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Abstract

In this paper, general existence theorems are presented for the singular equation

−(�p(y′))′ = q(t)f (t, y), 0< t <1,
y(0)= 0, �(y(1))+ y′(1)= 0.

Throughout, our nonlinearity is allowed to change sign. The singularity may occur aty = 0, t = 0 andt = 1. In
addition,� may be nonlinear.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we study the singular boundary value problem

−(�p(y′))′ = q(t)f (t, y), 0< t <1,

y(0)= 0, �(y(1))+ y′(1)= 0, (1.1)
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where�p(s) = |s|p−2s, p >1. The singularity may occur aty = 0, t = 0 andt = 1, and the functionf
is allowed to change sign. In addition,� may be nonlinear. Notef may not be a Carathéodory function
because of the singular behaviour of they variable. Forp= 2, problem (1.1) was motivated by a singular
problem arising in the theory of membrane response of a spherical cap[3,11], namely

−y′′ = t2

32y2 − �2

8
, 0< t <1,

y(0)= 0, 2y′(1)− (1 + v)y(1)= 0, 0<v<1 and�>0. (1.2)

In [12], D. O’Regan has proved (1.2) has a solutiony ∈ C[0,1] ∩ C1(0,1] ∩ C2(0,1) with y(t)>0
for t ∈ (0,1). For p �= 2, equations of the form (1.1) occur in the study of thep-Laplace equation,
non-Newtonial fluid theory, and the turbulent flow of a gas in a porous medium[10]. Several results
on the existence of positive solutions for the one dimensionalp-Laplacian boundary value problems
have been established in the literature (see[1,2,5–16]). The key condition used is that the nonlinearity
is nonnegative so the solutionu is concave down; if the nonlinearityf is negative somewhere, then the
solutionu need no longer be concave down. As a result it is difficult to find positive solutions of the
p-Laplacian equation whenf changes sign. In[1,5,16], the Dirichlet problem has been studied when the
nonlinearity is allowed to change sign. Motivated by[1,12], where the functionf is allowed to change
sign, we consider thep-Laplacian equation (1.1).

To date no paper has appeared in the literature which discusses thep-Laplacian singular boundary
value problem when the boundary condition at one is nonlinear (or even of the formay′(1)+ by(1)= 0,
with a�0, b�0, a2 + b2>0) and when the nonlinearity in the differential equation may change sign.
This paper attempts to fill this gap in the literature and we present a very general upper and lower solution
theory in Section 2 for this type of problem. Moreover in Section 3 we present easily verifiable (and new)
criteria so that upper and lower solutions can be constructed. An example is given in Section 4 to show
how easily the theory in Section 3 can be applied in practice. We finally note that very little is known
concerning the computation of the solution to (1.1). However if one constructs “good” upper and lower
solutions (as described in Section 2 and 3) the shooting method in[3, Section 5]to numerically compute
the solution may be used for certain boundary value problems of the form (1.1).

2. General existence theorem

We assume throughout that�(x)�0 for x�0. Our theory involves approximating (1.1) by a sequence
of nonsingular problems (each of which has a lower solution�n and an upper solution�n). Using the
Schauder fixed point theorem we establish the existence of a solution (which lies between the lower
and upper solution) for each approximating problem. The Arzela–Ascoli theorem will then complete
the proof.

Theorem 2.1. Letn0 ∈ {3,4, . . .} be fixed and suppose the following conditions are satisfied:

f : [0,1] × (0,∞) → R is continuous, (2.1)

q ∈ C(0,1) with q >0 on (0,1) and q ∈ L1[0,1], (2.2)

� : R → R is continuous and�(x)�0 for x�0, (2.3)
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|f (t, y)|�g(y)+ h(y) on [0,1] × (0,∞) with

g >0 continuous and nonincreasingon (0,∞),

h�0 continuouson [0,∞), and
h

g

nondecreasingon (0,∞), (2.4)

let n ∈ {n0, n0 + 1, . . .} ≡ N0 and associated with eachn ∈ N0

we havea constant�n such that{�n} is a nonincreasing
sequence with lim

n→∞ �n = 0 and such that for

1

n
� t�1 we haveq(t)f (t, �n)�0, (2.5)

∃� ∈ C[0,1] ∩ C1(0,1],�p(�′) ∈ C1(0,1),

�(0)= 0, �′(1)+ �(�(1))<0,

�>0 on (0,1] such that for eachn ∈ N0

we have(�p(�
′))′ + q(t)f (t, y)>0 for

(t, y) ∈
[

1

n
,1

)
× {y ∈ (0,∞) : y < �(t)}

and (�p(�
′))′ + q(t)f

(
1

n
, y

)
>0 for

(t, y) ∈
(

0,
1

n

)
× {y ∈ (0,∞) : y < �(t)}, (2.6)

for anyR>0,
1

g
is differentiable on(0, R] with g′<0

a.e. on (0, R], |g′|1/p
g2/p ∈ L1[0, R] and

∫ ∞

0

|g′(t)|1/p
(g(t))2/p

dt = ∞, (2.7)

for eachn ∈ N0, ∃�n ∈ C[0,1] ∩ C1(0,1], �p(�
′
n) ∈ C1(0,1)

with �n(t)��n for t ∈ [0,1], �′
n(1)+ �(�n(1))>0,

�n(1)��(1) and we have(�p(�
′
n))

′ + q(t)f (t, �n(t))�0

for t ∈
[

1

n
,1

)
, and (�p(�

′
n))

′ + q(t)f

(
1

n
, �n(t)

)
�0

for t ∈
(

0,
1

n

)
(2.8)
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and

max

{
sup
t∈[0,1]

�n(t) : n ∈ N0

}
<∞. (2.9)

Then(1.1)has a solutiony ∈ C[0,1] ∩ C1(0,1],�p(y′) ∈ C1(0,1) with y(t)��(t) for t ∈ [0,1].
Proof. Fix n ∈ N0. Consider the boundary value problem

−(�p(y′))′ = q(t)f ∗(t, y), 0< t <1,

y(0)= �n, y′(1)+ �∗(y(1))= 0, (2.10)n

where

f ∗(t, y)=




f

(
1

n
, �n(t)

)
+ r(�n(t)− y), y��n(t) and 0� t�

1

n

f (t, �n(t))+ r(�n(t)− y), y��n(t) and
1

n
� t�1

f

(
1

n
, y

)
, �n�y��n(t) and 0� t�

1

n

f (t, y), �n�y��n(t) and
1

n
� t�1

f (t, �n)+ r(�n − y), y < �n and
1

n
� t�1

f

(
1

n
, �n

)
+ r(�n − y), y < �n and 0� t�

1

n

with

�∗(z)=
{

�(�n(1)), z> �n(1),
�(z), �(1)�z��n(1),
�(�(1)), z< �(1)

andr : R → [−1,1] is the radial retraction defined by

r(u)=
{
u, |u|�1,
u

|u| , |u|>1. �

Remark 2.1. Note�∗(z)�0 for z ∈ R.
Let

C0[0,1] = {u ∈ C[0,1] : u(0)= 0}
and

C1
�n

[0,1] = {u ∈ C1 : u(0)= �n}.
Define the mappingsLp, F : C1

�n
[0,1] → C0[0,1] × R by

Lpy(t)= (�p(y
′(t))− �p(y

′(0)),−y′(1))
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and

Fy(t)=
(

−
∫ t

0
q(x)f ∗(x, y(x)dx,�∗(y(1)))

)
.

NowF is continuous and compact (by theArzela–Ascoli theorem).Also ifLpy=(u, �), withu ∈ C0[0,1]
and� ∈ R, then

y(t)= �n +
∫ t

0
�−1
p (u(x)− �p(�)− u(1))dx,

soL−1
p exists and is continuous. Solving(2.10)n is equivalent to finding a fixed point ofy=L−1

p Fy ≡ Ny

whereN = L−1
p F : C1

�n
[0,1] → C1

�n
[0,1] is continuous and compact. Schauder’s fixed point theorem

guarantees that(2.10)n has a solutionyn ∈ C1[0,1] and�p(y
′
n) ∈ C1(0,1). First we show

yn(t)��n for t ∈ [0,1]. (2.11)

If (2.11) is not true thenyn − �n has a negative absolute minimum at sayt0 ∈ (0,1]. If t0 ∈ (0,1), then
y′
n(t0)= 0 and(�p(y

′
n))

′(t0)�0. However

(�p(y
′
n))

′(t0)=




−q(t0)[f (t0, �n)+ r(�n − yn(t0))], if
1

n
� t0<1,

−q(t0)
[
f

(
1

n
, �n

)
+ r(�n − yn(t0))

]
, if 0 � t0�

1

n
,

i.e., (�p(y
′
n))

′(t0)<0, a contradiction. It remains to discuss the caset0 = 1. If t0 = 1 there exists	,
0�	<1 with �n − yn(t)>0 for t ∈ (	,1] and�n − yn(	)= 0. In addition fort ∈ (	,1) we have

(�p((�n − yn)
′))′ = q(t)f ∗(t, yn(t))>0,

so�p((�n − yn)
′) is increasing. Since�p : R → R is increasing, we have(�n − yn)

′ is increasing and
so�n − yn is convex on(	,1). Now [4, pp. 134]guarantees that

−y′
n(1)�

[�n − yn(1)] − [�n − yn(	)]
1 − 	

��n − yn(1)

and this together with Remark 2.1 yields

0< �n − yn(1)� − y′
n(1)= �∗(yn(1))�0,

a contradiction. Thus (2.11) holds. Next we show

yn(t)��n(t) for t ∈ [0,1]. (2.12)

If (2.12) is not true thenyn − �n would have a positive absolute maximum at sayt0 ∈ (0,1]. Suppose
first thatt0 ∈ (0,1). Theny′

n(t0)= �′
n(t0).

We first prove that

(�p(y
′
n))

′(t0)− (�p(�
′
n))

′(t0)�0. (2.13)
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Sinceyn − �n have a positive absolute maximum att0 ∈ (0,1), with y′
n(t0)− �′

n(t0)= 0 and there exists
	 ∈ (0,1)with y′

n(t)−�′
n(t)�0 for t ∈ (t0−	, t0), namely�p(y

′
n)(t)−�p(�

′
n)(t)�0 for t ∈ (t0−	, t0).

Then we have

(�p(y
′
n(t))− �p(�

′
n(t)))− (�p(y

′
n(t0))− �p(�

′
n(t0)))

t − t0
�0 for t ∈ (t0 − 	, t0),

so

�p(y
′
n(t))− �p(y

′
n(t0))

t − t0
�

�p(�
′
n(t))− �p(�

′
n(t0))

t − t0
for t ∈ (t0 − 	, t0).

Consequently,

(�p(y
′
n))

′(t0)= lim
t (∈(t0−	,t0))→t−0

�p(y
′
n(t))− �p(y

′
n(t0))

t − t0

� lim
t (∈(t0−	,t0))→t−0

�p(�
′
n(t))− �p(y

′
n(t0))

t − t0

= (�p(�′
n))

′(t0),

i.e.,

(�p(y
′
n))

′(t0)− (�p(�
′
n))

′(t0)�0.

We now consider two cases, namelyt0 ∈ [1
n
,1

)
andt0 ∈ (

0, 1
n

)
.

Casei: t0 ∈ [1
n
,1

)
.

Then sinceyn(t0)> �n(t0) we have, using (2.8), that

(�p(y
′
n))

′(t0)− (�p(�
′
n))

′(t0)= − q(t0)[f (t0, �n(t0))+ r(�n(t0)− yn(t0))] − (�p(�
′
n))

′(t0)
= − [(�p(�′

n))
′(t0)+ q(t0)f (t0, �n(t0))] − q(t0)r(�n(t0)

− yn(t0))>0,

a contradiction.
Caseii: (t0 ∈ (

0, 1
n

)
.

Then (2.8) gives

(�p(y
′
n))

′(t0)− (�p(�
′
n))

′(t0)= − q(t0)

[
f

(
1

n
, �n(t0)

)
+ r(�n(t0)− yn(t0))

]
− (�p(�

′
n))

′(t0)

= −
[
(�p(�

′
n))

′(t0)+ q(t0)f

(
1

n
, �n(t0)

)]
− q(t0)r(�n(t0)

− yn(t0))>0,

a contradiction.
It remains to discuss the caset0 = 1. If t0 = 1 there exists	, 0�	<1 with yn(t) − �n(t)>0 for

t ∈ (	,1] andyn(	) − �n(	) = 0. Theny′
n(	)��′

n(	), and in addition,(�p(y
′
n))

′(t) − (�p(�
′
n))

′(t) =
−q(t)f ∗(t, yn(t))− (�p(�

′
n))

′(t) for t ∈ (	,1). We claim

(�p(y
′
n))

′(t)�(�p(�′
n))

′(t) for t ∈ (	,1). (2.14)
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If 	� 1
n

then (2.8) guarantees that (2.14) true. If	< 1
n

then(�p(y
′
n))

′(t)> (�p(�′
n))

′(t), for t ∈ [1
n
,1

)
by

(2.8) and fort ∈ (
	, 1
n

)
we have from (2.8) that

(�p(y
′
n))

′(t)− (�p(�
′
n))

′(t)= − q(t)

[
f

(
1

n
, �n(t)

)
+ r(�n(t)− yn(t))

]
− (�p(�

′
n))

′(t)

= −
[
(�p(�

′
n))

′(t)+ q(t)f

(
1

n
, �n(t)

)]
− q(t)r(�n(t)

− yn(t))>0.

Thus in all cases (2.14) holds. Integrate (2.14) from	 to 1 to obtain

�p(y
′
n(1))− �p(y

′
n(	))��p(�

′
n(1))− �p(�

′
n(	))

and so

�p(y
′
n(1))− �p(�

′
n(1))��p(y

′
n(	))− �p(�

′
n(	))�0.

This together with�′
n(1)>− �(�n(1)) gives

0�y′
n(1)− �′

n(1)= − �∗(yn(1))− �′
n(1)<− �∗(yn(1))+ �(�n(1))

= − �(�n(1))+ �(�n(1))= 0,

a contradiction. Thus (2.12) holds. In particular

yn(t)�a0 = max

{
sup
t∈[0,1]

�n(t) : n ∈ N0

}
for t ∈ [0,1].

Next we obtain a sharper lower bound onyn, namely we will show

yn(t)��(t) for t ∈ [0,1]. (2.15)

Suppose (2.15) is not true. Thenyn− � has a negative absolute minimum at sayt1 ∈ (0,1]. Suppose first
thatt1 ∈ (0,1). Theny′

n(t1)= �′(t1). As the proof of (2.13), we can prove that

(�p(y
′
n))

′(t1)− (�p(�
′))′(t1)�0.

We now consider two cases, namelyt1 ∈ [1
n
,1

)
andt1 ∈ (

0, 1
n

)
.

Casei: t1 ∈ [1
n
,1

)
.

Now 0<yn(t1)< �(t1), �n�yn(t1)��n(t1), and (2.6) implies

(�p(y
′
n))

′(t1)− (�p(�
′))′(t1)= −[q(t1)f (t1, yn(t1)+ (�p(�

′))′(t1))]<0,

a contradiction.
Caseii: t1 ∈ (

0, 1
n

)
.

In this case (2.6) also implies

(�p(y
′
n))

′(t1)− (�p(�
′))′(t1)= −

[
q(t1)f

(
1

n
, yn(t1)

)
+ (�p(�

′))′(t1)
]
<0,

a contradiction.
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It remains to discuss the caset1=1. If t1=1 there exists	, 0�	<1 with�(t)−yn(t)>0 for t ∈ (	,1],
�(	)= yn(	)= 0, and�′(	)�y′

n(	). We claim

(�p(�
′))′(t)> (�p(y′

n))
′(t) for t ∈ (	,1). (2.16)

If 	� 1
n

then fort ∈ (	,1) we have

(�p(�
′))′(t)− (�p(y

′
n))

′(t)= q(t)f ∗(t, yn(t))+ (�p(�
′))′(t)

= q(t)f (t, yn(t))+ (�p(�
′))′(t)>0,

so (2.16) is true in this case. If	< 1
n

then fort ∈ [1
n
,1

)
we have

(�p(�
′))′(t)− (�p(y

′
n))

′(t)= q(t)f (t, yn(t))+ (�p(�
′))′(t)>0,

whereas fort ∈ (
0, 1
n

)
we have

(�p(�
′))′(t)− (�p(y

′
n))

′(t)= q(t)f ∗(t, yn(t))+ (�p(�
′))′(t)

= q(t)f
(

1

n
, yn(t)

)
+ (�p(�

′))′(t)>0.

Thus (2.16) is also true in this case. Consequently (2.16) holds. Integrate (2.16) from	 to 1 to obtain

�p(�
′(1))− �p(�

′(	))��p(y
′
n(1))− �p(y

′
n(	)).

Thus

�p(�
′(1))− �p(y

′
n(1))��p(�

′(	))− �p(y
′
n(	))�0.

This together with�′(1)<− �(�(1)) gives

0��′(1)− y′
n(1)<− �(�(1))+ �∗(�(1))

� − �(�(1))+ �(�(1))= 0,

a contradiction. Thus (2.15) holds.

Remark 2.2. It is possible to check

�(t)��n(t) for t ∈ [0,1]. (2.17)

If this is not true then�−�n would have a positive absolute maximum at sayt1 ∈ (0,1) (note�n(1)��(1)).
Then�′(t1)= �′

n(t1) and there exist
0, 
1 ∈ [0,1] with t1 ∈ (
0, 
1) and

�(
0)− �n(
0)= �(
1)− �n(
1)= 0 and �n(t)− �(t)<0, t ∈ (
0, 
1).

We can claim

(�p(�
′
n(t)))

′ − (�p(�
′(t)))′�0 for a.e.t ∈ (
0, 
1). (2.18)

We first show that if (2.18) is true then (2.17) will follow. Let

w(t)= �n(t)− �(t)<0, for t ∈ (
0, 
1).
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Then ∫ 
1


0

((�p(�
′
n(t)))

′ − (�p(�
′(t)))′)w(t)dt�0.

On the other hand, using the inequality

(�p(b)− �p(a))(b − a)�0, for a, b ∈ R
and the fact that there exists
∗ ∈ (
0, 
1) with �′(
∗) �= �′

n(

∗) we have∫ 
1


0

((�p(�
′
n(t)))

′ − (�p(�
′(t)))′)w(t)dt = −

∫ 
1


0

(�p(�
′
n(t))− �p(�

′(t)))(�′
n(t)− �′(t))dt

<0,

a contradiction. It remains to show (2.18) is true. Now�(t)> �n(t), for t ∈ (
0, 
1) and (2.6) gives

q(t)f (t, �n(t))+ (�p(�
′))′(t)>0 if t ∈ (
0, 
1) ∩

[
1

n
,1

)
and

q(t)f

(
1

n
, �n(t)

)
+ (�p(�

′))′(t)>0 if t1 ∈ (
0, 
1) ∩
(

0,
1

n

)
.

Now if t ∈ (
0, 
1) ∩
[1
n
,1

)
then (2.8) implies

(�p(�
′))′(t)− (�p(�

′
n))

′(t)�(�p(�′))′(t)+ q(t)f (t, �n(t))>0.

Next if t ∈ (
0, 
1) ∩
(
0, 1
n

)
then (2.8) implies

(�p(�
′))′(t)− (�p(�

′
n))

′(t)�(�p(�′))′(t)+ q(t)f

(
1

n
, �n(t)

)
>0.

Thus (2.18) holds.
We now show

{yn}n∈N0
is a bounded, equicontinuous family on[0,1]. (2.19)

To see (2.19) first notice from (2.4), (2.11) and (2.12) that

|f ∗(t, yn(t))|�g(yn(t))+ h(yn(t))

�g(yn(t))
{

1 + h(a0)

g(a0)

}
for t ∈ (0,1)

and so

−(�p(y′
n))

′�q(t)g(yn(t))
{

1 + h(a0)

g(a0)

}
for t ∈ (0,1). (2.20)

Also y′
n(1)= −�∗(yn(1)) gives

|y′
n(1)|� sup

s∈[�(1),a0]
|�(z)| ≡ K0.
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Divide (2.20) byg(yn(t)) and integrate from 0 to 1 to obtain

−�p(y
′
n(1))

g(yn(1))
+ �p(y

′
n(0))

g(�n)
+

∫ 1

0

{−g′(yn(x))
g2(yn(x))

}
|y′
n(x)|p dx

�
{

1 + h(a0)

g(a0)

} ∫ 1

0
q(s)ds.

Then sincey′
n(0)�0 (noteyn(0)= �n andyn(t)��n for t ∈ [0,1]) we have∫ 1

0

{−g′(yn(x))
g2(yn(x))

}
|y′
n(x)|p dx�K1,

where

K1 = �p(K0)

g(a0)
+

{
1 + h(a0)

g(a0)

} ∫ 1

0
q(s)ds.

Now consider

I (z)=
∫ z

0

[−g′(u)]1/p
[g(u)]2/p du.

For t, s ∈ [0,1] we have

|I (yn(t))− I (yn(s))| =
∣∣∣∣
∫ t

s

[−g′(yn(x))]1/p
[g(yn(x))]2/p

y′
n(x)dx

∣∣∣∣
� |t − s|1/q

(∫ t

s

{−g′(yn(x))
g2(yn(x))

}
|y′
n(x)|p dx

)1/p

� |t − s|1/qK1/p
1 ,

wherep+ q = pq. It follows from the above inequality, the uniform continuity ofI−1 of [0, I (a0)] and

|yn(t)− yn(s)| = |I−1(I (yn(t)))− I−1(I (yn(s)))|
that {yn}n∈N0

is equicontinuous on[0,1]. Thus (2.19) holds. The Arzela–Ascoli Theorem guarantees
the existence of a subsequenceN1 of N0 and a functiony ∈ C[0,1] with yn converging uniformly on
[0,1] to y asn → ∞ throughN1. Also y(0) = 0 and�(t)�y(t)�a0 for t ∈ [0,1]. Fix t ∈ (0,1) and
m ∈ {n0, n0 + 1, . . .} be such that1

m
< t <1. Define the operatorL : C [ 1

m
,1

] → C
[ 1
m
,1

]
by

(Lu)(t)= u(1)−
∫ 1

t

�−1
p

(
−�p(�

∗(u(1)))+
∫ 1

x

q(s)f (s, u(s))ds

)
dx.

As in the proof of Theorem 2.2[10],L : C [ 1
m
,1

] → C
[ 1
m
,1

]
is continuous. LetN∗

1 ={n ∈ N1 : n�m}.
Now yn, n ∈ N∗

1 , satisfies

yn(t)= yn(1)−
∫ 1

t

�−1
p

(
−�p(�

∗(yn(1)))+
∫ 1

x

q(s)f (s, yn(s))ds

)
dx

= yn(1)−
∫ 1

t

�−1
p

(
−�p(�(yn(1)))+

∫ 1

x

q(s)f (s, yn(s))ds

)
dx
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since�(t)�yn(t)��n(t) andt > 1
m

. Let n → ∞ throughN∗
1 to obtain

y(t)= y(1)−
∫ 1

t

�−1
p

(
−�p(�(y(1)))+

∫ 1

x

q(s)f (s, y(s))ds

)
dx.

We can do this argument for eacht ∈ (0,1), so−(�p(y′))′ = q(t)f (t, y) for t ∈ (0,1), y ∈ C1(0,1]
and�p(y

′) ∈ C1(0,1) andy′(1)= −�(y(1)).

Remark 2.3. Condition (2.7) can be removed in the statement in Theorem 2.1 if�n satisfies the following
condition:

for eacht ∈ [0,1] we have that{�n(t)}n∈N0
is a

nonincreasing sequence and lim
n→∞ �n(0)= 0. (2.21)

To see this fixn ∈ N0. We obtain as in Theorem 2.1 a solutionyn to (2.10)n with (2.11), (2.12) and (2.15)

holding. Look at the interval
[

1
n0
,1

]
. Let (recall�>0 on(0,1])

Rn0 = sup

{
|f (x, y)| : x ∈

[
1

n0
,1

]
and�(x)�y�a0

}
.

Now sincey′
n(1)= −�∗(yn(1)) we have|y′

n(1)|�supz∈[�(1),a0]|�(z)| =K0 and so

|y′(t)|��−1
p

(
�p(K0)+

∣∣∣∣
∫ 1

t

(�p(y
′
n(x)))

′ dx

∣∣∣∣
)

��−1
p

(
�p(K0)+ Rn0

∫ 1

0
q(x)dx

)
for t ∈

[
1

n0
,1

]
.

As a result

{yn}n∈N0
is a bounded, equicontinuous family on

[
1

n0
,1

]
.

The Arzela–Ascoli theorem guarantees the existence of a subsequenceNn0 of N0 and a functionzn0 ∈
C

[
1
n0
,1

]
with yn converging uniformly on

[
1
n0
,1

]
to zn0 asn → ∞ throughNn0. Proceed inductively

to obtain subsequences of integers

Nn0 ⊇ Nn0+1 ⊇ · · · ⊇ Nk ⊇ · · ·
and functionszk ∈ C [1

k
,1

]
with

yn converging uniformly on

[
1

k
,1

]
to zk asn → ∞ throughNk

andzk+1 = zk on
[1
k
,1

]
. Define a functiony : [0,1] → [0,∞) by y(x)= zk(x) on

[1
k
,1

]
andy(0)= 0.

Noticey is well defined and�(t)�y(t)�a0 for t ∈ (0,1]. Next fix t ∈ (0,1) and letm ∈ {n0, n0+1, . . .}
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be such that1
m
< t <1. LetN+

m = {n ∈ Nm : n�m}. Now yn, n ∈ N∗
m, satisfies

yn(t)= yn(1)−
∫ 1

t

�−1
p

(
−�p(�(yn(1)))+

∫ 1

x

q(s)f (s, yn(s))ds

)
dx.

Let n → ∞ throughN∗
m to obtain (notezm(s)= y(s) for s ∈ [t,1]),

y(t)= y(1)−
∫ 1

t

�−1
p

(
−�p(�(y(1)))+

∫ 1

x

q(s)f (s, y(s))ds

)
dx.

We can do this argument for eacht ∈ (0,1), so−(�p(y′))′ = q(t)f (t, y(t)) for t ∈ (0,1) andy′(1) =
−�(y(1)). It remains to showy is continuous at 0. Letε >0 be given. Now since limn→∞ �n(0) = 0
there existsn1 ∈ N0 with �n1

(0)< ε
2. Next since�n1

∈ C[0,1] there exists	n1>0 with �n1
(t)< ε

2 for
t ∈ [0, 	n1]. Now for n�n1 we have, since{�n(t)}n∈N0

is nonincreasing for eacht ∈ [0,1],
�n(t)��n1

(t)<
ε

2
for t ∈ [0, 	n1].

This together with�(t)�yn(t)��n(t) for t ∈ (0,1) implies that forn�n1 that �(t)�yn(t)< ε
2 for

t ∈ [0, 	n1]. Consequently 0��(t)�y(t)� ε
2 <ε for t ∈ (0, 	n1], soy is continuous at 0.

Remark 2.4. If in (2.5) we replace1
n
� t <1 with 0� t�1 − 1

n
then one would replace (2.6), (2.8) with

∃� ∈ C[0,1] ∩ C1(0,1],�p(�′) ∈ C1(0,1),

�(0)= 0, �′(1)+ �(�(1))<0,

�>0 on(0,1] such that for eachn ∈ N0

we have(�p(�
′))′ + q(t)f (t, y)>0 for

(t, y) ∈
(

0,1 − 1

n

]
× {y ∈ (0,∞) : y < �(t)}

and(�p(�
′))′ + q(t)f

(
1 − 1

n
, y

)
>0 for

(t, y) ∈
(

1 − 1

n
,1

)
× {y ∈ (0,∞) : y < �(t)}, (2.22)

for eachn ∈ N0, ∃�n ∈ C[0,1] ∩ C1(0,1),�p(�
′
n) ∈ C1(0,1)

with �n(t)��n for t ∈ [0,1], �′
n(1)+ �(�n(1))>0,

�n(1)��(1) and we have(�p(�
′
n))

′ + q(t)f (t, �n(t))�0

for t ∈
(

0,1 − 1

n

]
and(�p(�

′
n))

′ + q(t)f

(
1 − 1

n
, �n(t)

)
�0

for t ∈
(

1 − 1

n
,1

)
. (2.23)

If in (2.5) we replace1
n
� t�1 with 1

n
� t�1 − 1

n
then essentially the same reasoning as in Theorem

2.1 establishes the following result.
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Theorem 2.2. Let n0 ∈ {3,4, . . .} be fixed and suppose(2.1)–(2.4)and (2.7)hold. In addition assume
the following conditions are satisfied:

let n ∈ {n0, n0 + 1, . . .} ≡ N0 and associated with eachn ∈ N0

we havea constant�n such that{�n} is a nonincreasing
sequence with lim

n→∞ �n = 0 and such that for

1

n
� t�1 − 1

n
we haveq(t)f (t, �n)�0, (2.24)

∃� ∈ C[0,1] ∩ C1(0,1],�p(�′) ∈ C1(0,1),

�(0)= 0, �′(1)+ �(�(1))<0,

�>0 on (0,1] such that for eachn ∈ N0

we have(�p(�
′))′ + q(t)f (t, y)>0 for

(t, y) ∈
[

1

n
,1 − 1

n

]
× {y ∈ (0,∞) : y < �(t)}

and (�p(�
′))′ + q(t)f

(
1

n
, y

)
>0 for

(t, y) ∈
(

0,
1

n

)
× {y ∈ (0,∞) : y < �(t)}

and (�p(�
′))′ + q(t)f

(
1 − 1

n
, y

)
>0 for

(t, y) ∈
(

1 − 1

n
,1

)
× {y ∈ (0,∞) : y < �(t)}, (2.25)

for eachn ∈ N0, ∃�n ∈ C[0,1] ∩ C1(0,1],�p(�′
n) ∈ C1(0,1)

with �n(t)��n for t ∈ [0,1], �′
n(1)+ �(�n(1))>0,

�n(1)��(1) and we have(�p(�
′
n))

′ + q(t)f (t, �n(t))�0

for t ∈
[

1

n
,1 − 1

n

]
and (�p(�

′
n))

′ + q(t)f

(
1

n
, �n(t)

)
�0

for t ∈
(

0,
1

n

)
and (�p(�

′
n))

′ + q(t)f

(
1 − 1

n
, �n(t)

)
�0

for t ∈
(

1 − 1

n
,1

)
(2.26)
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and

max

{
sup
t∈[0,1]

�n(t) : n ∈ N0

}
<∞. (2.27)

Then(1.1)has a solutiony ∈ C[0,1] ∩ C1(0,1],�p(y′) ∈ C1(0,1) with y(t)��(t) for t ∈ [0,1].

Remark 2.5. If in (2.5), 1
n
� t�1 is replaced by 0� t�1 then it is easy to see that (2.9) is not needed in

the statement in Theorem 2.1 provided in (2.8) we assume(�p(�
′
n))

′ + q(t)f (t, �n(t))�0 for t ∈ (0,1).

3. Construction of � and �n

In this section, we discuss how to construct the lower solution� in (2.6) or (2.22) or (2.25) and the
upper solution�n in (2.8) or (2.23) or (2.26).

Lemma 3.1. Let en =
[

1
n+1,1

]
(n�1), e0 = ∅. If there exist a sequence{εn} ↓ 0 andεn >0 for n�1,

then there exist a function� ∈ C1[0,1] such that
(1) �p(�

′) ∈ C1[0,1] andmax0� t�1|(�p(�′(t)))′|>0;
(2) �(0)= 0, �′(1)+ �(�(1))<0 and0< �(t)�εn, t ∈ en\en−1, n�1.

Proof. Letr : [0,1] → [0,+∞) such thatr(0)=0,r(t)=εp−1
n , t ∈ en\en−1,n�1. Letu(t)=∫ t

0 r(s)ds,

v(t) =
[∫ t

0 u(s)ds
]1/(p−1)

, w(t) = ∫ t
0 v(s)ds. Thenu, v,w : [

0, 3
4

] → [0,+∞) are continuous and

increasing functions withw
(3

4

)
<ε1.

Let

a(t)=
[
c0

(
7

8
− t

)2

+ c1

(
7

8
− t

)]1/(p−1)

,

where

c0 = −8u(3/4)− 64(v(3/4))p−1

and

c1 = u(3/4)+ 16(v(3/4))p−1.

Let

b(t)=
∫ t

3
4

a(s)ds + w

(
3

4

)
for t ∈

[
3

4
,

7

8

]

and

P(t)=
{
b(t) for t ∈ [3

4,
7
8

]
,

b

(
7

4
− t

)
for t ∈ [7

8,1
]
.
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Define� : [0,1] → [0,+∞) with

�(t)=
{
w(t), 0� t� 3

4,

P (t), 3
4 � t�1.

We prove that� satisfies the condition.
We easily prove thatw

(3
4

)=P (3
4

)
,w′ (3

4

)=P ′ (3
4

)
, (�p(w

′))′
(3

4

)=(�p(P ′))′
(3

4

)
andw ∈ C1

[
0, 3

4

]
,

P ∈ C1
[3

4,1
]
, �p(w

′) ∈ C1
[
0, 3

4

]
, �p(P

′) ∈ C1
[3

4,1
]
. As a result we have� ∈ C1[0,1], �p(�

′) ∈
C1[0,1] and max0� t�1|(�p(�′(t)))′|>0.Sincew(t)>0 for t ∈ (

0, 3
4

]
andP(t)>0 for t ∈ [3

4,1
]
, we

have 0< �(t) for t ∈ (0,1]. On the other hand,

�

(
7

8

)
=

∫ t

3
4

a(s)ds + w

(
3

4

)
�

1

8
max
t∈

[
3
4 ,

7
8

]
[
c0

(
7

8
− t

)2

+ c1

(
7

8
− t

)]1/(p−1)

+ w

(
3

4

)

�
1

8

[ c0
64

+ c1

8

]1/(p−1) + w

(
3

4

)

= 1

8

[
−8u(3/4)− 64(v(3/4))p−1

64
+ u(3/4)+ 16(v(3/4))p−1

8

]1/(p−1)

+ w

(
3

4

)

�
v(3/4)

8
+ w

(
3

4

)

and

u

(
3

4

)
=

∫ 3
4

0
r(s)ds�

3εp−1
1

4
,

v

(
3

4

)
=

[∫ 3
4

0
u(s)ds

]1/(p−1)

�
[

3εp−1
1

4
× 3

4

]1/(p−1)

=
(

9

16

)1/(p−1)

ε1,

w

(
3

4

)
�

(
9

16

)1/(p−1)

ε1 × 3

4
.

Thus

�

(
7

8

)
�
v(3/4)

8
+ w

(
3

4

)

�
1

8
×

(
9

16

)1/(p−1)

ε1 +
(

9

16

)1/(p−1)

ε1 × 3

4

= 7

8
×

(
9

16

)1/(p−1)

ε1<ε1,
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so,

�(t)�εn, t ∈ en\en−1, n�1.

Now using

�′(1)= − P ′
(

3

4

)

= −
[

−8u(3/4)− 64(v(3/4))p−1

64
+ u(3/4)+ 16(v(3/4))p−1

8

]1/(p−1)

= − v(3/4)<0,

we have

�(0)= 0, �′(1)+ �(�(1))<0.

Thus� satisfies all the conditions of Lemma 3.1.
Next we discuss how to construct the lower solution� in (2.6) or (2.22) or (2.25). We begin our

discussion with (2.6). Suppose the following conditions are satisfied:

let n ∈ {n0, n0 + 1, . . .} and associated with eachn we

have a constant�n such that{�n} is a decreasing

sequence with lim
n→∞ �n = 0 and there exists a

constantk0>0 such that for
1

n
� t�1,

and 0<y��n we haveq(t)f (t, y)�k0, (3.1)

f (·, y) is nondecreasing on

(
0,

1

3

)
for each fixedy ∈ (0,∞), (3.2)

for eachn ∈ N0, ∃�n ∈ C[0,1] ∩ C1(0,1],�p(�′
n) ∈ C1(0,1),

with �n(t)��n for t ∈ [0,1], �′
n(1)+ �(�n(1))>0 and�n(1)��1

and we have(�p(�
′
n))

′ + q(t)f (t, �n(t))�0

for t ∈
[

1

n
,1

)
, and(�p(�

′
n))

′ + q(t)f

(
1

n
, �n(t)

)
�0

for t ∈
(

0,
1

n

)
. � (3.3)

Theorem 3.1. Let n0 ∈ {3,4, . . .} be fixed and suppose(2.1)–(2.4), (2.7), (3.1)–(3.3)and (2.9) hold.
Then(1.1)has a solutiony ∈ C[0,1] ∩ C1(0,1] with �p(y

′) ∈ C1(0,1) with y(t)>0, t ∈ (0,1].
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Proof. The result follows from Theorem 2.1, once we prove (2.5), (2.6) and (2.8) hold. Now (3.1)
guarantees that (2.5) holds. From Lemma 3.1, there exist a function� ∈ C1[0,1] such that

(1) �p(�
′) ∈ C1[0,1] andR1 = max0� t�1|(�p(�′(t)))′|>0;

(2) �(0)= 0, �′(1)+ �(�(1))<0 and 0< �(t)��n, t ∈ en\en−1, n�1.

Letm= min

{
1,

(
k0
2R

)1/(p−1)
,

�1|�|∞

}
, herek0 is as in (3.1) and�1 is as in (3.1). Let

�(t)=m�(t) for t ∈ [0,1].
Then� ∈ C[0,1] ∩ C1(0,1],�p(�′) ∈ C1(0,1) �(0) = 0, �′(1) + �(�(1))<0 and 0< �(t)��(t) for
t ∈ (0,1]. For eachn ∈ N0 and(t, y) ∈ [1

n
,1

) × {y ∈ (0,∞) : y < �(t)} we have

q(t)f (t, y)+ (�p(�
′(t)))′�k0 + (�p(m�′(t)))′

= k0 +mp−1(�p(�
′(t)))′

�k0 −mp−1|(�p(�′(t)))′|
�k0 −

(
k0

2R1

)
· |(�p(�′(t)))′|

�k0 −
(
k0

2R1

)
· max

0� t�1
|(�p(�′(t)))′|

= k0

2
>0.

For eachn ∈ N0 and(t, y) ∈ (
0, 1
n

) × {y ∈ (0,∞) : y < �(t)} we have

q(t)f

(
1

n
, y

)
+ (�p(�

′(t)))′�q(t)f (t, y)+ (�p(�
′(t)))′�k0 + (�p(m�′(t)))′

�
k0

2
>0.

Thus (2.6) is satisfied. On the other hand,�(1)� |�|∞ =m|�|∞��1. So for eachn ∈ N0,

�n(1)��1��(1).

Then (2.8) is satisfied. From Theorem 2.1, (1.1) has a solutiony ∈ C[0,1] ∩ C1(0,1] with �p(y
′) ∈

C1(0,1) with y(t)>0 for t ∈ (0,1]. �

Remark 3.1. (a). Note the� constructed in Theorem 3.1 satisfies|�|∞��1.
(b). One could replace(3.2) with the more general condition: there exists	 ∈ (

0, 1
3

)
with f (·, y)

nondecreasing on(0, 	) for each fixedy ∈ (0,∞).

Remark 3.2. If we replace 1/n� t�1 with 0� t�1− (1/n) in (3.1) and (3.3) we can easily obtain (see
Remark 2.4) the analogue of Theorem 3.1 in this situation.
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Next suppose the following conditions are satisfied:

let n ∈ {n0, n0 + 1, . . .} and associated with eachn we

have a constant�n such that{�n} is a decreasing

sequence with lim
n→∞ �n = 0 and there exists a

constantk0>0 such that for
1

n
� t�1 − 1

n
,

and 0<y��n we haveq(t)f (t, y)�k0, (3.4)

f (·, y) is nondecreasing on

(
0,

1

3

)
for each fixedy ∈ (0,∞), (3.5)

f (·, y) is nonincreasing on

(
2

3
,1

)
for each fixedy ∈ (0,∞), (3.6)

for eachn ∈ N0, ∃�n ∈ C[0,1] ∩ C1(0,1],�p(�′
n) ∈ C1(0,1),

with �n(t)��n for t ∈ [0,1], �′
n(1)+ �(�n(1))>0 and�n(1)��1

and we have(�p(�
′
n))

′ + q(t)f (t, �n(t))�0

for t ∈
(

0,1 − 1

n

]
and(�p(�

′
n))

′ + q(t)f

(
1 − 1

n
, �n(t)

)
�0

for t ∈
(

1 − 1

n
,1

)
, (3.7)

and

for eachn ∈ N0, ∃�n ∈ C[0,1] ∩ C1(0,1],�p(�′
n) ∈ C1(0,1),

with �n(t)��n for t ∈ [0,1], �′
n(1)+ �(�n(1))>0 and�n(1)��1

and we have(�p(�
′
n))

′ + q(t)f (t, �n(t))�0

for t ∈
[

1

n
,1

)
, and(�p(�

′
n))

′ + q(t)f

(
1

n
, �n(t)

)
�0

for t ∈
(

0,
1

n

)
. (3.8)

Then (2.24)–(2.26) hold. The proof is same as the proof of Theorem 3.1. Combining this with Theorem
2.2 gives the following result. �

Theorem 3.2. Let n0 ∈ {3,4, . . .} be fixed and suppose(2.1)–(2.4), (2.7), (3.4)–(3.8)and (2.27)hold.
Then(1.1)has a solutiony ∈ C[0,1] ∩ C1(0,1] with �p(y

′) ∈ C1(0,1) with y(t)>0, t ∈ (0,1].
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Looking at Theorems 3.1 and 3.2 one sees that the main difficulty when discussing examples is con-
structing the�n in (2.8) or (2.26). As a result we present a theorem which removes (2.8) or (2.26) and
replaces it with an easy verifiable condition. As in Theorems 2.1 and 2.2 we first present the results in
their full generality.

Theorem 3.3. Letn0 ∈ {3,4, . . .} be fixed and suppose(2.1)–(2.7)hold. In addition assume there exist

M1>0 and M2>max

{
sup
t∈[0,1]

�(t), �1

}
(3.9)

with

for eachn ∈ N0, q(t)f (t,M1t +M2)<0 for t ∈
[

1

n
,1

)
,

q(t)f

(
1

n
,M1t +M2

)
<0 for t ∈

(
0,

1

n

)
(3.10)

and

M1 + �(M1 +M2)>0 (3.11)

holding. Then(1.1)has a solutiony ∈ C[0,1]∩C1(0,1]with�p(y
′) ∈ C1(0,1)withy(t)>0, t ∈ (0,1].

Proof. Define�n(t)=M1t +M2 for t ∈ [0,1] andn ∈ N0. Then

for eachn ∈ N0, �n ∈ C[0,1] ∩ C1(0,1], �p(�
′
n) ∈ C1(0,1),

with �n(t)��n for t ∈ [0,1], �′
n(1)+ �(�n(1))= �1>0,

�n(1)��(1) and we have(�p(�
′
n))

′ + q(t)f (t, �n(t))= 0

for t ∈
[

1

n
,1

)
, and(�p(�

′
n))

′ + q(t)f

(
1

n
, �n(t)

)
= 0

for t ∈
(

0,
1

n

)

and

max

{
sup
t∈[0,1]

�n(t) : n ∈ N0

}
<∞.

Then (2.8) and (2.9) hold. The result now follows Theorem 2.1 i.e., (1.1) has a solutiony ∈ C[0,1] ∩
C1(0,1] with �p(y

′) ∈ C1(0,1) with y(t)>0, t ∈ (0,1]. �

Combining Theorem 2.2 and the above proof gives the following existence result.
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Theorem 3.4. Letn0 ∈ {3,4, . . .} be fixed and suppose(2.1)–(2.4), (2.7), (2.24), (2.25), (3.9)and(3.11)
hold. Suppose the following condition also holds:

for eachn ∈ N0, q(t)f (t,M1t +M2)<0 for t ∈
[

1

n
,1 − 1

n

]
,

q(t)f

(
1

n
,M1t +M2

)
<0 for t ∈

(
0,

1

n

)

q(t)f

(
1 − 1

n
,M1t +M2

)
<0 for t ∈

(
1 − 1

n
,1

)
. (3.12)

Then(1.1)has a solutiony ∈ C[0,1] ∩ C1(0,1] with �p(y
′) ∈ C1(0,1) with y(t)>0, t ∈ (0,1].

Combining Theorems 3.1 and 3.3 yields the following theorem.

Theorem3.5. Letn0 ∈ {3,4, . . .}befixedandsuppose(2.1)–(2.4), (2.7), (3.1), (3.2).In addition,suppose
that there exist

M1,M2>0 (3.13)

with (3.10)and (3.11)hold. Then(1.1)has a solutiony ∈ C[0,1] ∩ C1(0,1] with �p(y
′) ∈ C1(0,1)

with y(t)>0, t ∈ (0,1].
Proof. By (3.1), there existn0>0 such that�n0

<M2. Without loss of generality, we suppose that

M2> �1> · · ·> �n > �n+1> · · · and lim
n→∞ �n = 0. (3.14)

As the proof of the Theorem 3.1, there exists� with

� ∈ C[0,1] ∩ C1(0,1],�p(�′) ∈ C1(0,1),

�(0)= 0, �′(1)+ �(�(1))<0

�>0 on(0,1] such that for eachn ∈ N0

we have(�p(�
′))′ + q(t)f (t, y)>0 for

(t, y) ∈
[

1

n
,1

)
× {y ∈ (0,∞) : y < �(t)}

and(�p(�
′))′ + q(t)f

(
1

n
, y

)
>0 for

(t, y) ∈
(

0,
1

n

)
× {y ∈ (0,∞) : y < �(t)} (3.15)

and

�(1)� |�|∞��1. (3.16)
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By (3.14) and (3.16) we have

M2>max

{
sup
t∈[0,1]

�(t), �1

}
.

Thus all the conditions of the Theorem 3.3 are satisfied. Then (1.1) has a solutiony ∈ C[0,1] ∩C1(0,1]
with �p(y

′) ∈ C1(0,1) with y(t)>0, t ∈ (0,1].
Combining Theorems 3.2 and 3.4 yields the following theorem. The proof is similar to the proof of

Theorem 3.5. We omit it. �

Theorem 3.6. Letn0 ∈ {3,4, . . .} be fixed and suppose(2.1)–(2.4), (2.7), (3.4), (3.5), (3.6), (3.11), (3.12)
and(3.13)hold. Then(1.1)has a solutiony ∈ C[0,1] ∩ C1(0,1] with �p(y

′) ∈ C1(0,1) with y(t)>0,
t ∈ (0,1].

4. Example

Example. Consider the boundary value problem

−(|y′|p−2y′)′ = �(At�y−a − 	2),0< t <1,

y(0)= 0, y′(1)− (1 + v)

2
y(1)= 0 (4.1)

with 1<p<∞, 0<v<1,a >0, A>0, ��0,�>0, and	>0. Then (4.1) has a solutiony ∈ C[0,1]∩
C1(0,1] with �p(y

′) ∈ C1(0,1) with y(t)>0, for t ∈ (0,1).
To see this we apply Theorem 3.5. Let

q(t)= �, f (t, y)= At�

ya
− 	2, �(z)= − (1 + v)

2
z and

g(y)= Ay−a, h(y)= 	2. (4.2)

Clearly (2.1)–(2.4) and (3.2) are satisfied. We next prove (2.7) holds.
We have

g′(y)= −Aa
ya+1 <0 for y >0

and

|g′|1/p
g2/p =

(
Aa
ya+1

)1/p

(Ay−a)2/p
=

( a
A

)1/p
y(a−1)/p.

Thus for anyR>0,∫ R

0

|g′|1/p
g2/p dy =

∫ R

0

( a
A

)1/p
y(a−1)/p dy <∞
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and ∫ ∞

0

|g′|1/p
g2/p dy =

( a
A

)1/p
∫ ∞

0
y(a−1)/p dy

=
( a
A

)1/p p

p + a − 1
y(p+a−1)/p

∣∣∣∣
∞

0

= ∞,

so (2.7) holds.
Next let

�n =
(

A

n�(	2 + 1)

)1/a

and k0 = � (4.3)

and notice forn ∈ {3,4, . . .}, 1
n
� t�1 and 0<y��n that we have

q(t)f (t, y)��

(
A

(
1

n

)�

[�n]−a − 	2
)

= �([	2 + 1] − 	2)= �.

Thus (3.1) holds. Finally letM2 =
(

2A
	2

)1/a
>0 andM1 = 2(1+v)

1−v M2>0. Then (3.10) holds since

f (t,M1t +M2)< f (t,M2)= At�

Ma
2

− 	2

= At�

2A/	2 − 	2 =
(
t�

2
− 1

)
	2<0 for t ∈

[
1

n
,1

)

and

f

(
1

n
,M1t +M2

)
<f

(
1

n
,M2

)
<0 for t ∈

(
0,

1

n

)
.

On the other hand, (3.11) is true since

M1 +
(

− 1 + v

2

)
(M1 +M2)=M1 − 1 + v

2
M1 − 1 + v

2
M2

= 1 − v

2
M1 − 1 + v

2
M2

= 1 − v

2
· 2(1 + v)

1 − v
M2 − 1 + v

2
M2

= 1 + v

2
M2>0.

Thus all the conditions of the Theorem 3.5 are satisfied. Then (4.1) has a solutiony ∈ C[0,1] ∩C1(0,1]
with �p(y

′) ∈ C1(0,1) with y(t)>0, for t ∈ (0,1).
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