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Abstract

We consider the possible cardinalities of the following three cardinal invariants which are related to the permutation group on
the set of natural numbers:

ag := the least cardinal number of maximal cofinitary permutation groups;
a p := the least cardinal number of maximal almost disjoint permutation families;
c(Sym(N)) := the cofinality of the permutation group on the set of natural numbers.
We show that it is consistent with ZFC that a p = ag < c(Sym(N)) = ℵ2; in fact we show that in the Miller model

a p = ag = ℵ1 < ℵ2 = c(Sym(N)).
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Let Sym(N) be the group of bijections from the natural numbers to the natural numbers. A permutation g ∈ Sym(N)

is cofinitary if and only if g is the identity or has only finitely many fixed points. A group H ≤ Sym(N) is cofinitary if
and only if all its members are cofinitary. See [5], a survey paper by P. Cameron, for a discussion of different aspects
of cofinitary groups. Since the union of a chain of cofinitary permutation groups is cofinitary, Zorn’s Lemma implies
that maximal cofinitary groups do exist, and indeed any cofinitary group is contained in a maximal one. The following
theorem was proved by Adeleke [1] and Truss [10].

Theorem 1. If H ≤ Sym(N) is a maximal cofinitary group, then H is not countable.

Also, P. Neumann proved the following result (see, e.g. [5, Proposition 10.4]).

Theorem 2. There exists a cofinitary group of cardinality 2ℵ0 .

Thus, P. Cameron (in [5]) asked the following question.

Question 3. If the continuum hypothesis (CH) fails, is it possible that there exists a maximal cofinitary group H such
that |H | < 2ℵ0?
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Here maximal is with respect to inclusion (a maximal cofinitary group is a cofinitary group not properly contained
in another cofinitary group). In [11], this question was answered by proving the following results.

Theorem 4. Martin’s Axiom (MA) implies that, if H ≤ Sym(N) is a maximal cofinitary group, then H has cardinality
2ℵ0 .

Theorem 5. Let M |= ZFC + ¬CH. Let κ ∈ M be a cardinal such that ℵ1 ≤ κ < 2ℵ0 = λ. Then there exists a
countable chain condition notion of forcing P such that the following statements hold in MP:

(1) 2ℵ0 = λ;
(2) there exists a maximal cofinitary group H ≤ Sym(N) of cardinality κ .

Hence the following cardinal number is non-trivial:

ag := min{|H | : H ≤ Sym(N) is a maximal cofinitary group}.
Two permutations f, g ∈ Sym(N) are almost disjoint if and only if | f ∩g| < ℵ0, i.e. the set {n ∈ N : f (n) = g(n)}

is finite. A family A ⊆ Sym(N) is almost disjoint iff every two distinct members of A are almost disjoint. It is easily
seen that G ≤ Sym(N) is cofinitary iff G is both an almost disjoint set of permutations and a group. We can prove the
corresponding results to Theorems 4 and 5 for maximal almost disjoint families in Sym(N). S. Thomas suggested a
cardinal invariant as follows (e.g. [12] or [13]).

ap := min{|A| : A ⊆ Sym(N) is a maximal almost disjoint family}.
Suppose that H is a group that is not finitely generated. Then H can be expressed as the union of a chain of proper

subgroups. The cofinality of H , written c(H ), is defined to be the least λ such that H can be expressed as the union
of a chain of λ proper subgroups. The following result was proved by H.D. Macpherson and P. Neumann in [6].

Theorem 6. If κ is an infinite cardinal, then c(Sym(κ)) > κ .

Upon learning of Theorem 6, A. Mekler and S. Thomas independently pointed out the following easy observation
(see, e.g. [9]).

Theorem 7. Suppose that M |= κω = κ > ℵ1. Let P = Fn(κ, 2) be the partial order of finite partial functions from
κ to 2. Then MP |= c(Sym(N)) = ℵ1 < 2ℵ0 = κ .

Although it can be proved that MA implies c(Sym(N)) = 2ℵ0 (see, e.g. [9]), some results indicate that c(Sym(N))

is rather small among the cardinal invariants. We give two examples:

(I) If we let d be the dominating number (the minimum cardinality of a dominating family in NN), then we know that:

Theorem 8. c(Sym(N)) ≤ d.

For a proof of this see [9].

(II) A notion of forcing P is Suslin if and only if P is a �1
1 subset of R and both ≤P and ⊥P are �1

1 subsets of R × R,
where R denotes the reals. The following result can be proved (see, e.g. [13]).

Theorem 9. Let M |= ZFC + GCH. Let P be a Suslin c.c.c. notion of forcing which adjoins reals and let Q be the ℵ2
length finite support iteration of P. Then MQ |= c(Sym(N)) = ℵ1.

On the other hand, we can prove in ZFC the following theorem (see, e.g. [4]).

Theorem 10. Non(M) ≤ ap, ag, where Non(M) is the size of the smallest non-meager set of reals.

As a corollary of Theorems 9 and 10, we know the following.

Corollary 11. It is consistent with ZFC that c(Sym(N)) = ℵ1 < ap = ag = 2ℵ0 = ℵ2.

Proof. Iteratively add ℵ2 random reals with finite support to a ground model M |= ZFC + GCH. �

The obvious question left to answer is whether we can prove c(Sym(N)) ≤ ap, ag . In the second section, we will
give a negative answer to this question, namely we will show that it is consistent with ZFC that ap = ag < c(Sym(N)).

In the third section, we will state several open problems in this area.
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2. The theorems

In [7], J. Moore, M. Hrušák and M. Džamonja introduced weakenings of the diamond principle related to cardinal
characteristics. We will first study the effect of one of these weakenings of the diamond principle on families related
to the symmetry group of the natural numbers.

Definition 12. NN is the Baire space, the space of all functions from the natural numbers, N, to the natural numbers.
=∞ is the relation on Baire space of infinite equality, i.e. for f, g ∈ NN we have f =∞ g iff {n ∈ N : f (n) = g(n)}
is infinite.

A function F : <ω1 2 → NN is a Borel function iff for all δ < ω1 the function F � δ2 : δ2 → NN is Borel.
♦(NN,=∞) is the following guessing principle:

For every Borel function F : <ω1 2 → NN there is a function G : ω1 → NN such that for every f : ω1 → 2 the set

{δ < ω1 : F( f � δ) =∞ G(δ)}
is stationary.

A G related to F in this way is called a ♦(NN,=∞)-sequence for F .

We will study the effect of this ♦-principle on the cardinal invariants ap and ag .

Theorem 13. ♦(NN,=∞) implies ap = ℵ1.

Proof. We will define a map F such that the ♦(NN,=∞)-sequence for it will help us build a sequence of permutations
〈pα : α < δ〉 which will be a maximal almost disjoint family of permutations of N.

To define F : <ω1 2 → NN, by coding we let its domain be the set of pairs (〈pα : α < δ〉, p) with {pα : α < δ}∪{p}
a family of permutations. This coding works on a club C ⊆ ω1, which is enough. Outside this club we let F be any
constant map. Also by coding we let its range be N(N ∪ <ω(N × N)). We also fix for every δ < ω1 a bijection
eδ : N → δ.

If {pα : α < δ} ∪ {p} is not almost disjoint, we define F(〈pα : α < δ〉, p)(n) = n. Otherwise, we define
F(〈pα : α < δ〉, p)(n) to be

(
(k0, p(k0)), (k1, p(k1)), . . . , (k6n, p(k6n))

)
with

• k0 the least number such that p(k0) �∈ {peδ( j )(k0) : j ≤ n}, and
• ki+1 the least number strictly bigger than ki such that p(ki+1) �∈ {peδ( j )(ki+1) : j ≤ n}.

Since the family is almost disjoint, these ki exist.
For any δ < ω1 the function F restricted to those (〈pα : α < δ〉, p) for which {pα : α < δ} ∪ {p} is an almost

disjoint family is continuous. Since for fixed δ the set of (〈pα : α < δ〉, p) for which {pα : α < δ} ∪ {p} is an almost
disjoint family is a Borel set, this shows that F is a Borel function.

Let G : ω1 → NN be a ♦(NN,=∞)-sequence for this F . We define G(δ)(n) to be a valid guess for 〈pα : α < δ〉,
a family of almost disjoint permutations, iff

• G(δ)(n) = (
(k0, o0), (k1, o1), . . . , (k6n, o6n)

)
for some ki , oi ∈ N,

• all ki are distinct, and
• all oi are distinct and oi �∈ {peδ( j )(ki ) : j ≤ n}.

Note that for any δ < ω1, n ∈ N, and any permutation almost disjoint from all pα, if F(〈pα : α < δ〉, p)(n) =
G(δ)(n) then G(δ)(n) is a valid guess for 〈pα : α < δ〉.

Now we use G to construct 〈pα : α < ω1〉 recursively. So suppose 〈pα : α < δ〉 have been defined. Then define pδ

recursively, pδ := ⋃
s∈N pδ,s where

(P1) pδ,0 := ∅,
(P2) p′

δ,s+1 := pδ,s if G(δ)(s) is not a valid guess for 〈pα : α < δ〉,
(P3) p′

δ,s+1 := pδ,s ∪ {(ki , oi )} if G(δ)(s) = (
(k0, o0), (k1, o1), . . . , (k6s, o6s)

)
is a valid guess for 〈pα : α < δ〉 and

i is least such that ki �∈ dom(pδ,s) and oi �∈ ran(pδ,s),
(P4) p′′

δ,s+1 := p′
δ,s+1 ∪ {(a, b)} where a is the least number not in dom(p′

δ,s+1) and b is the least number not in
ran(p′

δ,s+1) and not in {peδ( j )(a) : j ≤ s}, and
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(P5) pδ,s+1 := p′′
δ,s+1 ∪ {(c, d)} where d is the least number not in ran(p′′

δ,s+1) and c is the least number not in

dom(p′′
δ,s+1) and not in {p−1

eδ( j )(d) : j ≤ s}.
Note that |pδ,s| is at most 3s. This means we can do step (P3), as the requirement ki �∈ dom(pδ,s) excludes at most

3s pairs in G(δ)(s), oi �∈ ran(pδ,s) excludes at most another 3s pairs in G(δ)(s), and G(δ)(s) has 6s + 1 pairs, always
leaving at least one pair.

Now pδ is a permutation almost disjoint from all pα, α < δ. This completes the construction of 〈pα : α < ω1〉.
It remains to see that this almost disjoint family of permutations is maximal. We do this by contradiction; suppose,

therefore, that there is a permutation p almost disjoint from all pα, α < ω1. Then the set

{δ < ω1 : F(〈pα : α < δ〉, p) =∞ G(δ)}
is stationary. Remember that we use a coding for the inputs of the function F , and note that, if this coding is reasonable,
the sequence δ �→ (〈pα : α < δ〉, p) determines a path f : ω1 → 2 in the tree <ω12.

Now let δ be a member of this set (and the club C , the club where our coding for inputs works). Then
F(〈pα : α < δ〉, p) =∞ G(δ), which means there are infinitely many n such that G(δ)(n) is a valid guess
for 〈pα : α < δ〉, and all the pairs in G(δ)(n) belong to p. So we hit p infinitely often with pδ, which is a
contradiction. �

For our next result we will use some results from [8] by S. Gao and Y. Zhang (the definitions of WG and good
extensions and Lemmas 17 and 18 are theirs).

We start by noting that H ≤ Sym(N) is a cofinitary group if it is a group and all nonidentity members are almost
disjoint from the identity. This is equivalent to H being a group and an almost disjoint family (g, h ∈ Sym(N) are
almost disjoint iff gh−1 is almost disjoint from the identity).

Definition 14. For H ⊆ Sym(N) and x a variable, let WH be the set of words of the form

w = w(x) = g0xk0 g1 · · · xkl gl+1,

where gi ∈ H , gi �= Id for 0 < i ≤ l, and ki ∈ Z \ {0}.
For w ∈ WH , we define #x(w) = ∑l

i=0 |ki |, the number of occurrences of x in w, and lh(w) = ∑l
i=0 |ki | + l + 2,

the length of the word. We also define w(i) to be the i th letter in w counted from the right (if w = g0x2g1, then
w(0) = g1, w(1) = x , w(2) = x , and w(4) = w(lh(w)) = g0).

For p : N ⇀ N a partial function, w(x) ∈ WH and n ∈ N, we define the evaluation path for n in w(p) to be the
sequence 〈li ∈ N : i ≤ j〉, with l0 := n, li+1 := w(i)(p)(li ) and w( j )(p)(l j ) not defined or j = lh(w) (if w(p)(l) is
defined).

The pairs (li , li+1) of p are the pairs of p used in this evaluation. For a general function f (possibly partial) we
call (n, f (n)) a pair from f .

For w ∈ WH and finite one-to-one functions p, q such that p ⊆ q we say that q is a good extension of p with
respect to w if the following condition is satisfied:
if for some l ∈ N

w(p)(l) is undefined and w(q)(l) = l,

then there are subwords u and z of w and n ∈ N such that

w = uzu−1 without cancelation,

u−1(q)(l) = n, and z(p)(n) = n.

In the same context we call q a very good extension of p with respect to w if w(q) has no more fixed points than
w(p).

Note that a very good extension is a good extension.
The usefulness of good extensions comes from the following: Let H be a countable cofinitary group and

〈wn : n ∈ N〉 and enumeration of WH . Then if g = ⋃
s∈N gs with all gs finite injective functions such that g is

a bijection and gs+1 is a good extension of gs with respect to the words w0, . . . , ws , then the group 〈H, g〉, the group
generated by H and g, is also cofinitary.
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We see this from the following facts:

• For every h ∈ 〈H, g〉 there is a w ∈ WH such that h = w(g).
• For every w ∈ WH the bijection w(g) is cofinitary.

The first fact is immediate, and the second follows from the fact that w = ws for some s ∈ N. Then from gs on we
only take good extensions with respect to w. This means that w(g) ends up with only the fixed points that it is forced
to have by what gs is, and of those there are only finitely many.

The following two lemmas show that we can construct a function F similar to the F in the proof of Theorem 13
but for maximal cofinitary groups.

Lemma 15. Let H be a cofinitary group, f ∈ Sym(N) \ H such that 〈H, f 〉 is a cofinitary group and w ∈ WH . Then
for every k ∈ N there exists a finite set S of pairs from f such that for every finite injective map p with |p| less than k
there exists a pair (a, b) in S such that p ∪ {(a, b)} is a very good extension of p with respect to w.

Proof. First we will find an infinite subset f ′ of f such that w( f ′) has no fixed points, then we will show that a big
enough finite subset of f ′ exists. The first step ensures that we do not have to worry about fixed points caused by pairs
from f alone. The second part is done by counting how many pairs from f ′ could combine with pairs from p to cause
a fixed point.

Obtaining f ′ from f is done differently depending on whether w( f ) is the identity or not.
If w( f ) is not the identity, then it has only finitely many fixed points. Let f ′ be equal to f with for each of those

finitely many fixed points one pair from f used in the evaluation path of that fixed point removed. We have ensured
that w( f ′) has no fixed points.

If w( f ) is the identity, then we know there is more than one occurrence of x in w(x) (since f �∈ H ). So either
there is an occurrence of x2 or x−2, or there is a subword of the form xε0 gxε1 , with εi ∈ {−1,+1} and g ∈ H . In
either case there are only finitely many evaluation paths of w( f ) that use the same pair from f in both these selected
occurrences of x (use that f has only finitely many fixed points for the first case, and that f �∈ H for the second case).
Remove these finitely many pairs from f to obtain f ′′.

Now we have to find an infinite subset f ′ of f ′′ such that w( f ′) is nowhere defined (which in this case is equivalent
to not having fixed points).

We do this by well ordering N × N and recursively doing the following: Take the least pair (a, b) of f ′′ and add
it to f ′. Then remove from f ′′ this pair (a, b) and all finitely many pairs (actually at most 2) which are used in an
evaluation path in one of the selected occurrences of x where (a, b) is used in the other selected occurrence of x .

We end up with an infinite f ′ such that w( f ′) is indeed nowhere defined.
Now we examine for a given p, an injective map with |p| = l ≤ k, how many pairs (a, b) of f ′ can have that

p ∪ {(a, b)} is not a very good extension of p for w.
First there are at most 2l pairs (a, b) from f ′ that have a ∈ dom(p) or b ∈ ran(p). Remove these from f ′ to obtain

f̃ . Now we look at w(p ∪ f̃ ); any fixed point of w(p ∪ f̃ ) that was not a fixed point of w(p) has an evaluation path
where both pairs from p and from f̃ are used. If we remove one pair from f̃ for each of those evaluation paths to
obtain f̂ the partial permutation w(p ∪ f̂ ) will only have fixed points that w(p) already had.

So we only have to find an upper bound for the number of evaluation paths using both pairs from p and f̃ . This
upper bound is attained if for each occurrence of x in w and any pair of p, it gets to be completed to an evaluation
path with all pairs from f̃ . This gives us |p| · #x(w) as an upper bound.

So in total at most 2l + l · #x(w) pairs (a, b) of f ′ are such that p ∪ {(a, b)} is not a very good extension of p with
respect to w.

This means that if we take S to consist of 2k + k · #x(w) + 1 pairs of f ′ we have a set as desired. �

We need and easily get the following stronger lemma.

Lemma 16. Let H be a cofinitary group, f ∈ Sym(N) \ H such that 〈H, f 〉 is a cofinitary group and w0, . . . , wn ∈
WH . Then for every k ∈ N there exists a finite set S of pairs from f such that for every injective map p with |p| less
than k there exists a pair (a, b) ∈ S such that p ∪ {(a, b)} is a very good extension of p for all the words w0, . . . , wn.
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Proof. By applying the method used in the first half of the proof of the last lemma n + 1 times we can find an infinite
f ′ ⊆ f such that none of w0( f ′), . . . , wn( f ′) have fixed points. Then using the method in the second half of the
proof of the last lemma also n + 1 times we can find how big a subset S of f ′ we have to choose. �

We use the following two lemmas from [8] to make sure the permutation we construct later will be a bijection
(these lemmas give us a method of getting a full domain and full range). The first lemma allows us to extend the
domain of a finite partial injective function by any number.

Lemma 17 (Domain Extension). Let H be a cofinitary group, w0, . . . , wn ∈ WH , p a finite injective function and
i �∈ dom(p). Then for all but finitely many m ∈ N the function p ∪ {(i, m)} is a good extension of p with respect to all
words w0, . . . , wn.

And the second lemma allows us to extend the range of a finite partial injective function by any number.

Lemma 18 (Range Extension). Let H be a cofinitary group, w0, . . . , wn ∈ WH , p a finite injective function and
i �∈ ran(p). Then for all but finitely many k ∈ N the function p ∪ {(k, i)} is a good extension of p with respect to all
words w0, . . . , wn.

Now we are ready to state and prove the second theorem.

Theorem 19. ♦(NN,=∞) implies ag = ℵ1.

Proof. We use the same strategy as in the proof of the previous theorem: we define a function F whose ♦(NN,=∞)-
sequence helps us build a maximal cofinitary group 〈{gα : α < ω1}〉.

By coding we let its domain be the set of pairs (〈gα : α < δ〉, g) with δ < ω1 and {gα : α < δ} ∪ {g} a
family of permutations. This coding works on a club C ⊆ ω1, which is enough. Also by coding we let its range be
N(N ∪ <ω(N × N)). We also fix for every δ < ω1 a bijection eδ : N → δ.

For 〈gα : α < δ〉 a sequence of permutations we let n �→ w̃n be an enumeration of W〈{gα :α<δ}〉.
Now we can define F . On the levels δ < ω1 where the chosen coding for the input does not work, define F to

be any constant map. On the levels where the coding does work, define F(〈gα : α < δ〉, g)(n) to be either m, the
least code for

(
(k0, g(k0)), (k1, g(k1)), . . . , (kN , g(kN ))

)
such that for every injective partial map p : N ⇀ N with

|p| ≤ 3n there is a pair (ki , g(ki)) coded in m such that p ∪ {(ki , g(ki ))} is a very good extension of p with respect to
all words w̃0, . . . , w̃n , or 0 if such a code does not exist.

Note that by Lemma 16 if {gα : α < δ} ∪ {g} generates a cofinitary group and g �∈ 〈{gα : α < δ}〉 then there is
such a code m. Also note that the function F is Borel.

Let G : ω1 → NN be a ♦(NN,=∞)-sequence for this F . We define G(δ)(n) to be a valid guess for 〈gα : α < δ〉, a
family of permutations that generates a cofinitary group, iff

• G(δ)(n) = (
(k0, o0), (k1, o1), . . . , (kN , oN )

)
for some ki , oi ∈ N and N ∈ N,

• all ki are distinct,
• all oi are distinct, and
• for every partial injective map p : N ⇀ N with |p| ≤ 3n there is a pair (ki , oi ) such that p ∪ {(ki , oi )} is a very

good extension of p with respect to all words w̃0, . . . , w̃n .

Note that for any δ < ω1, n ∈ N, and any permutation such that g �∈ 〈{gα : α < δ}〉 and 〈{gα : α < δ} ∪ {g}〉 is
cofinitary, if F(〈gα : α < δ〉, g)(n) = G(δ)(n) then G(δ)(n) is a valid guess for 〈gα : α < δ〉.

Now we use G to recursively construct 〈gα : α < ω1〉, a sequence of permutations such that 〈{gα : α < δ}〉
is a maximal cofinitary group. So suppose 〈gα : α < δ〉 have been constructed. Then construct gδ := ⋃

s∈N gδ,s

recursively by:

(P1) gδ,0 := ∅,
(P2) g′

δ,s+1 := gδ,s if G(δ)(s) is not a valid guess for 〈gα : α < δ〉,
(P3) g′

δ,s+1 := gδ,s ∪ {(ki , oi )} if G(δ)(s) = ((k0, o0), . . . , (kN , oN )) is a valid guess for 〈gα : α < δ〉 and i is least
such that p ∪ {(ki , oi )} is a very good extension of p for all words w̃0, . . . , w̃n ,
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(P4) g′′
δ,s+1 := g′

δ,s+1 ∪ {(a, b)} where a is the least number not in dom(g′
δ,s+1) and b is the least number such that

g′
δ,s+1 ∪{(a, b)} is a good extension of g′

δ,s+1 for all words w̃0, . . . , w̃n (this b exists by Lemma 17 (The Domain
Extension Lemma)), and

(P5) gδ,s+1 := g′′
δ,s+1 ∪ {(c, d)} where d is the least number not in ran(g′′

δ,s+1) and c is the least number such that
g′′
δ,s+1 ∪ {(c, d)} is a good extension of g′′

δ,s+1 with respect to all words w̃0, . . . , w̃n (this c exists by Lemma 18
(The Range Extension Lemma)).

Note that |gδ,s| is at most 3s which means we can always perform step (P3) when applicable.
Now gδ is a permutation such that {gα : α < δ} ∪ {gδ} generates a cofinitary group; completing the construction of

〈gα : α < δ〉.
It remains to see that this group is maximal cofinitary. We do this by contradiction; suppose, therefore, that there is

a g ∈ Sym(N) such that g �∈ 〈{gα : α < ω1}〉 and that 〈{gα : α < ω1}, g〉 is a cofinitary group. Then the set

{δ < ω1 : F(〈gα : α < δ〉, g) =∞ G(δ)}
is stationary. Remember that we use a coding for the inputs of the function F , and note that, if this coding is reasonable,
the sequence δ �→ (〈gα : α < δ〉, g) determines a path f : ω1 → 2 in the tree <ω12. Now let δ be a member of this set
(and the club C , the club where our coding for inputs works). Then F(〈gα : α < δ〉, g) =∞ G(δ), which means that
for infinitely many n the value G(δ)(n) is a valid guess for 〈gα : α < δ〉 and all pairs in G(δ)(n) belong to g. This
means we hit g infinitely often with gδ, which is a contradiction. �

Combining Theorems 13 and 19 with

Theorem 20. ♦(NN,=∞) is true in the Miller model

which is from [7], we see that ap = ag = ℵ1 in the Miller model.
Then with g ≤ cof (sym(N)). From [3], and the fact that the cardinal g is ℵ2 in the Miller model, from [2] we see,

as announced in the introduction, that

Theorem 21. In the Miller model ap = ag = ℵ1 < ℵ2 = c(Sym(N)).

3. Questions

We will finish this article with some questions related to the cardinal invariants ap and ag . For the first question,
other than its intrinsic interest, a positive answer would have as likely consequence many more theorems as proved in
this article (consistency of ap, ag less than other invariants).

Question 22 (Veličković). Is there a natural cardinal invariant (other than c) that is an upper bound for ap and ag?

For the second question we know that it is consistent that there exists a maximal cofinitary group G and an almost
disjoint family A such that G ⊆ A and |G| < |A|. For this see [14]. However the following question is still open.

Question 23. Is it consistent with ZFC that ap and ag are different?

Our third question is about relating cardinal invariants in Baire space to those in Cantor space. We are especially
interested in the relation to

a := min{|A| : A ⊆ P(N) is an infinite maximal almost disjoint family}.
Question 24. Is a ≤ ap, ag?

Jörg Brendle has conjectured a positive answer to this question.
We have noticed that, in all constructions and forcing results so far, both ap and ag are regular. We are not aware

of anything indicating that this should be so. This leads to the following question.

Question 25. Is it consistent that ap or ag is singular?
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