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Abstract

It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptoti-
cally anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to 
evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in 
AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take 
about the same amount of time to evaporate down to the same size of order L, the AdS length scale. Our 
discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on 
the hyperbolic case, i.e. for black holes with negatively curved horizons.
© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Finite upper bound for Hawking radiation time

Anti-de Sitter (AdS) spacetime plays an important role in theoretical physics [1], especially 
in the holographic duality between AdS spacetime and conformal field theory (CFT) [2]. As is 
well known, AdS spacetime is not globally hyperbolic, and one needs to impose some boundary 
conditions at infinity. If the usual reflective boundary condition is chosen, a light ray from an 
arbitrary “center” in the bulk can reach the boundary and be reflected back in a finite proper 
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Fig. 1. Left: The evolution of some AdS-Schwarzschild black holes with an absorbing boundary condition imposed at 
infinity. In this example, we set the numerical value L = 100, and the initial masses of the black holes are 200, 2000, 
and 20 000, respectively. Right: A closer look toward the end of the evaporation, from which we see that these black 
holes reach the zero mass limit at about the same time of order L3/h̄, within an order of magnitude or so. The evolution 
should only be trusted quantitatively upto M ∼ L beyond which the geometric optics approximation is no longer valid. 
The following comments are true also for the other figures that show mass evolution of the various black holes in this 
work: since we have neglected the greybody factors, the lifetime is expected to be off by a few magnitudes anyway. Note 
also that in the units in which length is in centimeters, and G = 1 = c, h̄ = h̄G/c3 ≈ 3 × 10−66 cm2.

time of an observer sitting at said “center”. A large1 black hole in the bulk therefore tends not 
to evaporate, but instead achieve thermal equilibrium with its own Hawking radiation that gets 
reflected back from infinity.

However, one could choose an absorbing boundary condition instead, say by coupling the 
boundary field theory with an auxiliary system (“AUX”), such as another CFT. (In quantum 
field theory, boundary conditions are also required for quantization in a non-globally hyperbolic 
manifold. See [3] for a discussion of “transparent” vs. “reflective” boundary conditions and the 
various quantization schemes in AdS spacetime. The boundary condition also affects whether 
a given asymptotically AdS spacetime is stable under small perturbation [4,5].) With such a 
“CFT-AUX” system at work, even large AdS black holes can evaporate [6–9]. Dynamical and 
non-equilibrium scenarios are of great interest in holography [10], especially in the applications 
to material systems like condensed matter and quark gluon plasma. The understanding of the 
behaviors of evaporating large black holes is a crucial step toward this goal.

In a recent work by Don Page [11], it was shown that an asymptotically anti-de Sitter black 
hole with a standard spherical horizon of S2 topology equipped with the canonical round met-
ric (hereinafter, “AdS-Schwarzschild black hole”) takes a time proportional to L3 to evaporate 
away. Some numerical examples are provided in Fig. 1. These plots assume the mass loss of the 
black holes follow the geometric optics approximation, which of course is only true for large 
mass regime M � L. In other words, the evolution of the masses beyond M ∼ L should not be 
trusted quantitatively in the plots, though it is still qualitatively correct. As explained in [11], the 
evolution from M ∼ L down to M = 0 should take a time of around t ∼ L.

1 “Large” means the size of the black hole is larger than the AdS length scale L.
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More specifically, in d-dimensions, the evaporation time scale is [11]

tevap = CLd−1

h̄
, (1)

where C depends on the spacetime dimension and on the field content of the theory. In this work, 
we will work with the units such that c = G = 1 but h̄ �= 1. This differs from the convention 
in [11].

This result implies that even an arbitrarily large AdS-Schwarzschild black hole takes only 
a finite time, fixed by the cosmological constant, to evaporate away. This should be contrast 
with the case of an asymptotically flat Schwarzschild black hole with an initial mass M , whose 
evaporation time is proportional to M3, and therefore an arbitrarily large hole takes an arbitrarily 
long time to evaporate away.

This is not the first time we see that in some instances, it is the cosmological length scale L, 
instead of the black hole mass, that characterizes some of the physical properties of topological 
black holes. However, as we will soon discuss, most of the previous observations [9] involved 
AdS black holes with flat event horizons, i.e. black holes that are the most important in applied 
holography. In fact, it is well known that AdS black holes can have horizons which are positively 
curved, flat, and also negatively curved [12–15]. For earlier related works, see also, [16–18]. The 
metric tensor for an asymptotically locally (neutral) AdS black hole in d = n + 2 dimensions 
takes the form

g[AdS(k)] = −
(

k + r2

L2
− 16πM

nV [Xk
n]rn−1

)
dt2

+
(

k + r2

L2
− 16πM

nV [Xk
n]rn−1

)−1

dr2 + r2d�2[Xk
n], (2)

where L is the AdS length scale, and d�2[Xk
n] is a Riemannian metric of constant curvature 

k = {−1,0,+1} on the orientable manifold Xk
n, and V [Xk

n] is the dimensionless area of this 
space. For example, for k = 1 and n = 2, the underlying space is Xk

n = S2 and the dimensionless 
area is 4π . The space Xk

n is compact unless otherwise specified.
The Hawking temperature of these black holes are given by the general formula [13,15],

T = h̄

4πL2rh

[
(d − 1)r2

h + (d − 3)kL2
]
, (3)

where rh denotes the horizon. Although the main focus of this work is on the k = 0 case, we will 
also make some comments on the negatively curved case towards the end.

Let us mention a few previous observations that AdS length scale L, instead of the black 
hole mass, has characterized some properties of the toral black holes [9]. In these examples, the 
spacetime is 4-dimensional.

(1) The maximal in-falling time τmax from the horizon to the singularity for a neutral toral black 
hole is fixed by L, not the black hole mass M :

τmax =
rh∫

0

(
2M

πK2r
− r2

L2

)− 1
2

dr = πL

3
, rh =

(
2ML2

πK2

) 1
3

. (4)

(Here K is a compactification parameter of a torus, see metric (5) below.)
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In contrast, an asymptotically flat Schwarzschild black hole has maximal in-falling time 
given by

τmax =
rh∫

0

(
2M

r
− 1

)− 1
2

dr = πM; rh = 2M.

(2) The Kretschmann scalar RμναβRμναβ at the event horizon for a neutral toral black hole is 
36/L4, which is also independent of M . (The extremally charged toral case gives 144/L4

at the horizon.) For an asymptotically flat Schwarzschild black hole, on the other hand, the 
Kretschmann scalar at the event horizon is 0.75/M4.

It is therefore interesting to ask if the observation in [11] also generalizes to black holes with 
toral event horizons. In this work, we find that it does, modulo some subtle differences.

2. A subtler case for toral black holes

Let us consider a 4-dimensional neutral black hole with toral horizon. Its metric tensor is

g[T2-AdS] = −
(

r2

L2
− 2M

πK2r

)
dt2 +

(
r2

L2
− 2M

πK2r

)−1

dr2 + r2(dζ 2 + dξ2), (5)

where ζ, ξ ∈ [0, 2πK) are coordinates on a flat square torus T2 = R
2/Z2. The horizon therefore 

has an area 4π2K2r2
h , and K plays the role of a “compactification parameter”. In general the 

torus can be of other shapes (not necessarily a square), and in fact in higher dimensions, some 
quotients of tori (e.g. T2/Z2) are permitted, but for simplicity we shall focus on 4-dimensional 
flat square tori.

The Hawking temperature for this toral black hole is [9]

T = 3h̄rh

4πL2
= 3h̄M

2π2K2r2
h

; rh =
(

2ML2

πK2

) 1
3

. (6)

For an asymptotically flat Schwarzschild black hole (and also for a Schwarzschild-AdS black 
hole), the effective potential for massless particle has a local maximum at the photon orbit r =
3M , and one uses this photon sphere as the emitting surface in the geometric optic approximation. 
Of course, as emphasized in [11], this does not give a precise lifetime; to do this one has to 
explicitly compute the greybody factors2 of the various particles in the theory. In this work, 
following [11], we shall also ignore the greybody factors, since we are only concerned with the 
qualitative features of the evaporation.

As discussed in [9,20], the effective potential for massless particles in the background of a 
toral black hole geometry does not have a local maximum. For an emitted particle with angular 
momentum J , the potential is a monotonically increasing function of the coordinate radius r :

V (r) = J 2

r2

[
r2

L2
− 2M

πK2r

]
. (7)

2 For a study of greybody factors for AdS black holes, see e.g., [19]. However their analysis assumes a reflective 
boundary condition.
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This function tends to a constant value J 2/L2 as one gets close to the boundary r = ∞. It turns 
out that the relevant area A that one should use in the Stefan–Boltzmann law L ∝ AT 4 is in fact 
4π2K2L2, which is fixed by the cosmological constant instead of the black hole mass [9,20].

The mass loss equation is then (see also [21]), up to greybody factors, and in the geometric 
optics regime,

dM

dt
= −aπ2K2L2

[
3h̄M

2π2K2r2
h

]4

= −BM
4
3 , (8)

where a = π2/15h̄3 is the radiation constant. We have separated M from all the other factors, 
which we have simply denoted by B. It is, explicitly,

B = 27h̄

2
20
3 5π

4
3

K− 2
3 L− 10

3 . (9)

For later convenience, let us define a dimensionless quantity C by

B = h̄

CL− 10
3 . (10)

Solving the differential equation (8), one arrives at

M(t) =
⎡⎣ 3

Bt + 3M
− 1

3
0

⎤⎦3

, (11)

where M0 ≡ M(t0 = 0) is the initial mass.
One immediately sees that unlike the AdS-Schwarzschild black hole, toral black holes only 

tend to zero mass asymptotically.3 Naively then, any two such black holes with different initial 
masses would eventually get very close to zero mass if one waits long enough. Note that, how-
ever, this is assuming the mass loss equation as given by the geometric optics approximation 
continues to hold. In view of these, in order to compare with the result in [11] for the AdS-
Schwarzschild case, we have to phrase the question slightly differently. Note that in [11], it was 
emphasized that the geometric optic approximation is good until around rh ∼ L, and the black 
holes take a time proportional to L3 to shrink down to that size. We could then ask the same 
question for the toral case:

• For a fixed compactification parameter (say K = 1), how long does it take for a toral black 
hole of a given mass M > L to shrink down to M = L?

Indeed, as found in [20], the geometric optics approximation is good for the toral case also for 
M � L.

As we will see below, the result is indeed similar: toral black holes with initial mass greater 
than L take a time proportional to L3 to reach the mass M = L. Thus, in a very loose sense, they 
“converge” to the line M = L at about the same time (this is of course an order of magnitude 
estimate; 2 × 1066, for example, is “close” to 5 × 1066 in this sense).

3 This statement ignores other effects that could affect the black hole geometry, such as the phase transition to 
Horowitz–Myers soliton [22–25] for a sufficiently cold toral black hole. For some applications of this phase transition, 
see [9,26]. There is no phase transition to AdS background [13,14,27].
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Fig. 2. Left: The evolution of some AdS toral black holes with compactification parameter K = 1. In this example we set 
the numerical values of L to unity, and the various initial masses are 20, 200, 2000 and 20 000, respectively. Although 
these black holes have seemingly infinite lifetime, they all evaporate down to M = L in a time of order L3/h̄. Note 
that the evolution plotted here, which is assuming the geometric optics approximation, should not be trusted around and 
beyond that point; they were only meant to provide a qualitative picture. Right: A closer look of the evolution of these 
black holes near M = L (dash-dot line).

Let us start from a toral black hole of initial mass M0 and solve for the time t∗ it takes to reach 
a mass M∗. From Eq. (8), we obtained

t∗ = 3CL
10
3 M

− 1
3∗

h̄

[
1 −

(
M∗
M0

) 1
3
]

. (12)

We note that the leading term is independent of M0. This equation holds for any final mass M∗, 
but if M∗ = L, then it reduces to

t∗ = 3CL3

h̄

[
1 −

(
L

M0

) 1
3
]

. (13)

The second term is negligibly small if M0 � L. For a numerical example, see Fig. 2.
If one repeats this exercise in d = n + 2 dimensions, then if we set M∗ = Ln−1, we would 

obtain

t∗ = Cd(n + 1)Ln+1

h̄

⎡⎣1 −
(

Ln−1

M0

) 1
n+1

⎤⎦ , (14)

where we have emphasized that C = Cd is dimensional-dependent. Note, as a consistency check, 
that in d = n + 2 dimensions, mass has dimension of (length)n−1, and since the higher dimen-
sional Planck length is defined by


n
Pl = Gh̄

c3
, (15)

where G is the d-dimensional Newton’s constant, in the unit such that G = c = 1 the Planck 
constant has dimension (length)n. So indeed t∗ has the dimension of length.
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We can also ask a related question:

• Given two toral black holes with initial masses M0 and M̃0 respectively, how long does it 
take for M(t) and M̃(t) to be as close as ε apart, for any given ε > 0?

We have, again from Eq. (11),

∣∣M(t)
1
3 − M̃(t)

1
3
∣∣ = 9

∣∣M̃− 1
3

0 − M
− 1

3
0

∣∣
(Bt + 3M

− 1
3

0 )(Bt + 3M̃
− 1

3
0 )

. (16)

If 
∣∣M(t)

1
3 − M̃(t)

1
3
∣∣ < ε, then

9
∣∣M̃− 1

3
0 − M

− 1
3

0

∣∣ < ε

[
(Bt + 3M

− 1
3

0 )(Bt + 3M̃
− 1

3
0 )

]
. (17)

This yields a quadratic inequality in t , which can be solved to yield

t >
1

2B2ε

⎡⎢⎢⎢⎢⎣−3εB
(

M
− 1

3
0 + M̃

− 1
3

0

)⎛⎜⎜⎜⎜⎝1 −

√√√√√√√√1 − 4

ε

(
M

− 1
3

0 M̃
− 1

3
0 ε − ∣∣M̃− 1

3
0 − M

− 1
3

0

∣∣)(
M

− 1
3

0 + M̃
− 1

3
0

)2

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ .

(18)

It is useful to define a dimensionless quantity ε by ε := εL− 1
3 .

Now, let us consider the special case in which one of these holes have initial mass M̃0 be-
ing very large, say (L/M̃0)

1/3 ∼ εn, where n > 1. If we ignore terms εn with n > 1, then, the 
inequality (18) reduces to

t �
3M

− 1
3

0

2B

⎡⎣−1 + 2M
1
6

0√
ε

+
√

ε

4
M

− 1
6

0

⎤⎦ . (19)

For small ε, the dominant terms are the first two, and we can re-write the inequality as

t � 3CL3

h̄

[
1√
ε

(
L

M0

) 1
6 − 1

2

(
L

M0

) 1
3
]

. (20)

This is natural since for the two black holes to get close to ε-distance within each other, they 
need a longer time. The second term can be ignored if L � M0. Indeed if (L/M0)

1
3 ∼ ε — and 

recall that we assume (L/M̃0)
1
3 ∼ εn, n > 1 — then

t � 3CL3

h̄
[1 + O(ε)]. (21)

In addition to toral black holes with compact horizons, one could also study the non-compact, 
planar case, by taking both M and K to infinity in such a way that the ratio M := M/(4π2K2)

— the mass density parameter — remains finite. (The mass density is M/r2
h .) Then the differ-

ential equation (8),
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dM

dt
∝ −K− 2

3 M
4
3 (22)

reduces to

dM
dt

∝ −M 4
3 . (23)

The same analysis is therefore also applicable to planar black holes, which are truly infinite in 
extent. Their mass densities would still decrease to the order L in a time of order L3/h̄. Indeed, 
the mass density is the important physical quantity from the point of view of holography, not the 
mass per se (see, e.g., [28]). Note that the explicit K-dependence has dropped out if one works 
with the quantity M, even for the toral case. A crucial difference between the toral case and the 
planar case is that: if the periodicity of the torus is comparable to or shorter than the thermal 
wavelength of the Hawking radiation, then one would expect that there might be some changes 
in the time scales due to the discreteness of the modes.4

To be more specific, note that the gtt -component of the metric (5), upon substituting in the 
time-dependent expression of the mass as given by Eq. (11), is, for large initial mass M0, given 
by

gtt ≈ −
(

r2

L2
− A

r

L10

t3

)
, (24)

where A ∝ h̄−3 is a dimensionful constant. For the simplest case, let us consider sufficiently 
small L such that r � L and the second term of gtt can be neglected, we have gtt ≈ −r2/L2.

The local temperature at fixed value of r is given by the Tolman Law,

Tlocal = T√|gtt | . (25)

We have, in this case,

Tlocal ∼ L3

rt
. (26)

The characteristic wavelength of the radiation is therefore

λ ∼ rt
h̄

L3
. (27)

Now, the number of thermal wavelength on a circle (one of the S1-direction of the torus) with 
periodicity 2πK is

2πKr

λ
∼ KL3

h̄t
. (28)

This is large if t � KL3/h̄, but small if t � KL3/h̄.
Recall that Eq. (23) does not explicitly depend on K . In fact, we can work in terms of the 

re-scaled coordinates (t, r, x, y) = (t/K, Kr, ζ/K, ξ/K), so that t has the physical meaning of L
times the (dimensionless) proper time in the conformally related metric g[T2-AdS]/r2 at infinity 
with the conformal factor adjusted to give proper spatial circumference 2π . Then, the previous 

4 The author thanks Don Page for this comment, and the discussions in the next two paragraphs.
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calculation says that the discreteness in the modes becomes important if this re-scaled time t �
L3/h̄.

Finally, let us remark on the approximation used in Eq. (24), in which we have neglected the 
second term on the right hand side. If we have kept the second term, then Eq. (28) would have 
read

2πKr

λ
∼ KL3

h̄t

(
1 − 8πAL12

r3t3

)− 1
2

. (29)

The factor J [r] := (
1 − 8πAL12/r3t3

)−1/2
is of the form (1 − 1/x)−1/2. This is of order unity 

except for those values of x which are very close to 1. However, in calculating the Tolman 
temperature, we are interested in some fixed distance sufficiently far away from the black hole 
horizon. This for two reasons. Firstly, the Tolman temperature diverges at the horizon and the 
calculation would not make much sense there (see, however, [29]). Secondly, in the geometric 
optics approximation, we are interested at the Hawking particles that made it out pass the effec-
tive potential of the hole toward the asymptotic observers. Therefore, x indeed should not be too 
close to unity, and the inclusion of the factor J [r] only contributes another factor of O(1) to the 
overall result, and does not affect the qualitative conclusion reached above. Of course, a more 
detailed analysis is required to establish quantitatively when the discreteness of the Hawking 
modes become important for a given toral black hole, and how this affects the subsequent evap-
oration of the hole. This is beyond the scope of the present work. Here, we only point out that in 
our simple analysis, the discreteness of the mode becomes important at some time governed by, 
up to some factor, L3/h̄, which is also around the time the geometric optic approximation breaks 
down. Therefore, our analysis which does not include the discreteness effect into consideration, 
is nevertheless consistent, in so far as we are only confining our attention to the geometric optics 
regime.

3. Black holes with negatively curved horizons

Asymptotically locally AdS black holes with negatively curved horizons are quite different 
from their k = 0 and k = +1 cousins. Their horizon topologies correspond to the quotients of 
hyperbolic space Hn by some discrete group �. In particular, given a fixed spacetime dimension 
d and AdS length scale L, these black holes have a minimum size rmin, which is given explicitly 
by [13–15]:

rmin =
(

d − 3

d − 1

) 1
2

L, (30)

at which point the Hawking temperature vanishes; see Eq. (3). In fact, at this point the mass 
M = Mmin is negative, it is:

Mmin = −
(

2

d − 1

)(
d − 3

d − 1

) d−3
2 Ld−3

ωd

, (31)

where

ωd := 16π

(d − 2)V [X−1 ] . (32)

d−2
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Fig. 3. The surface defined by gtt = r2/L2 − 1 − 2η/r , with L = 1. The allowed black hole horizons are the positive 
real roots of gtt = 0, shown here as the intersection of the surface with the plane z = 0, where z labels the vertical axis. 
Note that for negative mass η, there are both an outer horizon as well as an inner horizon.

Indeed, in 4-dimensions, the gtt component of the metric tensor (2) is of the form:

r2

L2
− 1 − 2η

r
= 0, (33)

where 2η = ωdM = 8πM/(V [X−1
2 ]). If P := η2 − L2/27 is positive, then gtt has a single zero 

— and hence only one horizon — for any given η ≥ L/
√

27. However, if P < 0, then the allowed 
values of η are in the interval (−L/

√
27, +L/

√
27). If η > 0, there is still only one horizon; but 

if η < 0, there are two horizons [14]. An extremal horizon is formed when M = Mmin. Although 
these are well-known facts, for completeness we provide an illustration in Fig. 3.

For a 4-dimensional black hole with a 2-dimensional compact orientable event horizon, the 
Gauss–Bonnet theorem dictates that the total amount of the curvature is related to its topology:∫

S

K dA = 2πχ(S) = 4π(1 − g), (34)

where K is the Gaussian curvature (which is twice the scalar curvature) of the surface S, dA the 
area element, and g its genus. The quantity χ(S) = 2 − 2g is a topological invariant known as 
the Euler characteristic.

Let us consider the case of a compact hyperbolic surface of unit negative curvature with 
genus 2. By the Gauss–Bonnet theorem, its dimensionless area is 4π . Higher genus implies a 
larger (dimensionless) area for the emitting surface in the Stefan–Boltzmann law.5 See also [20]. 
Much like the toral case, the radiating surface that goes into the Stefan–Boltzmann law still only 
depends on L and the geometric optic approximation is good for η � L [20]. Note that in this 

5 In general, the area of the emitting surface also depends on the underlying topology for AdS black holes with posi-
tively curved event horizons with non-trivial topologies (not only for the flat and negatively curved cases). For example, 
in 5-dimensions, one could have “black lenses” — black holes with lens space horizon topology S3/Zp , p ∈ Z

+ , and so 
have dimensionless area 2π2/p.
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Fig. 4. Left: The evolution of some AdS hyperbolic black holes of genus 2. In this example we set the numerical values 
of L to unity, and the various initial masses are 2, 200 and 2000, respectively. Again, these black holes evaporate down 
to the size determined by M = L in a time of order L3/h̄. The evolution should not be trusted quantitatively beyond 
M ∼ L, when the geometric optics approximation breaks down. Right: A closer look of the evolution of these black 
holes near M = L (dash-dot line).

particular case, η ≡ M . One could then set up a differential equation much like Eq. (8) to model 
the evaporation rate. The numerical result, again ignoring the greybody factors, shows that these 
black holes do evaporate down to M = L in a comparable time scale, given again by ∼ L3/h̄. 
See Fig. 4.

4. Conclusion: black hole and AdS curvature scale

In this work, we generalized the recent finding in [11] to topological black holes in AdS, and 
found that, at least in general relativity, these black holes share a remarkable property — arbi-
trarily large black holes shrink via Hawking radiation to the mass scale set by the cosmological 
constant, M = L, in a finite time of the order L3/h̄. This is only a qualitative statement, and the 
correct time scale is probably off by a few order of magnitudes due to the greybody factor, which 
was ignored in this work. However, even as a qualitative statement, this is a rather remarkable 
observation, and in some sense, counter-intuitive.

Since AdS black holes play important roles in the context of holography, it would be interest-
ing to further investigate the implication of this result to the dual field theory. The fact that black 
holes with an arbitrary mass M > L takes almost the same amount of time to evaporate down 
to M = L would mean that they take about the same amount of time to reach the critical size 
at which Hawking–Page phase transition occurs [30] (which also occurs for toral black holes, to 
the Horowitz–Myers soliton [22–25]). It is tempting to think that since black holes correspond 
to some deconfinement phase on the field theory side, this would also mean that confinement–
deconfinement transition of the field theory is independent of the mass density. For interesting 
physical system like quark–gluon plasma, however, the presence of electrical charge means that 
the current analysis is not directly applicable, and a separate analysis is necessary. See [9,26]. It 
might also be interesting to look into other boundary conditions which would be more useful to 
model a certain physical system; say, perhaps a partially-reflective boundary condition.

Finally, let us remark that it is very interesting to note that a negative cosmological constant 
can affect black hole properties in many ways. For an asymptotically flat Schwarzschild black 
hole, at the classical level there is only one length scale (in the unit G = c = 1), namely the 
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mass M . So it is only natural that this length scale appears in the various properties of the ge-
ometry, such as the maximal in-falling time πM from the horizon to the spacelike singularity, 
and the evaporation time scale M3/h̄. Once there are two length scales M and L, it happens that 
sometimes a combination of M and L characterizes some properties of the black holes, as in the 
case of the well-known capture cross section of massless particles for AdS-Schwarzschild black 
hole: 27M2L2/(L2 +27M2). However, L itself characterizes some important properties of these 
spacetimes as well, such as the bound for the evaporation time we explored in this work ∼ L3/h̄, 
and some other physical quantities raised in Section 1.

The lesson here is that physics in AdS can be counter-intuitive, and since general relativity 
is a geometric theory of gravity, we should pay more attention to the effects of the underlying 
geometry and topology on the various physical properties.
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