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Abstract We show here that Fhit proteins, in addition to their
function as dinucleoside triphosphate hydrolases, act similarly
to adenylylsulfatases and nucleoside phosphoramidases, liberat-
ing nucleoside 5 0-monophosphates from such natural metabolites
as adenosine 5 0-phosphosulfate and adenosine 5 0-phosphorami-
date. Moreover, Fhits recognize synthetic nucleotides, such as
adenosine 5 0-O-phosphorofluoridate and adenosine 5 0-O-(c-flu-
orotriphosphate), and release AMP from them. With respect
to the former, Fhits behave like a phosphodiesterase I concomi-
tant with cleavage of the P–F bond. Some kinetic parameters
and implications of the novel reactions catalyzed by the human
and plant (Arabidopsis thaliana) Fhit proteins are presented.
� 2008 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Cells contain various minor nucleotides. Among these are

the dinucleoside 5 0,5000-P1,Pn-polyphosphates (NpnN 0s, where

N and N 0 are 5 0-O-nucleosides and n represents the number

of phosphate residues in the polyphosphate chain that esterifies

N and N 0 at their 5 0 position) [1]. NpnN 0s accumulate as a re-

sult of the activity of certain ligases and transferases that cat-

alyze transfer of a nucleotidyl moiety onto various acceptors

containing a pyrophosphate residue, including NTPs (pppNs)

and NDPs (ppNs), from a variety of donors. For reviews see

[2,3]. NpnN 0s play different intracellular and extracellular func-

tions [4–6]. The cellular level of NpnN 0s can be controlled by

various hydrolases or phosphorylases [7]. Among specific

hydrolases is the dinucleoside triphosphatase (EC 3.6.1.29)

that preferentially hydrolyzes NpppN 0 to an NMP and N 0DP

(see Reaction 1):

This enzyme was first discovered in Silleros� laboratory in

extracts of rat liver [8] and subsequently in extracts of yellow
adenosine 5 0-phosphoramidate; ATP-F or F-pppA, adenosine
y; TLC, thin layer chromatography
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https://core.ac.uk/display/81959512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A. Guranowski et al. / FEBS Letters 582 (2008) 3152–3158 3153
lupin seeds [9], Saccharomyces cerevisiae [10], Artemia [11], and

green algae [12]. The intriguing finding that FHIT (from fragile

histidine triad), a putative human tumor suppressor gene, en-

codes a typical dinucleoside triphosphatase [13] focused much

attention on this particular enzyme. FHIT genes occur in dif-

ferent eukaryotic organisms [14] and homogeneous Fhit pro-

teins have been obtained by overexpression of FHIT from

human [15], yeast [16] and Arabidopsis thaliana (present study).

Work described here stemmed from the investigations of the

regiospecificity of the hydrolysis of NpnN 0s and in particular

from a study on the mechanism of action of Fhit/Np3N 0

hydrolases. Preference for Np3N 0s and a unique mode of sub-

strate cleavage are features that distinguish Np3N 0 hydrolases

from other specific hydrolases acting on NpnN 0s. Using H2
18O

and mass spectrometry of the isolated reaction products, it was

first shown that the Np3N 0 hydrolase from yellow lupin exclu-

sively hydrolyzes the anhydride bond of its substrates (ApppA,

AppppA, AppCH2pA or AppCHFpA) between Pa and Pb,

incorporating 18O only into AMP [17]. It was subsequently

shown by Abend et al. that human Fhit/Np3N 0 hydrolase acts

in the same fashion [18]. Moreover, they demonstrated that

cleavage proceeds with overall retention of configuration at

phosphorus, implying a double inversion mechanism, and they

postulated that all three histidines of the histidine triad (His94,

His96 and His98) are involved in the formation of an interme-

diate in which His96 first undergoes adenylation and then

deadenylation by water. Pursuing that issue, Frey et al. showed

that Fhit and specifically mutated Fhit variants catalyzed the

hydrolysis of adenosine 5 0-phosphoimidazolide (APS or S-

pA) [19] and, poorly, of p-nitrophenyl-AMP [20]. Thus, Fhits

behave like a nucleoside phosphoramidase and phosphodies-

terase, respectively.

We demonstrated that two naturally occurring AMP deriv-

atives: sulfoadenylate (S-pA), a key metabolite on the sulfate

assimilation pathway, and adenosine 5 0-phosphoramidate

(NH2-pA, aminoadenylate), a less known natural metabolite

[21] originating from APS by enzymatic displacement of its sul-

fate moiety by ammonia [22], are Fhits� substrates. We also

showed that both human and plant (Arabidopsis) Fhits liberate

AMP from such synthetic AMP congeners as fluoro-adenylate

(F-pA) and fluoro-ATP (ATP-F).
Table 1
Various substrates of human and Arabidopsis Fhit proteins

Nucleotide Retention
time (min)a

Relative velocities of hydrolysis
(%)b

Human Fhit Arabidopsis Fhit

NH2-pA 9.7 100 100
S-pA 10.3 65 75
ApppA 11.8 58 51
F-pppA 10.2 43 90
F-pA 13.1 25 62

aThe conditions of the used HPLC are in Section 2. The retention times
for the reactions� product were: 8.8 min for AMP (pA) and 10.3 for
ADP (ppA).
bThe reaction mixture contained 50 mm Mes/KOH (pH 6.5), 5 mM
MgCl2, 1 mM substrate and rate-limiting amounts of either human or
Arabidopsis Fhit protein. The kcat values for the preferred substrate
NH2-pA were 1.26 and 1.27 s�1, respectively.
2. Materials and methods

2.1. Materials
Adenosine 5 0-O-fluorophosphate (F-pA) was synthesized according

to [23] and adenosine 5 0-O-(c-fluorophosphate) (Fpp-pA) according
to procedure developed for the synthesis of GTPcF [24]. Other adenine
(di)nucleotides were from Sigma, St. Louis, MO, USA. NH2-pA was
custom-labeled with tritium at its C-8 by Moravek Biochemicals, Brea,
CA, USA. Amino-[8-3H]inosylate (NH2-p[8-3H]I) was obtained by
deamination of NH2-p[8-3H]A catalyzed by adenosine phosphate
deaminase (EC 3.5.4.17) from Helix pomatia [25].

Primers 5 0CGACGCATATGTCGTCTACTTGTTCTTCG and
5 0CGGCTCGAGCTAGCAATCGAAAAGAGATCTG were used to
amplify the coding sequence of A. thaliana FHIT. The PCR product
obtained with A. thaliana cDNA was cloned using NdeI and XhoI
restriction sites included in the primer sequences into pSG02 vector
[26]. Plasmid for the human Fhit expression was described earlier
[27]. A. thaliana and human Fhit proteins were expressed in Escherichia
coli strain BL21. Cells were lysed by sonication in buffer A, containing
100 mM NaCl, 20 mM Tris–HCl, pH 7.5 and 2 mM dithiothreitol. Nu-
cleic acids were precipitated using polyethyleneimine at 0.1% concen-
tration. Insoluble debris was removed by centrifugation and
remaining proteins were precipitated with ammonium sulfate added
to 70% saturation. Precipitated proteins were resuspended in buffer
A and ammonium sulfate precipitation was repeated. The resulting
protein pellet was resuspended in buffer A and loaded onto an
AMP-agarose column. Unbound proteins were washed out with buffer
A and Fhit proteins were eluted with buffer A supplemented with
1 mM adenosine. This procedure yielded proteins that were about
90% pure by SDS–PAGE gel. Molecular mass of the human Fhit
monomer is 16800 Da and Arabidopsis Fhit monomer 18120 Da. Both
Fhit samples were then dialyzed against 20 mM Hepes/NaOH, pH 7.5
containing 100 mM NaCl and 5% glycerol, concentrated by ultrafiltra-
tion on Microcone filters from Millipore to 1.3 mg/ml in case of the hu-
man Fhit and to 1.5 mg/ml in case of the Arabidopsis Fhit, and stored
at �20 �C.

2.2. Enzyme assays
Hydrolytic activities of the Fhit proteins were assayed in reaction

mixture (0.1 ml) containing 50 mM Mes/KOH (pH 6.5), 5 mM MgCl2,
1 mM substrate and rate-limiting amounts of either human or plant
Fhit protein. The reactions were carried out at 30 �C. At time intervals
(0, 5, 10 and 30 min), 20 ll aliquots were withdrawn and the reaction
stopped by heating the samples for 5 min at 96 �C. The samples were
chilled, diluted three-fold with 50 mM TEAB (triethylamine buffer,
pH 7.4), filtered through ultrafree-MC filters (from Millipore) and
10 ll aliquots subjected to high performance liquid chromatography
(HPLC) on a Discovery C18 column (4.6 · 250 mm, 5 lm); Supelco
at a flow rate 1 ml/min. The column was eluted with a linear gradient
of 50 mM TEAB (pH 7.4) (solvent A) and solvent A:acetonitrile
(60:40, v/v) (solvent B); 0–19 min, 40% B. The retention times of the
nucleotides are presented in Table 1. At the aforementioned experi-
mental conditions there was a linear dependence between time and
AMP, the reaction product, peak areas. This allowed to calculate
and compare the rates of the hydrolysis of investigated substrates.

The nucleoside phosphoramidase activity of the Fhits was estimated
in a reaction mixture containing 50 mM Mes/KOH (pH 6.5) and
appropriate concentration of NH2-p[8-3H]A. When the Km values were
estimated the radiolabeled substrate concentration varied between 1
and 15 lM. At time intervals, 5 ll aliquots of the reaction mixture were
spotted onto thin layer chromatography (TLC) aluminum plates pre-
coated with silica gel containing fluorescent indicator (from Merck),
standards of NH2-pA and AMP applied at the origin and the plates
developed for 60 min in dioxane/ammonia/water (6:1:4, by vol.). Spots
of the nucleotides were visualized under short-wave UV light and those
of the reaction product (AMP) cut out, immersed in a scintillation
cocktail, and radioactivity counted.

Ki values of different nucleotides used in competition with NH2-
p[8-3H]A in the nucleoside phosphoramidase reaction were determined
in a reaction mixture (50 ll) containing 50 mM Mes/KOH (pH 6.5),
5 mM MgCl2, 2.75 lM NH2-p[8-3H]A (580000 c.p.m.) and varied con-
centrations of one of the following nucleotides: AMP, ADP, ATP,
Ap3A, S-pA, F-pA or adenosine-5 0-O-(c-fluoridotriphosphate) (ATP-
F or F-pppA). Reaction rates were estimated as described above. Ki

values were calculated according [28].
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2.3. NMR spectroscopy
1D 31P NMR spectra were recorded on a Bruker DRX 500 spec-

trometer with a 5 mm BB probe. 1D 19F NMR spectra were recorded
on the same spectrometer using a 5 mm 1H/19F dual probe. Data were
processed using Felix (Felix-NMR Inc., San Diego). Standard Bruker
referencing was used (1 M phosphoric acid for 31P, and trichlorofluo-
romethane for 19F).
3. Results

3.1. Identification and cloning of the A. thaliana FHIT gene

BLAST algorithm was used to search for the A. thaliana

proteins similar to known Fhit proteins. The search identified

product of the At5g58240 gene as the most likely candidate.

The At5g58240 protein was 50% identical to human Fhit

and 46% identical to S. cerevisiae Hnt2, whereas its similarity

to Hint nucleoside phosphoramidases from the same organ-

isms was much lower (27% and 23% identity to S. cerevisiae

Hnt1 and human Hint1, respectively). Based on these results

and on the catalytic properties we decided that At5g58240 gene

encoded genuine Fhit protein. The complete A. thaliana

FHIT-coding sequence was PCR-amplified, cloned and se-

quenced. The obtained sequence was identical to the mRNA

sequence deposited in GENEBANK under accession number

AK228164.

3.2. Fhit proteins behave as nucleoside phosphoramidases

Earlier observations that human Fhit protein effectively

hydrolyzed the P–N bond in adenosine 5 0-phosphoimidazolide

[19] led us to check whether NH2-pA, the simplest and natu-

rally occurring nucleoside phosphoramidate, is also recognized

as substrate by the human and plant Fhits. Analysis of reac-

tion mixtures in which NH2-pA was the only potential sub-

strate of the Fhits was performed first by TLC (Fig. 1) and

then by HPLC (Table 1). It clearly showed that Fhits act as

adenosine phosphoramidases and catalyze the Reaction 2:
Fig. 1. Hydrolysis of different substrates by the human Fhit analyzed by TLC
(pH 6.5), 5 mM MgCl2, 1 mM indicated substrate and 0.2 lg of recombinan
3 ll aliquots were spotted on a TLC plate (aluminium precoated with silica c
developed in dioxane:ammonia:water (6;1:4, by vol.) and photographed und
In order to estimate the kinetic parameters of this reaction

by the most direct and sensitive method, we used tritium-la-

beled NH2-pA as a substrate to determine pH optimum, metal

ion requirements, Km and kcat values, and also Kis for different

nucleotides that act in the phosphoramidase reaction as sub-

strate competitors. The two Fhit proteins investigated cata-

lyzed cleavage of the P–N bond in NH2-pA most effectively

at neutral pH in a reaction independent of Mg2+. Km values

estimated in 50 mM Mes/KOH buffer (pH 6.8) were

3 ± 0.7 lM both for the human and Arabidopsis Fhits and kcat

values were calculated to be 1.26 and 1.27 s�1, respectively.

Using non-specific adenosine phosphate deaminase [25] we

converted NH2-p[8-3H]A into NH2-p[8-3H]I and demonstrated

that the latter was also deaminated to IMP by the Fhits. Cleav-

age of the P–N bonds in those two substrates (1 mM) pro-

ceeded at the same rate. Finally, we estimated the Ki values

for the human and Arabidopsis Fhits from the effects exerted

by nucleotides used by the enzymes either as substrates for

other reactions (see below) or as products (Table 2). Generally,

human Fhit recognized fluoroadenylates more poorly than did

its plant counterpart. Tested as an adenosine phosphorami-

dase, human Fhit was practically not inhibited by F-pA and

F-pppA, whereas Arabidopsis Fhit was; with the Ki values

approximately one (for F-pA) and two (for F-pppA) orders

of magnitude higher than the Km for NH2-pA. Both Fhits were

inhibited with comparable effectiveness by AMP, one of the

reaction products. ADP and ATP, poorly inhibited the plant

enzyme and were practically without effect when tested in the

reaction catalyzed by the human one. The nucleoside-phos-

phoramidase reaction catalyzed by Fhits, i.e., the hydrolysis

of NH2-pA or NH2-pI, was inhibited neither by Ap3A nor

by F-pppA in the absence of Mg2+, which is a co-substrate

of the reactions of hydrolysis of Ap3A or F-pppA (see below).

Analysis of the data (Tables 1 and 2) shows that the more effec-

tive is the nucleotide as a substrate of Fhit, the stronger is its

inhibitory effect on the conversion of NH2-pA into AMP

and NH3.
. The reaction mixture (50 ll final volume) contained 50 mM Mes/KOH
t human Fhit. Incubation was carried out at 30 �C. At times indicated,
ontaining fluorescent indicator, from Merck). The chromatogram was
er short-wave UV light.
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3.3. Fhit proteins act as adenylyl sulfate sulfohydrolase

We further tested the promiscuity of Fhits in catalyzing the

hydrolysis of different AMP-containing compounds. We found

that the mixed anhydride, sulfoadenylate (S-pA), was also rec-

ognized by the Fhits as a substrate (Reaction 3):
This liberation of AMP from S-pA did not require Mg2+. At

1 mM substrate concentration the catalytic release of AMP

from S-pA proceeded at only slightly lower rates than the re-

lease of AMP from NH2-pA: 1.5-fold lower with the human

Fhit and 1.3-fold lower with Arabidopsis Fhit (Table 1).

3.4. Fhit proteins catalyze the hydrolysis of P–F bond

Adenylylfluoride (F-pA), was also tested as a potential sub-

strate of human and plant Fhits. We have found that this non-

natural nucleotide is also recognized as substrate for which P–

F cleavage does not depend on Mg2+ (Fig. 1 and Table 1, see

Reaction 4):
The rates of release of AMP from F-pA were 4- and 1.6-fold

lower for the human and plant Fhits, respectively, than those

from NH2-pA.

3.5. Liberation of AMP from F-pppA

We have also examined the substrate behavior of F-pppA.

This ATP analogue is recognized as a substrate of Fhits only

in the presence of Mg2+ and was cleaved to AMP (Fig. 1)

and fluoropyrophosphate (Reaction 5):
The hydrolysis products were identified by 31P NMR. Three

major peaks are present in the 1D spectrum of the reaction

products (Fig. 2). These correspond to AMP (3.6 ppm, [29]),

and fluoropyrophosphate. The 2JPP coupling (17 Hz) and
1JPF coupling (920 Hz) are as expected for fluoropyrophos-

phate, while fluoromonophosphate would give rise to a double

singlet at �3 ppm [30,31].
We also confirmed earlier observations [13] that Fhit pro-

teins do not hydrolyze ATP, ADP and adenosine 5 0-tetraphos-

phate. It can be added here that ADP-ribose was also not

cleaved to AMP and that diadenosine pyrophosphate (AppA),

a good substrate for phosphodiesterase I, was hydrolyzed at an
extremely low rate; more than 10000-fold slower than the rate

of the hydrolysis of NH2-pA.
4. Discussion

Fhit proteins comprise one of three branches of proteins

within the HIT superfamily [14]. Whereas Fhits have been rec-

ognized primarily as typical dinucleoside triphosphatases

[10,16], their adenosine phosphoramidase activity is known

as a feature of a different branch called Hint [14,32,33]. In their

elucidation of the mechanism of human Fhit action, Huang
et al. showed that the enzyme cleaves adenosine phosphoimi-

dazolide, an analog of the reaction intermediate having a

P–N bond. We have used the simplest nucleoside phosphoram-

idate, NH2-pA, and established that both human and Arabid-

opsis Fhits function as effective nucleoside phosphoramidases.

It has already been shown that two enzymatic activities capa-

ble of deaminating NH2-pA and yielding AMP exist in a high-

er plant (Lupinus luteus). One of them was a feature of the

yellow lupin Ap3A hydrolase and the other a typical nucleoside
phosphoramidase that did not exhibit the Ap3A-ase activity

[34]. Those and the present observations concerning the Ara-

bidopsis Fhit strongly suggest that the yellow lupin enzyme

characterized previously as a dinucleoside triphosphatase [35]

is in fact a Fhit protein.

Our current study also shows that Fhit proteins catalyze

cleavage of S-pA to AMP and sulfate. Till now that reaction



Table 2
Inhibition of the adenosine phosphoramidase activity of human and
Arabidopsis Fhit proteins by various nucleotides

Inhibitor Ki (lM)

Human Fhit Arabidopsis Fhit

S-pA 13.6 ± 2.2 7.1 ± 1.6
ApppA/Mg2+ 18.0 ± 3.0 2.1 ± 0.2
F-pppA/Mg2+ >1000 235 ± 35
F-pA >1000 18.2 ± 0.7
pA 110 ± 15 113 ± 18
ppA >1500 140 ± 20
pppA >2000 145 ± 22

Ki values are means of three independent determinations. For details
see Section 2.2. The Km values estimated for adenosine 50-phosphor-
amidate for the both Fhits were 3 lM.
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has been assigned to an adenylyl sulfate sulfohydrolase (EC

3.6.2.1). Such an enzymatic activity was identified in rat liver

extracts and it did not hydrolyze ATP [36]; as is the case with

Ap3A hydrolases/Fhits [33, and this study]. Neither ApppA

nor NH2-pA was then tested as potential substrates of that sul-

fohydrolase.

Because of the nucleoside phosphoramidase and the aden-

ylyl sulfate sulfohydrolase activities identified in this work,

Fhits must now be considered as enzymes involved in the

metabolism of many AMP-containing compounds, a list mini-

mally including diadenosine triphosphate, naturally occurring

nucleoside 5 0-phosphoramidates and adenosine 5 0-phosphosul-

fate. The influence of Fhits on the metabolism of adenosine 5 0-

phosphosulfate may be even more important for cells than

Fhits regulation of the metabolism of dinucleoside triphos-

phates. The newly revealed activities should be taken into ac-

count particularly in the study of the anti-oncogenic function

of Fhit and extend it beyond the binding and/or hydrolysis

of dinucleoside polyphosphates [37,38].

It has been known for some time that mutations or deletions

of the Fhit genes results in an increased incidence of spontane-

ous tumor formation in humans [37]. Recently, a similar corre-

lation has been observed in mice having a deletion of the Hint

gene [39]. The results of our study suggest that in vivo Fhit
Fig. 2. 31P NMR spectrum of the products of the reaction of ATP-cF with hu
Hepes/KOH (pH 7.8), 5 mM MgCl2, 1 mM F-pppA and 1 lg of the human F
by TLC. Peaks are assigned as follows: 3.6 ppm (singlet) AMP; �5.8
1JFP = 920 Hz, 2JPP = 17 Hz), fluoropyrophosphate (FPP). Spectra were recor
resulting in 338 ms acquisition time. Couplings are accurate to 3 Hz. Assign
may recognize Hint substrates, i.e., at least nucleoside phos-

phoramidates. The loss of Hint may thereby be alleviated by

Fhit enzymatic activity. Therefore, potential defects caused

by the loss of HINT may be visible only when FHIT is also

inactivated.

Their capacity to liberate AMP from F-pA broadens the cat-

alytic promiscuity of Fhits and shows that, with respect to

cleavage of the P–F bond, Fhits act like a phosphodiesterase

I (EC 3.1.4.1), as first reported by Wittmann [23]. Subse-

quently, the latter enzyme was demonstrated to split the P–F

bond in uridine 5 0-O-phosphorofluoridate [40], inosine 5 0-O-

phosphorofluoridate [41] and thymidine 5 0-O-phosphorofluor-

idothioate [42].

Liberation of AMP from F-pppA sheds new light on the

substrate requirements of Fhits. F-pppA appears to mimic

one of the natural substrates of Fhits, ApppA, both nucleo-

tides having three phosphate negative charges. In Fhit-cata-

lyzed reactions, the nucleophilic histidine attacks Pa in both

nucleotides to displace ADP in case of ApppA but fluoropyro-

phosphate in the case of F-pppA. In the past, F-pppA has been

studied in various enzymatic systems. Haley and Yount re-

ported that the compound was cleaved to AMP and fluoropy-

rophosphate by snake venom phosphodiesterase [43]. Thus,

the latter behaves as the Fhits.

The newly identified properties of Fhits can also be used in

studies on the delivery of pronucleotides to target cells or

organisms [44]. It seems viable that nucleoside phosphorami-

dates can be employed as nucleotide prodrugs. The same

may be true for nucleoside phosphofluoridates that are also

less polar than nucleoside monophosphates and therefore

should penetrate the cell membrane better. As mentioned

above, the plant-specific phosphoramidase did not hydrolyze

ApppA [34]. Whether such specific phosphoramidases can

cleave nucleoside phosphofluoridates thereby liberating nucle-

oside monophosphates from prodrugs is worthy of further

study. Our work shows that both the specific nucleoside phos-

phoramidases (Hint proteins) and Fhits may be important in

the metabolism of such prodrugs.
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man Fhit. The reaction mixture (0.1 ml total volume) contained 50 mM
hit. The reaction was carried out at 25 �C and its completion confirmed
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ded with 32 K scans using a spectral width of 12136 Hz and 4 K points
ments made in comparison to those published [30,45].
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[25] Guranowski, A., Starzyńska, E., Günther Sillero, M.A. and

Sillero, A. (1995) Conversion of adenosine (5 0)oligophos-
pho(50)adenosines into inosine(50)oligophospho(50)inosines by
non-specific adenylate deaminase from the snail Helix pomatia.
Biochim. Biophys. Acta 1243, 78–84.

[26] Ghosh, S. and Lowenstein, J.M. (1996) A multifunctional vector
system for heterologous expression of proteins in Escherichia coli.
Expression of native and hexahistidyl fusion proteins, rapid
purification of the fusion protein, and removal of fusion peptide
by Kex2 protease. Gene 176, 249–255.

[27] Brenner, Ch., Pace, H.C., Garrison, P.N., Rösler, A., Liu, X.H.,
Blackburn, G.M., Croce, C.M., Huebner, K. and Barnes, L.D.
(1997) Purification and crystallization of complexes modeling the
active site of the fragile histidine triad protein. Protein Eng. 10,
1461–1463.

[28] Dixon, M. and Webb, E.C. (1964) Enzymes, second ed, Academic
Press, New York.

[29] Gradwell, M.J., Fan, T.W.M. and Lane, A.N. (1998) Analysis of
phosphorylated metabolites in crayfish extracts by two-dimen-
sional 1H–31P NMR heteronuclear total correlation spectroscopy
(heteroTOCSY). Anal. Biochem. 263, 139–149.

[30] Iuliucci, R.J. and Meier, B.H. (1998) A characterization of the
linear P–O–P bonds in M4 + (P2O7) compounds: bond-angle
determination by solid-state NMR. J. Am. Chem. Soc. 120, 9059–
9062.

[31] Yoza, N., Nakashima, S., Ueda, N., Miyajima, T., Nakamura, T.
and Vast, P. (1994) High performance liquid chromatographic
characterization of monofluorophosphate, difluorophosphate and
hexafluorophosphate. J. Chromatogr. A 664, 111–116.

[32] Bieganowski, P., Garrison, P.N., Hodawedekar, S.C., Faye, G.,
Barnes, L.D. and Brenner, Ch. (2002) Adenosine monophosph-
oramidase activity of Hint and Hnt1 supports function of Kin28,
Cc11, and Tfb3. J. Biol. Chem. 277, 10852–10860.

[33] Krakowiak, A., Pace, H.C., Blackburn, G.M., Adams, M.,
Mekhalfia, A., Kaczmarek, R., Baraniak, J., Stec, W.J. and
Brenner, Ch. (2004) Biochemical, crystallographic, and mutagenic
characterization of Hint, the AMP-lysine hydrolase, with novel
substrates and inhibitors. J. Biol. Chem. 279, 18711–18716.

[34] Guranowski, A., Bieganowski, P., Baraniak, J., Rydzik, A.,
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