result in

the extensive generation of all possible de novo biosyn-

thetic pathways to allow for the exploration of the entire

realm of feasible biotransformations in a given cell

[11,18–23,24��,25�,26].

The combinatorial explosion is the most important risk

associated with computational approaches, as these meth-

ods generate compounds and reactions that may or may

not actually occur in nature. Therefore, the next crucial

step is to screen the generated biosynthetic pathways

through feasibility studies. Various techniques can be

used to prune the de novo generated pathways and select

the most promising ones. In the next sections, we discuss
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the general workflow and essential design elements to be

integrated into the development of a sound framework for

retrobiosynthetic studies, and we compare different avail-

able tools based on the consideration of these elements.

From our experience in developing the retrobiosynthesis

framework BNICE.ch and the analysis of other available

tools, we propose a retrobiosynthetic workflow that

includes three main steps, and each step requires the

implementation of certain technical design elements

(Figure 1).

In silico pathway design
The most common in silico pathway prediction tools offer

the enumeration of pathways in two ways: either they

effectively combine known reactions from databases that

lead to the production of a desired compound from

different organisms (heterologous pathways) [23,27–29]

or they construct de novo pathways that include not only

known reactions but also hypothetical steps whose corre-

sponding enzymes might not actually exist in nature

[11,18,19,22,24��,25�,30]. A comprehensive algorithm

for the in silico prediction of de novo pathways is a

significant driver for the success of retrobiosynthetic
Figure 1
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analyses, and a variety of such tools have been developed

in the past decade (Table 1).

One of the key design elements of the BNICE.ch tool is a

database of ‘biochemical transformation rules’ that mimic

the functions of enzymes and serve as in silico enzymatic

reactions. As there are a large number of characterized

enzymes, one can organize those that employ similar

reaction mechanisms into ‘generalized enzymatic reaction
rules’ [19,20]. The concept of generalized reaction rules

has been adopted by several other similar methods

[18,22,24��,25�,26]. When acting on a molecule, the gen-

eralized reaction rules recognize the biologically reactive

sites of a molecule and apply the biotransformation,

whereby atoms and bonds rearrange to form a product.

Therefore, a generalized rule is capable of acting upon a

wide range of substrates in addition to specific native

substrates. This leads to the identification of candidate

sequences for designing enzymes with broad or altered

substrate specificities.

Repeating this process iteratively using a ‘network gener-

ation algorithm’ results in the generation of a biochemical

network of all theoretically possible compounds and reac-

tions, including those that have no known experimental
e
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Table 1

Available retrobiosynthesis tools and their characteristics

Tools Generalized

reaction

rules

De novo

reaction

Gibbs free

energy of

formation

and reaction

Network

thermodynamics

Protein sequence

identification

based on enzyme

promiscuity and

reaction similarity

Enzyme

docking

Host

organism

specificity

Pathways

scoring

and

ranking

Tool

development

and

applications

BNICE.ch U U U U U U U [12�,19–21,31,32��]

DESHARKY U U U U [23,33]

ReBiT

http://www.retro-

biosynthesis.com

U U U U [26]

Method developed

with Cho et al.

U U U U [18]

RetroPath

http://www.issb.

genopole.fr/

~faulon/retropath.php

U U U U U U [14,22,34,35�,36,37]

SimPheny U U U U U U [24��]

GEM-Path U U U U U U [25�]
counterpart (de novo compounds and reactions). The

next required design element is a ‘pathway reconstruc-

tion algorithm’ that constructs all possible pathways

from a given substrate to a target molecule. These

algorithms perform either a graph-based search in the

network or use optimization-based methods to identify

possible pathways from potential substrates for the

synthesis of a target compound in the generated meta-

bolic network [31,38,39].

Pruning the generated data
A retrobiosynthetic analysis risks a combinatorial explo-

sion in two ways. First, in the network generation process,

the actions of generalized reaction rules on the target

compound results in the generation of all possible com-

pounds and reactions, which may or may not actually

occur in nature and exponentially increase in every itera-

tion of the network generation algorithm. Second, be-

cause of the combinatorial nature of the pathway

enumeration step, an enormous number of pathways from

a substrate to the same target compound are generated.

Thus, the very important next step is the evaluation of the

proposed compounds, reactions, and pathways and the

selection of the most feasible enzymes, reactions, and

pathways to be tested in the laboratory. Pruning analysis

is performed using two strategies:

(1) Qualitative pruning of generated data;

(2) Quantitative pruning of generated pathways.

Qualitative pruning of generated results

Qualitative pruning of the generated pathways is the

process of surveying which fraction of the obtained infor-

mation is already known or novel and asking how similar is
www.sciencedirect.com 
the novel information compared with the known data, i.e.,

the metabolites, reactions and pathways in the databases.

These databases are biological, such as KEGG [40] and

Metacyc [41], and chemical such as PubChem [42] and

ChEBI [43]. Qualitative pruning in general is indepen-

dent of the organism of choice and is done by comparing

the metabolites and reactions in the synthetic pathways

with the entries in existing databases. By screening

through existing databases, not only can we differentiate

between known and novel knowledge, but we can also

directly capture available biochemical properties for the

compounds and reactions. One such property, as imple-

mented in RetroPath for the qualitative pruning of de novo
pathways, is the toxicity of known reactants and products

of reactions [14,36].

Qualitative pruning in the network generation step

In the network generation algorithm, screening against

databases is most commonly carried out after pathway

reconstruction. In BNICE.ch, we have also introduced

the notion of supervised network generation through the

adaptable search space in the de novo pathway prediction

process. The adoptable search space allows searching

within a domain of metabolites and reactions that are

predefined as a parameter, and the supervision can be

applied for the generated compounds or reactions, or

both, leading to the following features:

� Selection of the compound search space:

where in each iteration, we keep only those compounds

that are part of a biological or chemical database, or

both (vs keeping all known and novel compounds in

each iteration).

� Selection of the reaction search space:
Current Opinion in Chemical Biology 2015, 28:99–104
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where in each iteration, we allow only known KEGG

reactions or reactions that are part of a specific database

(vs keeping all known and novel reactions in each

iteration).

These features can also be implemented in every network

generation algorithm for the efficient organization of

results based on the knowledge that exists in databases

and to address the risk of combinatorial explosion.

Qualitative pruning in the pathway enumeration step

The complications that arise from the huge number of

generated pathways resulting in the existing pathway

enumeration methods has been previously discussed

[14,39,44] and solutions have been proposed to enumer-

ate ‘a set of viable pathways’ based on predefined criteria,

rather than all possible pathways.

In BNICE.ch, we have also implemented the notion of

supervised pathway enumeration to evaluate pathways

based on our knowledge of compounds and reactions in

databases. For example, we can enumerate only path-

ways with a prespecified percentage of their steps

existing in biological databases as known enzymatic

reactions.

Protein sequence identification for de novo reactions

A compelling aspect of the interactive analysis with

databases is the structural similarity comparison of sub-

strates and products of de novo reactions with the sub-

strates and products of known reactions. The results of

such a comparison could be quantified using different

chemoinformatics metrics, such as ‘compound finger-

print comparison’ using the ‘Tanimoto distance’ and

assigning to novel reactions a similarity score with re-

spect to the existing reactions. Using such a metric, one

can identify gene and protein sequences for the de novo
steps of a pathway based on their structural similarities

to known reactions. The enzymes encoded by those

genes might be able to catalyze novel reactions but with

very low activity, or they might perform very similar

catalysis reactions, as they will belong to the same 3rd

level in the Enzyme Commission (EC) classification

system. Therefore, one must use evolution-based pro-

tein engineering and computational protein design

[32��] to obtain sequences and enzymes for the experi-

mental implementation of novel pathways with signifi-

cant performance [7,45].

Quantitative pruning of generated pathways

Once we enumerate de novo pathways of interest and

screen them against databases, the next step is to perform

a feasibility analysis to determine the fitness and perfor-

mance of individual pathways and to quantitatively prune

the proposed pathways down to a set of the most biologi-

cally feasible ones. Quantitative pruning is generally

context-dependent for the chassis organism. Different
Current Opinion in Chemical Biology 2015, 28:99–104 
metrics can be applied to evaluate the likelihood of an

in silico-designed pathway being proficiently implemen-

ted in an organism.

One crucial metric is the thermodynamics of the reaction

steps and consequently the synthetic pathway to allow us

to discard those pathways that are energetically unfavor-

able. To perform such a thermodynamics analysis, we

developed a Group Contribution Method to estimate the

Gibbs free energy for metabolites and consequently for

reactions [46]. This method has been used in several

frameworks to estimate the thermodynamics feasibility of

the in silico generated synthetic pathways [18,24��,25�].
Furthermore, in BNICE.ch, we apply constraint-based

modeling by incorporating the synthetic pathways one at

a time into the genome scale model of chosen organism

and performing Thermodynamics-based Flux Balance

Analysis (TFBA) [47,48]. This additional step allows us

to adjust the estimated Gibbs free energy based on the

metabolite concentration, ionic strength, and pH to get

closer to in vivo conditions. By performing a TFBA

analysis, we guarantee that the obtained pathways are

feasible with respect to mass balance (stoichiometrically),

we assess the network thermodynamic feasibility of the

generated pathways and we eventually quantify their

overall effects on the metabolic profile of the organism

by calculating the energetic cost and changes in the

biomass yield for each molecule of the generated product

[49,50]. One of the most important outcomes of TFBA for

biotechnological applications is also the pruning and

ranking of pathways based on the maximum production

yield of the target molecule from each individual syn-

thetic pathway. Other practical aspects have been also

used for the quantitative pruning of de novo pathways,

such as enzyme kinetics and gene compatibility

[35�,36,51].

Scoring and ranking the biosynthetic
pathways
By reconciling the metrics obtained in the qualitative and

quantitative pruning strategies, one can define a scoring

and ranking feature that combines and scales different

factors and assigns an overall score for the prioritization of

in silico generated pathways. Such a score gives the

capability of pinpointing the best candidate synthetic

pathways that are most likely to produce a desired target

molecule and can be implemented in the metabolic

network of the chassis organism. Additionally, one can

rank the scores for a certain criterion as the primary

ranking, and then perform a secondary ranking based

on another criterion. For instance, choosing pathways

with a maximum (or economically feasible) yield, and

from those pathways choosing those with a minimum

number of novel reactions, since their implementation

will involve a smaller number of engineering enzyme

steps.
www.sciencedirect.com
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Conclusions and perspectives
Computational retrobiosynthesis tools feature de novo
pathway design and prioritization for synthetic biology

and metabolic engineering studies.

Pruning approaches are crucial to avoid the risk of com-

binatorial explosion in the enumeration of de novo path-

ways. Here, we systematically classified the established

methods and proposed strategies for pruning the gener-

ated de novo pathways.

One should be careful when applying certain criteria used

for pruning the obtained data, recognizing that this is a

multi-objective problem and different applications might

give different weights to different criteria. Moreover,

some of these criteria depend upon current technologies,

and although some pathways can be currently ruled as

infeasible, new technologies could enable their realiza-

tion in the future.
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