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a b s t r a c t

Stepwise refinement is a crucial conceptual tool for system development, encouraging
programconstruction via a number of separate correctness-preserving stageswhich ideally
can be understood in isolation. A crucial conceptual component of security is an adversary’s
ignorance of concealed information. We suggest a novel method of combining these two
ideas.
Our suggestion is based on a mathematical definition of ‘‘ignorance-preserving’’

refinement that extends classical refinement by limiting an adversary’s access to concealed
information: moving from specification to implementation should never increase that
access. The novelty is the way we achieve this in the context of sequential programs.
Specifically we give an operational model (and detailed justification for it), a basic

sequential programming language and its operational semantics in that model, a ‘‘logic
of ignorance’’ interpreted over the samemodel, then a program-logical semantics bringing
those together — and finally we use the logic to establish, via refinement, the correctness
of a real (though small) protocol: Rivest’s Oblivious Transfer. A previous report? treated
Chaum’s Dining Cryptographers similarly.
In passing we solve the Refinement Paradox for sequential programs.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Stepwise refinement is an idealised process whereby program- or system development is ‘‘considered as a sequence of
design decisions concerning the decomposition of tasks into subtasks and of data into data structures’’ [2].We say ‘‘idealised’’
because, as is well known, in practice it is almost never fully achieved: the realities of vague- and changing requirements, of
efficiency etc. simply do not cooperate. Nevertheless as a principle to aspire to, a way of organising our thinking, its efficacy
is universally recognised: it is an instance of separation of concerns.
A second impediment to refinement (beyond ‘‘reality’’ as above) is its scope. Refinement was originally formalised as a

relation between sequential programs [3], based on a state-to-state operational model, with a corresponding logic of Hoare-
triples {Φ} S {Ψ } [4] or equivalentlyweakest preconditionswp.S.Ψ [5]. As a relation, it generates an algebra of (in-)equations
between program fragments [6,7].
Thus a specification S1 is said to be refined by an implementation S2, written S1 v S2, just when S2 preserves all logically

expressible properties of S1. The scope of the refinement is determined by that expressivity: originally limited to sequential
programs [3], it has in the decades since been extended in many ways (e.g. concurrency, real-time and probability).
Security is our concern of scope here. The extension of refinement in this article is based on identifying and reasoning

about an adversarial observer’s ‘‘ignorance’’ of datawewish to keep secret, to be defined as his uncertainty about the parts of

I This is an extension of an earlier report [C. Morgan, The Shadow Knows: Refinement of ignorance in sequential programs, in: T. Uustalu (Ed.), Proc. of
8th Int. Conf. on Mathematics of Program Construction, MPC 2006, Kuressaare, July 2006, in: Lect. Notes in Comput. Sci., vol. 4014, Springer, Berlin, 2006,
pp. 359–378].
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Fig. 1. Programming language syntax.

the program state he cannot see. Thuswe consider a program of known source-text, with its state partitioned into a ‘‘visible’’
part v and a ‘‘hidden’’ part h, and we ask

From the initial and final values of visible v, what can an adversary deduce about hidden h? (1)

For example, if the program is v:= 0, then what he can deduce afterwards about h is only what he knew beforehand; but if
it is v:= hmod 2, then he has learned h’s parity; and if it is v:= h then he has learned h’s value exactly.
We assume initially (and uncontroversially) that the adversary has at least the abilities implied by (1) above, i.e.

knowledge of v’s values before/after execution and knowledge of the source code. We see below, however, that if we make
certain reasonable, practical assumptions about refinement – which we shall justify – then surprisingly we are forced to
assume as well that the adversary can see both program flow and visible variables’ intermediate values: that is, there are
increased adversarial capabilitieswrt ignorance that accrue as a consequence of using refinement.1 Thus refinement presents
an increased security risk, a challenge for maintaining correctness: but it is so important, as a design tool, that the challenge
is worth meeting.
The problem is in essence that classical refinement [3,6–8] is indeed insecure in the sense that it does not preserve

ignorance [9]. If we assume v, h both to have type T , then ‘‘choose v from T ’’ is refinable into ‘‘set v to h’’ — as such it is simply
a reduction of demonic nondeterminism. But that refinement, which we write v:∈ T v v:= h, is called the ‘‘Refinement
Paradox’’ (Section 7.3.2) precisely because it does not preserve ignorance: program v:∈ T tells us nothing about h, whereas
v:= h tells us everything. To integrate refinement and security we must address this paradox at least.

Our first contribution is a collection of ‘‘refinement principles’’ that we claim any reasonable ignorance refinement
algebra [6,7] must adhere to if it is to be practical. Because basic principles are necessarily subjective, we give a detailed
argument to support our belief that they are important (Section 2).

Our second, and main contribution is to realise those principles: our initial construction for doing so includes a
description of the adversary (Section 3), a state-basedmodel incorporating the adversary’s capabilities (Section 4.2), a small
programming language (Fig. 1)with its operational semantics over thatmodel (Fig. 2) and a thorough treatment of indicative
examples (Figs. 3–5).
In support of our construction we give beforehand a detailed rationale for our design (Section 2), and an argument via

abstraction that induces our model’s features from that rationale by factoring it through Kripke structures (Section 4.1).
Based on our construction we then give a logic for our proposed model (Section 6), a programming-logic based on that

and the operational semantics (Sections 7 and 8), and examples of derived algebraic techniques (Sections 9 and 10).
Within the framework constructed as above we interpret refinement both operationally (Section 5.3) and logically

(Sections 7.2 and 8.1), which interpretations are shown to agree (again Section 7.2) and to satisfy the Principles (Section 8.4).
Ignorance-preserving refinement should be of great utility for developing zero-knowledge- or security-sensitive

protocols (at least); and our final contribution (Section 11) is an example, a detailed refinement-based development
of Rivest’s Oblivious Transfer Protocol [10].

2. Refinement principles: Desiderata for practicality

The general theme of the five refinement principleswe nowpresent is that localmodifications of a program should require
only local checking (plus if necessary accumulation of declarative context hierarchically): anywholesale search of the entire
source code must be rejected out of hand.

RP0 Refinement is monotonic — If one program fragment is shown in isolation to refine another, then the refinement
continues to hold in any context: robustness of local reasoning is of paramount importance for scaling up.

1 In the contrapositive, what we will argue is that if we integrated refinement and ignorance without admitting the adversary’s increased capabilities,
we would not get a reasonable theory.
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RP1 All classical ‘‘visible-variable only’’ refinements remain valid — It would be impractical to search the entire program (for
hidden variables) in order to validate local reasoning (i.e. in which the hiddens elsewhere are not even mentioned).

RP2 All classical ‘‘structural’’ refinements remain valid — Associativity of sequential composition, distribution of code into
branches of a conditional etc. are refinements (actually equalities) that do not depend on the actual code fragments
affected: they are structurally valid, acting en bloc. It would be impractical to have to trawl through their interiors
(including e.g. procedure calls) to validate such familiar rearrangements. (Indeed, the procedures’ interiors might by
unavailable due to modularisation.)

RP3 Some classical ‘‘explicit-hidden’’ refinements become invalid — This is necessary because, for example, the Refinement
Paradox is just such a refinement. Case-by-case reasoning must be justified by a model and a compatible logic.

RT Referential transparency — If two expressions are equal (in a declarative context) then they may be exchanged (in that
context) without affecting the meaning of the program. This is a crucial component of any mathematical theory with
equality.

3. Description of the adversary: Gedanken experiments

We initially assume minimal, ‘‘weak’’ capabilities (1) of our adversary, but show via gedanken experiments based on our
Principles (Section 2) that if we allow refinement then we must assume the ‘‘strong’’ capabilities defined below.

3.1. The weak adversary in fact has perfect recall

We ask Does program v:= h; v:= 0 reveal h to the weak adversary? According to our principles above, it must; we reason

(v:= h; v:= 0); v:∈ T
= v:= h; (v:= 0; v:∈ T ) ‘‘RP2: associativity’’
= v:= h; v:∈ T ‘‘RP1: visibles only’’
v v:= h; skip ‘‘RP1: visibles only; RP0’’
= v:= h, ‘‘RP2: skip is the identity’’

(2)

whencewe conclude that, since the implementation (v:= h) fails to conceal h, somust the specification (v:= h; v:= 0; v:∈ T )
have failed to do so. Our model must therefore have perfect recall [11], because escape of h into v is not ‘‘erased’’ by the v-
overwriting v:= 0. That is what allows h to be ‘‘copied’’ by the final v:∈ T .2

3.2. The weak adversary in fact can observe program flow

Nowwe ask Does program h:= 0 u h:= 1 reveal h to the weak adversary? Again, according to our principles, it must: we
reason

(h:= 0 u h:= 1); v:∈ T
= (h:= 0; v:∈ T ) u (h:= 1; v:∈ T ) ‘‘RP2: distribution u and ;’’
v (h:= 0; v:= 0) u (h:= 1; v:= 1) ‘‘RP1; RP2’’
= (h:= 0; v:= h) u (h:= 1; v:= h) ‘‘RT : have h=0 left, h=1 right’’
= (h:= 0 u h:= 1); v:= h, ‘‘reverse above steps’’

(3)

and we see that we can, by refinement, introduce a statement that reveals h explicitly. Our model must therefore allow the
adversary to observe the program flow, because that is the only way operationally he could have discovered h in this case.
Similar reasoning shows that if E then skip else skip fi reveals the Boolean value E.

3.3. The strong adversary: A summary

In view of the above, we accept that our of-necessity strong adversary must be treated as if he knows at any time what
program steps have occurred and what the visible variables’ values were after each one.
Concerning program flow, we note the distinction between composite nondeterminism, written e.g. as h:= 0u h:= 1 and

acting between syntactic atoms (or larger structures), and atomic nondeterminism,written e.g. as h:∈ {0, 1} and actingwithin
atoms:

• in the composite case, afterwards the adversary knows which of atoms h:= 0 or h:= 1 was executed, and thus knows the
value of h too; yet
• in the atomic case, afterwards he knows only that the effect was to set h to 0 or to 1, and thus knows only that h∈{0, 1}.

Thus h:= 0 u h:= 1 and h:∈ {0, 1} are different. (Regularity of syntax however allows v:= 0 u v:= 1 and v:∈ {0, 1} as
well; but since v is visible, there is no semantic difference between those latter two fragments.)

2 Adding the extra statement v:∈ T is our algebraic means of detecting information-flow leaks: if a value is accessible to the adversary, then it should be
valid to refine v:∈ T so that the value is placed into v.
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Fig. 2. Operational semantics.

4. A Kripke-based security model for sequential programs

Perfect recall and program flow suggest the Logic of Knowledge and its Kripke models as a suitable conceptual basis for
what we want to achieve.
The seminal work on formal logic for knowledge is Hintikka’s [12], who used Kripke’s possible-worlds semantics for the

model: he revived the discussion on a subject which had been a topic of interest for philosophers for millennia. It was first
related to multi-agent computing by Halpern and Moses [13], and much work by many other researchers followed. Fagin
et al. summarise the field in their definitive introduction [14].
The standard model for knowledge-based reasoning [12–14] is based on possible ‘‘runs’’ of a system and participating

agents’ ignorance of how the runs have interleaved: although each agent knows the (totality of) the possible runs, a sort of
‘‘static’’ knowledge, he does not have direct ‘‘dynamic’’ knowledge of which run has been taken on any particular occasion.
Thus he knows a fact in a given global state (of an actual run) iff that fact holds in all possible global states (allowed by other
runs) that have the same local state as his.
For our purposes we severely specialise this view in three ways. The first is that we consider only sequential programs,

with explicit demonic choice. As usual, such choice can represent both abstraction, that is freedom of an implementor to
choose among alternatives (possible refinements), and ignorance, that is not knowing which environmental factors might
influence run-time decisions.

Secondly, we consider only one agent: this is our adversary, whose local state is our system’s visible part and who is is
trying to learn about (what is for him) the non-local, hidden part.

Finally, we emphasise ignorance rather than knowledge (its dual).

4.1. The model as a Kripke structure

We assume a sequential program text, including a notion of atomicity: unless stated otherwise, each syntactic atom
changes the program counter when it is executed; semantically, an atom is simply a relation between initial and final states.
Demonic choice is either a (non-atomic) choice between two program fragments, thus S1 u S2, or an (atomic) selection of a
variable’s new value from some set, thus x:∈ X . For simplicity we suppose we have just two (anonymously typed) variables,
the visible v and the hidden h.
The global state of the system comprises both v, h variables’ current and all previous values, sequences v, h, and a history-

sequence p of the program counter; from Section 3 we assume the adversary can see v, p but not h. For example, even after
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Fig. 3. Examples of ignorance, informally interpreted.

S1; (S2 u S3); S4 has completed he can use p to ‘‘remember’’ which of S2 or S3 was executed earlier, and he can use v to
recall the visible variables’ values after whichever it was.
The possible runs of a system S are all sequences of global states that could be produced by the successive execution of

atomic steps from some initial v0, h0, a tree structure with branching derived from demonic choice (both u and :∈ ).
If the current state is (v, h, p), then the set of possible states associated with it is the set of all (other) triples (v, h1, p)

that S could (also) have produced from v0, h0. We write (v, h, p) ∼ (v, h1, p) for this (equivalence) relation of accessibility,
which depends on S, v0, h0.

4.2. An operational model abstracted from the Kripke structure

Because of our very limited use of the Kripke structure, we can take a brutal abstraction of it: programs cannot refer to
the full run-sequences directly; what they can refer to is just the current values of v, h, and that is all we need keep of them
in the abstraction.
For the accessibility relation we introduce a ‘‘shadow’’ variable H , set-valued, which records the possible values of h in

all (other) runs that the adversary considers∼-equivalent to (cannot distinguish from) this one; the abstraction to (v, h,H)
is thus
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Fig. 4. Operational-semantics examples.

v = last.v ∧ h = last.h ∧ H = {h
′
| (v, h

′
, p) ∼ (v, h, p) · last.h

′
}.4

From sequences v, h, pwe retain only final values v, h and the induced H .5

5. The Shadow Knows: An operational semantics

We now use our model to give an ignorance-sensitive operational interpretation of a simple sequential
programming language including nondeterminism. To begin with, we continue to assume a state space with
just two variables, the visible v and the hidden h. (In general of course there can bemany visibles and hiddens.)
Our semantics adds a third variable H called the shadow of the hidden variable h. The semantics will ensure

that, in the sense of Section 4.2 above, the shadow H ‘‘knows’’ the set of values that h has potentially.

4 Read the last as ‘‘vary h
′
such that (v, h

′
, p) ∼ (v, h, p) and take last.h

′
for each’’.

5 In fact the H-component makes h redundant – i.e. we can make do with just (v,H) – but this extra ‘‘compression’’ would complicate the presentation
subsequently.
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Fig. 5. Operational examples of outcomes and refinement.

5.1. Syntax and semantics

The syntax of our example programming language is given in Fig. 1.
The operational semantics is given in Fig. 2, for which we provide the following commentary. In summary, we convert

‘‘ignorance-sensitive’’ (that is v, h-) programs to ‘‘ordinary’’ (that is v, h,H-) programs and then rely on the conventional
relational semantics for those.6We comment on each case in turn.

• The identity skip changes no variables, hence has no effect.
• Assigning to a visible ‘‘shrinks’’ the shadow to just those values still consistent with the value the visible reveals: the
adversary, knowing the outcome and the program code, concludes that the other values are no longer possible. Choosing
a visible is a generalisation of that.
• Assigning to a hidden sets the shadow to all values that could have resulted from the current shadow; again, choosing a
hidden is a generalisation.
• Demonic choice and sequential composition retain their usual definitions. Note in particular that the former induces
nondeterminism in the shadow H as well.
• The conditional shrinks the shadow on each branch to just those values consistent with being on that branch, thus
representing the adversary’s observing which branch was taken.

5.2. Examples of informal- and operational semantics

In Fig. 3 we give informal descriptions of the effects of a number of small program fragments; then in Fig. 4 we apply the
semantics above to give the actual translations, showing how they support the informal descriptions.
We begin by noting that h:∈ {0, 1}, the simplest example (Fig. 3(.2)) of ignorance, leads us as usual to either of two states,

one with h=0 and the other with h=1; but since the choice is atomic an adversary cannot tell which of those two states

6 Our definitions are induced from the abstraction given in Section 4.2.
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it is. This is reflected in the induced assignment of {0, 1} to the shadow H , on both branches, shown in the corresponding
semantics (4.2).
In contrast, although the program h:= 0 u h:= 1 (3.3) again leads unpredictably to h=0 or h=1, in both cases the

semantics (4.3) shows that we have H={h} finally, reflecting that the non-atomic program flow has revealed h’s value
implicitly to the adversary. Thus an operational indication of (degrees of) ignorance is the size of H: the bigger it is, the
less is known; and that is what distinguishes these two examples.

5.3. Operational definition of ignorance-preserving refinement

Given two states (v1, h1,H1) and (v2, h2,H2)we say that the first is refined by the second just when they agree on their
v, h-components and ignorance is only increased in the H-component: that is we define

(v1, h1,H1) v (v2, h2,H2) =̂ v1=v2 ∧ h1=h2 ∧ H1⊆H2.

We promote this to sets of (v, h,H)-states in the standard (Smyth power-domain [15]) style, saying that we have
refinement between two sets S1, S2 of states justwhen every state s2∈S2 is a refinement of some state s1∈S1; that is,wedefine

S1 v S2 =̂ (∀s2: S2 · (∃s1: S1 · s1 v s2)).

We promote this a second time, now to (v, h,H)-programs, using the standard pointwise-lifting for functions in which
S1 v S2 just when for some initial s the set of possible outcomes S1 arising via S1 from that s is refined by the set of possible
outcomes S2 arising via S2 from that same s. Examples are given in Fig. 5.
Finally, we say that two (v, h)-programs are related by refinement just when their (v, h,H)-meanings are: that is

S1 v S2 =̂ [[S1]] v [[S2]].
In summary, we have ignorance-sensitive refinement S1 v S2 just when for each initial (v, h,H) every possible outcome

(v2, h2,H2) of [[S2]] satisfies v1=v2 ∧ h1=h2 ∧ H1⊆H2 for some outcome (v1, h1,H1) of [[S1]].

5.4. Declarations and local variables

In the absence of procedure calls and recursion, we can treat multiple-variable programs over v1, . . . , vm; h1, . . . hn, say,
as operating over single tuple-valued variables v=(v1, . . . , vm); h=(h1, . . . hn). A variable vi or hi in an expression is actually
a projection from the corresponding tuple; as the target of an assignment it induces a component-wise update of the tuple.
Within blocks, visible- and hidden local variables have separate declarations vis v and hid h respectively. Note that scope

does not affect visibility: (even) a global hidden variable cannot be seen by the adversary; (even) a local visible variable can.
Brackets |[ · ]| (for brevity) or equivalently begin · end (in this section only, for clarity) introduce a local scope that

initially extends either v or h,H as appropriate for the declarations the brackets introduce, and finally projects away the
local variables as the scope is exited.
In the operational semantics for visibles this treatment is the usual one: thus we have [[ begin vis v · S end ]] =̂

begin var v · [[S]] end. For hidden variables however we arrange for H to be implicitly extended by the declaration; thus
we have

[[ beginhid h · S end ]] =̂ begin var h · H:=H×D;
[[S]];
H:=H↓ end

where D is the set over which our variables – the new h in this case – take their values (Fig. 2), and we invent the notation
H↓ for the projection of the product H×D back to H .

6. Modal assertion logic for the shadowmodel

We now introduce an assertion logic for reasoning over the model of the previous section. Our language will be first-
order predicate formulae Φ , interpreted conventionally over the variables of the program, but augmented with a ‘‘knows’’
modal operator [14, 3.7.2] so that KΦ holds in this state just whenΦ itself holds in all (other) states the adversary considers
compatible with this one. From our earlier discussion (Section 3) we understand the adversary’s notion of compatibility
to be, for a given program text, ‘‘having followed the same path through that text and having generated the same visible-
variable values along the way’’; from our abstraction (Section 4.2), we know we can determine that compatibility based on
H alone.
The dual modality ‘‘possibly’’ is written PΦ and defined ¬K(¬Φ); and it is the modality we will use in practice, as it

expresses ignorance directly. (Because KΦ seems more easily grasped, however, we explain both.)
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6.1. Interpretation of modal formulae

We give the language function- (including constant-) and relation symbols as needed, among which we distinguish the
(program-variable) symbols visibles in some set V and hiddens in H; as well there are the usual (logical) variables in L over
which we allow ∀, ∃ quantification. The visibles, hiddens and variables are collectively the scalars X =̂ V ∪ H ∪ L.
A structure comprises a non-empty domain D of values, together with functions and relations over it that interpret the

function- and relation symbols mentioned above; within the structure we name the partial functions v, h that interpret
visibles and hiddens respectively; we write their types V 7→D and H 7→D (where the ‘‘crossbar’’ indicates the potential
partiality of the function).
A valuation is a partial function from scalars to D, thus typed X 7→D; one valuation w1 can override another w so that for

scalar x we have (w G w1).x is w1.x if w1 is defined at x and is w.x otherwise. The valuation 〈x7→d〉 is defined only at x,
where it takes value d.
A state (v, h,H) comprises a visible- v, hidden- h and shadow- part H; the last, in P(H 7→D), is a set of valuations over

hiddens only.7We require that h ∈ H.
We define truth ofΦ at (v, h,H) under valuationw by induction in the usual style, writing (v, h,H),w |H Φ . Let t be the

term-valuation built inductively from the valuation v G h G w. Then we have the following [14, pp. 79,81]:

• (v, h,H),w |H R.t1. · · · .tk for relation symbol R and terms t1 · · · tk iff the tuple (t.t1, . . . , t.tk) is an element of the
interpretation of R.
• (v, h,H),w |H t1 = t2 iff t.t1 = t.t2.
• (v, h,H),w |H ¬Φ iff (v, h,H),w 6|H Φ .
• (v, h,H),w |H Φ1 ∧ Φ2 iff (v, h,H),w |H Φ1 and (v, h,H),w |H Φ2.
• (v, h,H),w |H (∀l ·Φ) iff (v, h,H),w G 〈l7→d〉 |H Φ for all d in D.
• (v, h,H),w |H KΦ iff (v, h1,H),w |H Φ for all h1 in H.

Wewrite just (v, h,H) |H Φ whenw is empty, and |H Φ when (v, h,H) |H Φ for all v, h,Hwith h∈H, andwe take advantage
of the usual ‘‘syntactic sugar’’ for other operators (including P as ¬K¬). Thus for example we can show |H Φ ⇒ PΦ for all
Φ , a fact which we use in Section 8.5. Similarly we can assume wlog that modalities are not nested, since we can remove
nestings via the validity |H PΦ ≡ (∃c · [h\c]Φ ∧ P(h=c)).

7. A program logic of Hoare-triples

7.1. Pre-conditions and postconditions

We say that {Φ} S {Ψ } just when any initial state (v, h,H) |H Φ must lead via S only to final states (v′, h′,H′) |H Ψ ;
typically Φ is called the precondition and Ψ is called the postcondition. Fig. 6 illustrates this proposed program logic using
our earlier examples from Fig. 3. (Because the example postconditions Ψ do not refer to initial values, their validities in this
example are independent of the preconditionΦ .)

7.2. Logical definition of ignorance-preserving refinement

We saw in Section 5.3 a definition of refinement given in terms of the model directly. When the model is linked to a
programming logic we expect the earlier definition of refinement to be induced by the logic, so that S1 v S2 just when all
logically expressible properties of S1 are satisfied S2 also (Section 1). The key is of course ‘‘expressible’’.
Our expressible properties will be traditional Hoare-style triples, but over formulae whose truth is preserved by increase

of ignorance: those in which all modalities K occur negatively, and all modalities P occur positively. We say that such
occurrences of modalities are ignorant; and a formula is ignorant just when all its modalities are. Thus in program-logical
terms we say that S1 v S2 just when for all ignorant formulaeΦ,Ψ we have

that the property {Φ} [[S1]] {Ψ } is valid
implies that the property {Φ} [[S2]] {Ψ } is also valid. (4)

We link these two definitions of refinement in the following lemma.

Lemma 1. The definitions of ignorance-sensitive refinement given in Section 5.3 and in (4) above are compatible.
Proof. Fix S1 and S2 and assume for simplicity single variables v, h so that we can work with states (v, h,H) rather than
valuations. (Working more generally with valuations, we would define H1⊆H2 to mean H1.x⊆H2.x for all hiddens x where
both valuations are defined; the proof’s extension to this case is conceptually straightforward but notationally cumbersome.)
We argue the contrapositive, for a contradiction, in both directions.8

7 To allow for declarations of additional hidden variables, we must make H a set of valuations rather than simply a set of values. This is isomorphic to a
set of tuples (Section 5.4), but is easier to use in the definition of the logic.
8 That is we establish A⇒ B via ¬ B ∧ A⇒ false.
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Fig. 6. Examples of valid and invalid postconditions.

operational- (Section 5.3) implies logical refinement (Section 7.2)
Suppose we have ignorant modal formulae Φ,Ψ so that {Φ} [[S1]] {Ψ } is valid but {Φ} [[S2]] {Ψ } is invalid. There
must therefore be initial (v0, h0,H0) |H Φ such that final (v2, h2,H2) is possible via [[S2]] yet (v2, h2,H2) 6|H Ψ .
Because (we assume for a contradiction) S2 refines S1 operationally, we must have some (v1, h1,H1) via [[S1]]

from (v0, h0,H0) with H1⊆H2 and of course as well v1=v2, and similarly h1=h2; thus from (v0, h0,H0) |H Φ and
{Φ} [[S1]] {Ψ }we conclude (v2, h2,H1) |H Ψ .
But (v2, h2,H1) |H Ψ and H1⊆H2 implies (v2, h2,H2) |H Ψ because Ψ is ignorant — which gives us our

contradiction.
logical- (Section 7.2) implies operational refinement (Section 5.3)

Suppose we have (v2, h2,H2) via [[S2]] from some (v0, h0,H0) but there is no (v2, h2,H1) with H1⊆H2 via [[S1]] —
equivalently, for all [[S1]]-outcomes (v2, h2,H1)we have (∃h:H1 | h 6∈ H2).
For convenience let symbols v0 etc. from the state-triples act as constants denoting their values. Define formulae

Φ =̂ v=v0 ∧ h=h0 ∧ (∀x:H0 · P(h=x))
and Ψ =̂ v=v2 ∧ h=h2 ⇒ P(h6∈H2).

Now {Φ} [[S1]] {Ψ } because any initial statewith (v, h,H) |H Φmust have v=v0∧h=h0∧H⊇H0, andwe observe
that expanding the H-component of an initial state can only expand the H component of outcomes. (This is a form
of ignorance-monotonicity, established by inspection of Fig. 2.) That is, because all outcomes from (v0, h0,H0)
itself via [[S1]] satisfy Ψ , so must all outcomes from any (other) initial such (v0, h0,H) |H Φ satisfy Ψ , since Ψ is
ignorant.
But (since we assume logical refinement, for a contradiction) we have {Φ} [[S1]] {Ψ } implies {Φ} [[S2]] {Ψ } —

whence also (v2, h2,H2) |H Ψ , which is our contradiction (by inspection of Ψ ). �
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7.3. Two negative examples: Excluded refinements

We now give two important examples of non-refinements: the first appears valid wrt ignorance, but is excluded
classically; the second is the opposite, valid classically, but excluded wrt ignorance.

7.3.1. Postconditions refer to h even though the adversary cannot see it
We start with the observation that we do not have h:∈ {0, 1} ?v h:∈ {0, 1, 2}, even though the ignorance increases and

h cannot be observed by the adversary: operationally the refinement fails due to the outcome (·, 2, {0, 1, 2}) on the right
for which there is no supporting triple (·, 2, ?) on the left; logically it fails because all left-hand outcomes satisfy h6=2 but
some right-hand outcomes do not.
The example illustrates the importance of direct references to h in our postconditions, even though h cannot be observed

by the adversary: for otherwise the above refinement would after all go through logically. The reason it must not is that, if it
did, we would by monotonicity of refinement (RP0) have to admit h:∈ {0, 1}; v:= h ?v h:∈ {0, 1, 2}; v:= h as well, clearly
false: the outcome v=2 is not possible on the left, excluding this refinement classically.

7.3.2. The Refinement Paradox
We recall that the Refinement Paradox [9] is an issue because classical refinement allows the ‘‘secure’’ v:∈ T to be refined

to the ‘‘insecure’’ v:= h as an instance of reduction of demonic nondeterminism. We can now resolve it: it is excluded on
ignorance grounds.
Operationally, we observe that v:∈ T 6v v:= h because from (?, h0,H0) the former’s final states are {(e, h0,H0) | e: T };

yet the latter’s are just { (h0, h0, {h0}) } and, even supposing h0∈T so that e=h0 is a possibility, still in general H0 6⊆{h0} as
refinement would require.
Logically, we can prove (Fig. 9 below) that {P(h=C)} v:∈ T {P(h=C)} holds while {P(h=C)} v:= h {P(h=C)} does not.

8. Weakest-precondition calculus for (v, h)-semantics directly

Our procedure so far for reasoning about ignorance has been to translate (v, h)-programs into (v, h,H)-programs via
the operational semantics of Fig. 2, and then to reason there about refinement either operationally (Section 5.3) or logically
(Section 7.2(4)); in view of Lemma 1 we can do either.
We now streamline this process by developing a weakest-precondition-style program logic on the (v, h)-level program

text directly, consistent with the above but avoiding the need for translation to (v, h,H)-semantics. At (6) we give the
induced (re-)formulation of refinement.

8.1. Weakest preconditions: A review

Given a postcondition Ψ and a program S there are likely to be many candidate preconditions Φ that will satisfy the
Hoare-triple {Φ} S {Ψ }; because it is a property of Hoare-triples that if Φ1,Φ2 are two such (for a given S,Ψ ), then so is
Φ1∨Φ2 (and this extends even to infinitely many), in fact there is a so-calledweakest precondition which is the disjunction
of them all: it is written wp.S.Ψ and, by definition, it has the property

{Φ} S {Ψ } iff |H Φ ⇒ wp.S.Ψ . (5)

Because the partially evaluated terms wp.S can be seen as functions from postconditions Ψ to preconditions Φ , those
terms are sometimes called predicate transformers; and a systematic syntax-inductive definition of wp.S for every program
S in some language is called predicate-transformer semantics. We give it for our language in Fig. 8; it is consistent with the
operational semantics of Fig. 2.
Our predicate-transformer semantics for ignorance-sensitive programs is thus derived from the operational semantics

and the interpretation in Section 6 of modal formulae. With it comes a wp-style definition of refinement

S1 v S2 iff |H wp.S1.Ψ ⇒ wp.S2.Ψ for all ignorant Ψ (6)

which, directly from (5), is consistent with our other two definitions.

8.2. Predicate-transformer semantics for ignorance: Approach

To derive a wp-semantics for the original (v, h)-space, we translate our modal (v, h)-formulae into equivalent classical
formulae over (v, h,H), calculate the classical weakest preconditions for wrt the corresponding (v, h,H)-programs, and
finally translate those back into modal formulae.
From Section 6 we can see that the modality PΦ corresponds to the classical formula (∃(h1, . . .):H · Φ), where hidden

variables h1, . . . are all those in scope; for a general formula Ψ we will write [[Ψ ]] for the result of applying that translation
to all modalities it contains; we continue to assume that modalities are not nested. We write wp for our new transformer
semantics (over v, h), usingwp in this section for the classical transformer-semantics (over v, h,H).
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As an example of this procedure (recalling Fig. 6.8) we have the following:

[[ v:= hmod 2 ]] = v:= hmod 2;
H:={h:H | v = hmod 2}

and [[ v=0⇒ P(h∈{2, 4}) ]] = v=0
⇒ (∃h:H | h∈{2, 4}).

Then the classicalwp-semantics [5] is used over the explicit (v, h,H)-program fragments as follows in this example:

v=0⇒ (∃h:H | h∈{2, 4})

throughwp.(H:={h:H | v = hmod 2}) gives
v=0⇒ (∃h: {h:H | v = hmod 2} | h∈{2, 4})

= v=0⇒ (∃h: {h′:H | v = h′mod 2} | h∈{2, 4}) ‘‘rename bound variable’’
= v=0⇒ (∃h:H | v = hmod 2 ∧ h∈{2, 4}) ‘‘flatten comprehensions’’
= v=0⇒ (∃h:H | v = 0 ∧ h∈{2, 4}) ‘‘arithmetic’’
= v=0⇒ (∃h:H | h∈{2, 4}) ‘‘predicate calculus’’

throughwp.(v:= hmod 2) gives
hmod 2 = 0 ⇒ (∃h:H | h∈{2, 4})

which, translated back into the modal P-form (i.e. ‘‘un-[[·]]’d’’) gives the weakest precondition hmod 2 = 0⇒ P(h∈{2, 4}).
Our general tool for the transformers will be the the familiar substitution [e\E]which replaces all occurrences of variable

e by the term E, introducingα-conversion as necessary to avoid capture by quantifiers. There are some special points to note,
however, if we are applying the substitution over amodal formulaΦ andwish to be consistentwith theway the substitution
would actually be carried out over [[Φ]].

(1) Substitution into a modality for a hidden variable has no effect; the substitution is simply discarded. Thus [h\E]PΦ is
just PΦ .

(2) If x does not occur inΦ then again the substitution is just discarded. Thus [x\E]PΦ is just PΦ if x does not occur inΦ .
(3) If x, E contain no hiddens, then [x\E]PΦ is just P([x\E]Φ).
(4) Otherwise the substitution ‘‘stalls’’ at the modality (there is no reduction).

These effects are due to the fact that, although themodality P is implicitly a quantification over hidden variables, we have
not listed variables after the ‘‘quantifier’’ as one normally would: so we cannot α-convert them if that is what is necessary
to allow the substitution to go through. (This accounts for the stalling in Case 4 and is the price we pay for suppressing the
clutter of H and its quantification.) Usually the bodyΦ of the modality can bemanipulated until one of Cases 1–3 holds, and
then the substitution goes through after all.

8.3. Example calculations of atomic commands’ semantics

We now calculate the wp-semantics for Identity, Assign to visible and Choose hidden. Occurrences of v, h in the rules may
be vectors of visible- or vectors of hidden variables, in which case substitutions such as [h\h′] apply throughout the vector.
We continue to assume no nesting of modalities.

8.3.1. (v, h)-transformer semantics for skip
Wemust define wp in this case so that for all modal formulae Ψ we have

[[wp.skip.Ψ ]] = wp.[[skip]].[[Ψ ]],

and that is clearly satisfied by the definition wp.skip.Ψ =̂ Ψ .

8.3.2. (v, h)-transformer semantics for assign to visible
Here we need
[[wp.(v:= E).Ψ ]] = wp.[[v:= E]].[[Ψ ]]
(from Fig. 2) = [e\E][H\{h:H | e=E}][v\E][[Ψ ]],

where the second equality comes from the operational-semantic definitions of Fig. 2 and classical wp. Note that we have
three substitutions to perform in general.
The middle substitution [H\{h:H | e=E}] leads to the definition of what we will call a ‘‘technical transformer’’, Shrink

Shadow, and it is a feature of our carrying H around without actually referring to it; in our v, h semantics we will write it
[⇓ e=E], where the equality e=E expresses the constraint (the ‘‘shrinking’’) to be applied to the potential values for h as
recorded in H .
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The general [⇓φ] is a simple substitution (too); but since it is a substitution for H it affects only the (translated) modal
formulae, having no effect on classical atomic formulae (because they do not contain H). Thus for modal formulae (only)
we have

[H\{h:H | φ}][[PΦ]]
= [H\{h:H | φ}](∃h:H ·Φ) ‘‘translate’’
= (∃h: {h′:H | φ′} ·Φ) ‘‘let φ′ be [h\h′]φ for clarity’’
= (∃h:H · φ ∧ Φ) ‘‘simplify’’
= [[ P(φ ∧ Φ) ]] ‘‘retranslate’’
= [[ [⇓φ]PΦ ]]. ‘‘postulated definition Shrink Shadow’’

Note that hidden variables in φ are not protected in Shrink Shadow from implicit capture by P.
Collecting this all together gives us

wp.(v:= E).Ψ = [e\E][⇓ e=E][v\E]Ψ ,

which will be the definition we give in Fig. 8. We place the synthesised definition of Shrink Shadow in Fig. 7.

8.3.3. (v, h)-transformer semantics for Choose hidden
Here we need
[[wp.(h:∈ E).Ψ ]] = wp.[[h:∈ E]].[[Ψ ]]

= (∀h: E · [H\∪{E | h:H}][[Ψ ]]),

where again we have referred to Fig. 2. The substitution [H\∪{E | h:H}] we call Set Shadow; in our (v, h)-semantics we
write it [h⇐E].
Since Set Shadow is again a substitution for H it too affects only the (translated) modal formulae:

[H\∪{E | h:H}][[PΦ]]
= [H\∪{E | h:H}](∃h:H ·Φ) ‘‘translate’’
= [H\∪{E | h:H}](∃h′:H ·Φ ′) ‘‘letΦ ′ be [h\h′]Φ for clarity’’
= (∃h′:∪{E | h:H} ·Φ ′) ‘‘substitute’’
= (∃h:H · (∃h′ · h′∈E ∧ Φ ′)) ‘‘convert ∪ to ∃’’
= [[ P(∃h′ · h′∈E ∧ Φ ′) ]] ‘‘retranslate’’
= [[ P(∃h: E ·Φ) ]] ‘‘remove primes’’
= [[ [h⇐E]PΦ ]]. ‘‘definition Set Shadow’’

Note that h’s in E are not captured by the quantifier (∃h · · ·): rather they are implicitly captured by themodality P. Collecting
this together gives us

wp.(h:∈ E).Ψ = (∀h: E · [h⇐E]Ψ )

which again will be the definition we give in Fig. 8. The synthesised definition of Set Shadow joins the other technical
transformers in Fig. 7.

8.4. Adherence to the principles

The wp-logic of Figs. 7 and 8 has the following significant features, some of which (1)–(4) bear directly on the principles
we set out in Section 2, and some of which (5)–(7) are additional properties desirable in their own right.

(1) Refinement is monotonic — RP0.
In view of (6) this requires only a check of Figs. 7 and 8 for the transformers’ monotonicity with respect to⇒.

(2) All visible-variable-only refinements remain valid — RP1.
Reference to Fig. 2 confirms that for any visible-only program fragment S its ignorance-sensitive conversion [[S]] has

exactly the conventional effect on variable v and no effect on the shadow H (or indeed on h).
(3) All structural refinements remains valid — RP2.

At this point we define structural to mean ‘‘involving only Demonic choice, Composition, Identity and right-hand
distributive properties of Conditional’’.
Such properties can be proved using the operational definitions in Fig. 2, which in the first three cases above are

exactly the same as their classical counterparts, merely distributing the relevant operator outwards: that is why their
program-algebraic properties are the same.
In the fourth case, Conditional, distribution from the left is not considered structural as it requires inspection of the

condition E; distribution from the right however remains as in the classical case. Thus we retain for example

(if E then S1 else S2 fi); S = if E then (S1; S) else (S2; S) fi.
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Fig. 7. Technical predicate transformers.

Fig. 8. Weakest-precondition modal semantics.
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Fig. 9. Avoiding the Refinement Paradox via wp-calculations.

(4) Referential transparency remains valid — RT.
The operational definitions show that effect of a program S, if classically interpreted over its variables v, h, is the same

as the effect of [[S]] on those variables (i.e. ignoring H). Thus two v, h-expressions being equal carries over from S to [[S]],
where we can appeal to classical referential transparency in the v, h,H semantics in order to replace equals by equals.

(5) The ignorance-sensitive predicate transformers distribute conjunction, as classical transformers do [5]. Thus complicated
postconditions can be treated piecewise.
This can be seen by inspection of Fig. 8.

(6) Non-modal postconditions can be treated using classical semantics [4,5], even if the program contains hidden variables.
This follows from inspection of Figs. 7 and 8 to show that the transformers reduce to their classical definitions when

there are no modalities.
(7) Modal semantics can be restricted to modal conjuncts.

From (5) we can treat each conjunct separately; from (6) we can use classical semantics on the non-modal ones. Thus
the modal semantics is required only for the others.

8.5. Example of wp-reasoning

Fig. 9 uses weakest preconditions to support our earlier claim (Section 7.3.2) that the Refinement Paradox is resolved
logically: if 6|H wp.S1.Ψ ⇒ wp.S2.Ψ , then from (5) we know {wp.S1.Ψ } S1 {Ψ } holds (perforce) but {wp.S1.Ψ } S2 {Ψ } does
not — and that is the situation in Fig. 9.

9. Examples of further techniques

Beyond the general identities introduced above, a number of specific techniques are suggested by the examples and case
studies that we address below. Here we introduce some of them, in preparation for the Encryption Lemma (Section 10) and
the Oblivious Transfer Protocol (Section 11).

9.1. Explicit atomicity

If we know that only our initial and final states are observable, why must we assume a ‘‘strong’’ adversary, with perfect recall
and access to program flow?
The answer is that if we do not make those assumptions then we cannot soundly develop our program by stepwise

refinement. But if we are prepared to give up stepwise refinement in a portion of our program, then we can for that portion
assume our adversary is ‘‘weak’’, seeing only initial and final values.
We formalise that via special brackets {{·}} whose interior will have a dual meaning: at run time, a weak adversary is

assumed there (an advantage); but, at development time, refinement is not allowed there (a disadvantage). Thus it is a
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trade-off. Intuitively we say that {{S}} interprets S atomically even when S is compound: it cannot be internally observed;
but neither can it be internally refined.
Thus for example {{h:= 0 u h:= 1}} is equal to the atomic h:∈ {0, 1} — in the former, the atomicity brackets prevent

an observer’s using the program flow at runtime to determine the value of h, and so the {{·}}’d choice-point u is not the
security leak it would normally be. But the price we consequentially pay is that we are not allowed to use refinement there
at development-time: for example, although the refinement (h:= 0 u h:= 1) v h:= 0 is trivial, nevertheless we cannot
apply that refinement within the brackets {{·}} to conclude

{{h:= 0 u h:= 1}} ?v {{h:= 0}}

— and doing that is equivalent to asserting the falsehood h:∈ {0, 1} ?v h:= 0. (The lhs achieves postcondition P(h=1); the
rhs does not.)
We do not give the formal definition of {{·}} here9; but we note several useful and reasonable properties of it.

Proposition 1. If program S is syntactically atomic then S = {{S}}. �

Proposition 2. For all programs S we have S v {{S}}. �

Proposition 3. If either of the programs S1, S2 does not assign to any visible variable, or (more generally) program S1’s final
visibles are completely determined by its initial visibles, or program S2’s initial visibles are completely determined by its final
visibles, then {{S1; S2}} = {{S1}}; {{S2}}. �

For Proposition 3, informally, we note that allowing intrusion at a semicolon is harmless when there is nothing (new) for
the run-time attacker to see: for example, if S1 changes no visible variable, then any visible values revealed at the semicolon
were known at the beginning of the whole statement already; if S2 does not, then they will be known at the end.

9.2. Referential transparency and classical reasoning

A classical use of referential transparency is to reason that

• A program fragment S1 say establishes some (classical) formula φ over the program state;
• That φ implies the equality of two expressions E and F ; and that therefore
• Expression E can be replaced by expression F in some fragment S2 that immediately follows S1.

The same holds true in our extended context, provided we realise that S1 must establish φ in all possible states: in effect
we demand Kφ rather than just φ. In this section we check that this happens automatically, even when visibles and hiddens
are mixed, and that thus the classical use of RT continues to apply.
Because Kφ is itself not ignorant, we use it negatively by appealing to ‘‘coercions’’: a coercion is written [Φ] for some

formulaΦ and is defined10

Coerce toΦ — wp.[Φ].Ψ =̂ Φ ⇒ Ψ . (7)

The principal use of a coercion is to formalise the reasoning pattern above, i.e. the establishing of some φ in all potential
states (by S1) and its use as a context for RT (in S2). We begin with using a coercion as a context.

Lemma 2. For any variable x, whether visible or hidden, and classical formula φ such that φ ⇒ E=F , we have

[Kφ]; x:∈ E = [Kφ]; x:∈ F .

Proof. Appendix. �

Note that the result specialises to assignments, as those are just singleton choices, and that we can view the lemma as
formalising RT : the truth of Kφ establishes the context in which E=F , allowing their use interchangeably.
We now address how coercions are introduced, moved and finally removed. Introduction and removal are easily dealt

with, as the following lemma shows that any coercion can be introduced at any point, up to refinement. The coercion [true]
can always be removed:

Lemma 3. We have [true] = skip and skip v [Φ] for anyΦ .

Proof. Trivial. �

The only problem thus is removing a coercion that is not just [true] — and that is done by moving it forward through
statements whose combined effect is to establish it, i.e. to ‘‘make’’ it true operationally:

9 The details are available in an addendum [16]. In particular Proposition 1 is important as a statement of consistency, since our definitions in Fig. 8
should be equally valid if presented as lemmas proved directly from the definition of {{·}}.
10 Coercions are dual to the more familiar assertions that allow abnormal termination if they fail (i.e. abort); in contrast, coercions cause backtracking if
they fail (i.e.magic) [6].
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Lemma 4. For classical formulae φ,ψ and program S, we have

|H φ ⇒ wp.S.ψ implies S; [Kψ] v [Kφ]; S.

Proof. Appendix. �

The importance of Lemma 4 is that its assumption |H φ ⇒ wp.S.ψ can usually be established by classical reasoning
(recall Section 8(6)). In the special case where φ and ψ are the same, we say that S preserves φ and, as a result, can think of
‘‘pushing [Kφ] to the left, through S ’’ as being a refinement.
In summary, the above lemmas work together to provide the formal justification for carrying information from one part

of a program to another, as in the following example. Suppose we have a linear fragment

S; SS; x:= E

where, informally, program S establishes some classical property φ, that property can be shown by classical reasoning to be
preserved by SS, and it implies that E=F . Then to change E to F in the final statement, we would reason as follows:

S; SS; x:= E
v S; SS; [Kφ]; x:= E ‘‘Lemma 3’’
= S; SS; [Kφ]; x:= F ‘‘assumption; Lemma 2’’
= S; SS; [Kφ]; x:= F ‘‘associativity’’
v S; [Kφ]; SS; x:= F ‘‘SS preserves φ’’
= S; [Kφ]; SS; x:= F ‘‘associativity’’
v [true]; S; SS; x:= F ‘‘S establishes φ’’
= S; SS; x:= F . ‘‘Lemma 3’’
Thus the general pattern is to assume the property φ of the state necessary to replace E by F , and then to move it forward,
preserved, through the program SS to a point S at which it can be shown to have been established. An example of this is
given in Section 10(5).
We have thus checked that the ‘‘establish context, then use it’’ paradigm continues to operate in the normal way, even

with mixed visibles and hiddens; therefore we will usually appeal to the above results only informally.

9.3. Hiding leads to refinement

We show that changing a variable from visible to hidden, leaving all else as it is, has the effect of a refinement: informally,
that is because the nondeterminism has not been changed while the ignorance can only have increased. More precisely, we
show that

|[ vis v · S(v) ]| v |[ hid h · S(h) ]|

for any program S(v) possibly containing references to variable v. This is a syntactic transformation, as we can see by
comparing the two fragments

|[ vis v · (v:= 0 u v:= 1); h′:= v ]| and |[ vis v · v:∈ {0, 1}; h′:= v ]| (8)

in the context of global hidden h′; they are both equivalent semantically to h′:= 0uh′:= 1 since the assignment to v is visible
in each case. However, transforming visible v to hidden h gives respectively

|[ hid h · (h:= 0 u h:= 1); h′:= h ]| and |[ hid h · h:∈ {0, 1}; h′:= h ]|, (9)

which differ semantically: the lhs remains h′:= 0 u h′:= 1, since the resolution of u is visible (even though h itself is not);
but the rhs is now h′:∈ {0, 1}. Note that ((9), rhs) is a refinement of ((8), rhs) nevertheless, which is precisely what we seek
to prove in general.

Lemma 5. If programS2 is obtained fromprogramS1 by a syntactic transformation inwhich some local visible variable is changed
to be hidden, then S1 v S2.

Proof. Routine applications of definitions, as shown in Appendix. �

10. The encryption lemma

In this section we see our first substantial proof of refinement; and we prepare for our treatment of the OTP (Oblivious
Transfer Protocol).
When a hidden secret is encrypted with a hidden key and the result published as a visible message, the intention is that

adversaries ignorant of the key cannot use the message to deduce the secret, even if they know the encryption method.
A special case of this occurs in the OTP, where a secret is encrypted (via exclusive-or) with a key (a hidden Boolean) and
becomes a message (is published). We examine this simple situation in the ignorance logic.

Lemma 6. Let s: S be a secret, let k: K be a key, and let� be an encryption method so that s� k is the encryption of s. Then in a
context including hid s we have the refinement
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skip v |[ vism;hid k · k:∈ K ;m:= s�k ]|,

which expresses that publishing the encryption s�k as a visible message m reveals nothing about the secret s, provided the key k
is hidden and the following Key-Complete Condition is satisfied11:

KCC — (∃ set M · (∀s: S · s�K = M)). (10)

By s�K we mean {s�k | k: K}, that is the set formed by�-ing the secret s with all possible keys in K . Informally KCC states that
the set of possible encryptions is the same for all secrets — it is some fixed set M.

Proof. Assume a context containing the declaration hid s: S. Then we reason12
skip

= |[ vism ·m:∈M ]| ‘‘for any fixed non-empty setM →(1)’’
= |[ vism, v · v:∈M;m:= v ]| ‘‘visible-only reasoning’’
v |[ vism;hid h · h:∈M;m:= h ]| ‘‘Lemma 5 and renaming →(2)’’
= |[ vism;hid h · h:∈ s�K ;m:= h ]| ‘‘s ∈ S and (∀s: S · s�K = M) →(3)’’

v ‘‘using atomicity-style reasoning →(4)’’
|[ vism;hid h · |[ hid k · k:∈ K ; h:= s�k ]|;m:= h ]|

= |[ vism;hid h, k · k:∈ K ; h:= s�k;m:= h ]| ‘‘rearrange scopes’’
= |[ vism;hid h, k · k:∈ K ; h:= s�k;m:= s�k ]| ‘‘RT →(5)’’
= |[ vism;hid k · k:∈ K ;m:= s�k ]|. ‘‘h now superfluous →(6)’’

Our only assumption was the KCC at Step (3). �

As a commentary on the proof steps we provide the following:

(1) This and the next step are classical, visible-only reasoning.
(2) The choice fromM was visible; now it is hidden.
(3) From s’s membership of its type S and the KCC we thus know that s�K and M are equal, whatever value the secret s
might have, and so RT applies. This is the crucial condition, and it does not depend on M directly — all that is required
is that there be such anM .

(4) To justify this step in detail we introduce atomicity briefly, to simplify the reasoning; then we remove it again. We have

h:∈ s�K
= |[ hid k · k:∈ K ]|; h:∈ s�K ‘‘introduced statement is skip’’
= |[ hid k · k:∈ K ; h:∈ s�K ]| ‘‘adjust scopes’’
v |[ hid k · {{k:∈ K ; h:∈ s�K}} ]| ‘‘Proposition 2’’
= |[ hid k · {{k:∈ K ; h:= s�k; k:∈ K}} ]| ‘‘classical reasoning’’
= |[ hid k · k:∈ K ; h:= s�k; k:∈ K ]| ‘‘Proposition 3; Proposition 1’’
= |[ hid k · k:∈ K ; h:= s�k ]|. ‘‘k local: discard final assignment’’

(5) That (h:= s�k; m:= h) = (h:= s�k; m:= s�k) cannot be shown by direct appeal to classical reasoning, simple as it
appears, because it mixes hidden (h, s, k) and visible (m) variables. Nevertheless, it is a simple example of the coercion
reasoning from Section 9.2; in detail we have

h:= s�k; m:= h
v h:= s�k; [K(h = s�k)];m:= h ‘‘Lemma 3’’
= h:= s�k; [K(h = s�k)];m:= s�k ‘‘Lemma 2’’
= h:= s�k; [K(h = s�k)]; m:= s�k ‘‘associativity’’
v [true]h:= s�k; m:= s�k ‘‘Lemma 4’’
= h:= s�k; m:= s�k. ‘‘Lemma 3’’

Alternatively we could see it as an application of RT, in the spirit of the comment following Lemma 2.
(6) This is justified by the general equality

|[ hid h · h:∈ E ]| = skip,
which can be proved by direct wp-reasoning. Note however that for visibles |[ vis v · v:∈ E ]| 6= skip in general: let E
be {h} for example.

11 The Key-Complete Condition is very strong, requiring as many potential keys as messages; yet it applies to the OTP.
12 This can be done by direct wp-calculation also [1]; we thank Lambert Meertens for suggesting it be done in the program algebra.
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11. Deriving the Oblivious Transfer Protocol

Rivest’s Oblivious Transfer Protocol is an example of ignorance preservation [10].13 From Rivest’s description
(paraphrased) the specification is as below; we use⊕ for exclusive-or throughout.

Specification We assume that Alice has two messagesm0,m1:BN , where we write B =̂ {0, 1} for the Booleans as bits. The
protocol is to ensure that Bobwill obtainmc for his choice of c:B. But Alice is to have no idea which message Bob
chose, and Bob is to learn nothing about Alice’s other messagem1⊕c .

Rivest’s solution introduces a trusted intermediary Ted, who is active only at the beginning of the protocol and, in particular,
knows neither Alice’s messagesm0,1 nor Bob’s choice c. He participates as follows:

Setup Ted privately gives Alice two randomN-bit strings r0, r1:BN ; and he flips a bit d, then giving both d and rd privately
to Bob. Ted is now done, and can go home.

Once Ted has gone, the protocol continues between Alice and Bob:

Request Bob chooses privately a bit c:B; he wants to obtainmc from Alice. He sends Alice the bit e =̂ c ⊕ d.
Reply Alice sends Bob the values f0, f1 =̂ m0 ⊕ re,m1 ⊕ r1⊕e.
Conclusion Bob now computesm =̂ fc ⊕ rd.

The whole protocol is summarised in Fig. 10.
Given that there are three principals, we have three potential points of view.Wewill take Bob’s for this example, and the

declarations of Fig. 10 therefore become the context for our derivation:

Globals: hidm0,m1:BN; — Bob cannot seem0,1.
vis c:B ·

Locals: hid r0, r1:BN; — Bob cannot see r0,1.
vis r, f0, f1:BN; d, e:B ·

(11)

The types are unchanged but the visibility attributes are altered à la Bob.14
The significance of e.g. declaringm0 to be global while r0 is local is that local variables are exempted from refinement: a

simple classical example in the global context var g is the refinement

|[ var l1 · l1:= 1; g:= g+l1 ]| v |[ var l2 · l2:=−1; g:= g−l2 ]|,

where the two fragments are in refinement (indeed both are equal to g:= g + 1) in spite of the fact that the lhs does not
allow manipulation of l2 and the rhs does not implement l1:= 1. Thus the variables we make local are those in which we
have no interest wrt refinement.
Rather than prove directly that Rivest’s protocol meets some logical pre/post-style specification, instead

We use program algebra to manipulate a specification-as-program whose correctness is obvious.

In this case, the specification is just m:=mc , and we think it is obvious that it reveals nothing about m1⊕c to Bob: indeed
that variable is not even mentioned.15 Under the declarations of (11), we will show it can be refined to the code of Fig. 10,
which is sufficient because (following Mantel [18])

An implementation reached via ignorance-preserving refinement steps requires no further proof of ignorance-preservation.

An immediate benefit of such an approach is that we finesse issues like ‘‘if it is known thatm0=m1 and Bob asks form0,
then he has learned m1 — isn’t that incorrect?’’ A pre/post-style direct proof of the implementation would require in the
precondition an assertion thatm0 andm1 were independent, were not related in any way, in order to conclude that nothing
aboutm1⊕c is revealed. But a refinement-algebraic approach does not require that: it is obvious from the specification the role
that independence plays in the protocol, and the derivation respects that automatically and implicitly due to its semantic
soundness.
We now give the derivation: in the style of Section 10, a commentary on the proof steps follows; in some cases arrows

→ in the left margin indicate a point of interest. Within Bob’s context (11), that is hidm0,m1:BN; vis c:Bwe reason

13 Earlier [1] we derived Chaum’s Dining Cryptographers’ Protocol [17] instead.
14 For comparison, we note that Alice’s point of view is

vism0,m1:BN ;hid c:B · — Alice cannot see c.
vis r0, r1, f0, f1:BN ; e:B;hid r:BN ; d:B · — Alice cannot see r, d.

It is not a simple inversion, since the local variables f0,1 and e, that is the messages passed between Alice and Bob, are visible to both principals.
15 When a specification is not so simple, one can elucidate its properties with logical experiments, i.e. attempted proofs of properties one believes or
hopes it has; our previous report [1] shows that for Chaum’s Dining Cryptographers [17].
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m:=mc ‘‘specification’’

= skip;m:=mc ‘‘Identity’’

= |[ vis d, e:B · d:∈B; e:= c ⊕ d ]|;
m:=mc

‘‘refine skip: visible-only reasoning →(7)’’

= |[ vis d, e:B · d:∈B; e:= c ⊕ d;
skip;
m:=mc ]|

‘‘adjust scopes; introduce skip again’’

v |[ vis d, e:B · d:∈B; e:= c ⊕ d;
→ |[ vis f0, f1:BN;hid r0, r1 : BN ·

→ r0, r1:∈BN ,BN;
→ f0, f1:=m0 ⊕ re,m1 ⊕ r1⊕e ]|;

m:=mc ]|

‘‘encryption lemma →(8)’’

= |[ vis d, e:B; f0, f1:BN;hid r0, r1:BN ·

d:∈B; e:= c ⊕ d;
r0, r1:∈BN ,BN;
f0, f1:=m0 ⊕ re,m1 ⊕ r1⊕e;
m:=mc ]|

‘‘adjust scopes’’

= ‘‘introduce r: visible-only reasoning’’
→ |[ vis d, e:B; f0, f1, r:BN;hid r0, r1:BN ·

d:∈B; e:= c ⊕ d;
r0, r1:∈BN ,BN;
f0, f1:=m0 ⊕ re,m1 ⊕ r1⊕e;
m:=mc;

→ r:= fc ⊕m ]|

= |[ vis d, e:B; f0, f1, r:BN;hid r0, r1:BN ·

d:∈B; e:= c ⊕ d;
r0, r1:∈BN ,BN;
f0, f1:=m0 ⊕ re,m1 ⊕ r1⊕e;
m:=mc;

→ r:= rd ]|

‘‘classical reasoning →(9)’’

= |[ vis d, e:B; f0, f1, r:BN;hid r0, r1:BN ·

r0, r1:∈BN ,BN;
d:∈B;
r:= rd;
e:= c ⊕ d;
f0, f1:=m0 ⊕ re,m1 ⊕ r1⊕e;
m:=mc ]|

‘‘reordering →(10)’’

= |[ vis d, e:B; f0, f1, r:BN;hid r0, r1:BN ·

r0, r1:∈BN ,BN;
d:∈B;
r:= rd;
e:= c ⊕ d;
f0, f1:=m0 ⊕ re,m1 ⊕ r1⊕e;

→ m:= fc ⊕ r ]|,

‘‘classical reasoning →(11)’’

which concludes the derivation. Given our context (11), we have established that Rivest’s protocol reveals no more about
the (hidden) variablesm0,m1 than does the simple assignmentm:=mc that was our specification.
A technical point is that our manipulation of r – introduced ‘‘late’’ thenmoved ‘‘early’’ – illustrates a feature which seems

to be typical: although r ’s operational role in the protocol is early (it is used by Ted), its conceptual role is late: in order to
manipulate the rhs of the assignment to it, we require facts established by the earlier part of the program. Once that is done, it
can bemoved into its proper operational place. Similarly, the statementm:=mc , from our specification, was carried through



C. Morgan / Science of Computer Programming 74 (2009) 629–653 649

Fig. 10. Rivests’s Oblivious Transfer Protocol.

the whole derivation until the program text lying before it was sufficiently developed to justify via RT an equals-for-equals
substitution in its rhs.
The commentary on the derivation is as follows:

(7) The order in which the variables are introduced is not necessarily their final ‘‘execution order’’; rather it is so that the
right variables are in scope for subsequent steps. In this case our use of the encryption lemma refers to e, which thus
must be introduced first.

(8) The visible variable (m) is the 2N-bit pair f0, f1; strictly speaking there should be a single variable f onwhich a subscript
operation ·i is defined, so that the syntax fi is actually an expression involving two separate variables f and i. Similarly,
the key (k) is the 2N-bit pair r0, r1; and the encryption operation (�) is exclusive-or⊕ between 2N-bit strings, which
satisfies KCC.

(9) The classical reasoning referred to shows that rd = fc ⊕ m at this point in the program, allowing an equals-for-equals
substitution in the rhs of the assignment to r as described in Section 9.2. We could not introduce r:= rd directly in the
previous step because that reasoning would not have been visible-only: the expression rd on the right refers to the
hiddens r0,1. (See the comment (8) that fi is an abbreviation; the same is true of r andm.)

(10) We have used the principle that (x:= E; y:= F) = (y:= F; x:= E), given the usual conditions that E contains no y and F
no x, to shuffle the assignments around into their final order. (Recall (7) above for why they are out of order.) It holds
even when some of the variables are hidden.

(11) The justification here is, as for (9), that classical reasoning (as in Fig. 10) establishes an equality at this point
operationally, thatmc = fc ⊕ r , and then RT applies.

We conclude this example with some general comments on this style of development. The specification m:=mc of the
OTP is unsatisfactory as a direct implementation only because the rhs mixes variables of Alice and Bob, two principals
who are physically separated: we are following the convention that statements xA:= EA, where the ·A indicates ‘‘uses only
variables located with Alice’’, describe computations that Alice undertakes on her own; on the other hand, statements
xA:= EB describes a message EB constructed by Bob and sent to Alice, received by her in xA. Thus the difficulty with direct
use of the specification is that the expressionmc is neither an EA nor an EB, and so there is no single ‘‘place’’ in which it can
be evaluated.
Thus we refine ‘‘only’’ in order to solve the locality problem (but open a Pandora’s Box in doing so). It could readily be

avoided in a Bob’s-view implementation such as

|[ vism′0,m
′

1 : B
N · — Local variables of Bob.

m′0,m
′

1:=m0,m1; — Send both messages to Bob.
m:=m′c ]|, — Bob takes chosen message.

(12)

trivially a valid classical refinement and now locality-valid too, since bothm′0,1 and c are Bob’s variables. But then it is just as
trivially invalid for ignorance preservation since Bob can deducem1⊕c by examiningm′1⊕c . Fortunately the rules of ignorance
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refinement prevent us from making this mistake, since in general we have skip 6v |[ vis v · v:= h ]|, thus invalidating the
very step that introduced them′0,1 variables.

12. Contributions, inspirations, comparisons and conclusions

Our contribution is to have altered the rules for refinement of sequential programs, just enough, so that ignorance
of hidden variables is preserved: we can still derive correct protocols (Section 11), but can no longer mistakenly propose
incorrect ones (Section 7.3).
Thuswe allow Stepwise Refinement (Section 1) to be used for the development of security-sensitive sequential programs,

avoiding the usual ‘‘paradoxes’’ that in the past have attended this (Section 7.3.2). But we must then adopt a pessimistic
stance in which we treat even a ‘‘weak’’ adversary as if he were a ‘‘strong’’ one: refinement comes at a price.
We argued that this price is ‘‘non-negotiable’’ in the sense that any reasonable definition of refinement must pay it

(Section 3); but it can bemitigated somewhat by indicating explicitly any portions of the program in which we are prepared
to forego the ability to refine: declaring them ‘‘atomic’’ (Section 9.1) protects them from adversarial intrusion (good), but
also disallows Stepwise Refinement within them (bad).
Part of the inspiration for our approach was work by Van der Meyden, Engelhardt and Moses who earlier treated the

OTP, and Chaum’s Dining Cryptographers [17,1], via a refinement-calculus of knowledge and ignorance [19]. That approach
(together with advice from them) is the direct inspiration for what is here.

Compared to the work of Halpern and O’Neill, who apply the Logic of Knowledge to secrecy [11] and anonymity [20],
ours is a very restricted special case: we allow just one agent; our (v, h,H)model allows only h to vary in the Kripke model
[14]; and our programs are not concurrent. What we add back – having specialised away so much – is reasoning in the wp-
based assertional/sequential style, thus exploiting the specialisation to preserve traditional reasoning patterns where they
can apply.
Comparison with non-interference [21] comes from regarding hidden variables as ‘‘high-security’’ and visible variables

as ‘‘low-security’’, and concentrating on program semantics rather than e.g. extra syntactic annotations: thus we take the
extensional view [22] of non-interference where security properties are deduced directly from the semantics of a program
[23, III-A]. Recent examples of this include elegant work by Leino et al. [24] and Sabelfeld et al. [25].
Again we have specialised severely — we do not consider lattices, nor loops (and thus possible divergence), nor

concurrency, nor probability. However our ‘‘agenda’’ of Refinement, the Logic of Knowledge, and Program Algebra, has
induced four interesting differences from the usual approaches:

(1) We do not prove ‘‘absolute’’ security of a program. Rather we show that it is no less secure than another; this is induced by
our refinement agenda. After all, the OTP specification is not secure in the first place: it reveals one of Alice’s messages
to Bob. (To attempt to prove the OTP implementation absolutely secure is therefore pointless.)
Thus there is similarity of aims with delimited information release approaches. In this example borrowed from

Sabelfeld andMyers [26, Average salary] we suppose two hidden variables declaredhid h1, h2whose sumwe are allowed
to release, but not their actual values. Our specification would be the ‘‘procedure-’’ or ‘‘method’’ call16

(Avg) |[ vis v;hid p1, p2 · p1, p2:= h1, h2; v:= p1+p2 ]|,

that reveals that sum. The suggested attack is

(Avg-attack) |[ vis v;hid p1, p2 · p1, p2:=
↓

h1,
↓

h1; v:= p1+p2 ]|,

which clearly reveals h1 by using the parameters in an unexpected way. Indeed we have (Avg) 6v (Avg-attack) — so we
do not allow this either.
Thus our approach to delimited security is to write a specification in which the partial release of information is

allowed: refinement then ensures that no more than that is released in any implementation.
(2) We concentrate on final- rather than initial hidden values. This is induced by the Kripke structure of the Logic of Knowledge
approach (Section 4), which models what other states are possible ‘‘now’’ (rather than ‘‘then’’).
The usual approach relates instead to hidden initial values, so that h:= 0 would be secure and v:= h; h:∈ T insecure;

for us just the opposite holds. Nevertheless, we could achieve the same effect by operating on a local hidden copy,
thrown away at the end of the block. Thus |[ hid h′: {h} · h′:= 0 ]| is secure (for both interpretations), and |[ hid h′: {h} ·
v:= h′; h′:∈ T ]| is insecure.

(3) A direct comparison with non-interference considers the relational semantics R of a program over v, h: T ; the refinement
v:∈ T v v:∈ R.v.h then expresses absolute security for the rhs with respect to h’s initial (and final) value. We can then
reason operationally, as follows.
Fig. 2 shows that from initial v, h,H the possible outcomes on the left are (t, h,H) for all t: T , and that they are

(t ′, h, {h : H | t ′∈R.v.h}) on the right for all t ′: R.v.h. For refinement from that initial state we must therefore have
t ′∈R.v.h⇒ t ′∈T , which is just type-correctness; but also

16 Here we are simulating a function call Avg (h1, h2)with formal parameters p1, p2 and formal return value v. These three variables are local because we
are not interested in them directly (they ‘‘sit on the stack’’): we care only about their effect on what we know about h1, h2 .
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t ′ ∈ R.v.h ⇒ H ⊆ {h : H | t ′∈R.v.h} (13)

must hold, both conditions coming from the operational definition of refinement (Section 5.3). Since (13) constrains all
initial states v, h,H, and all t ′, we close it universally over those variables to give a formula which via predicate calculus
and elementary set-theory reduces to the non-interference condition (∀v, h, h′: T · R.v.h = R.v.h′) as usually given for
demonic programs [24,25].

(4) We insist on perfect recall. This is induced by our algebraic principles (Section 3.1), and thus we consider v:= h to have
revealed h’s value at that point, nomatter what follows. The usual semantic approach allows instead a subsequent v:= 0
to ‘‘erase’’ the information leak.
Perfect recall is also a side-effect of (thread) concurrency [11],[23, IV-B], but has different causes. We are concerned

with ignorance-preservation during program development; the concurrency-induces-perfect-recall problem occurs
during program execution. We commented on the link between the two in our discussion of atomicity (Section 9.1).
The ‘‘label creep’’ [23, II-E] caused by perfect recall, where the build-up of un-erasable leaks makes the program

eventually useless, ismitigated because our knowledge of the current hidden values can decrease (via h:∈ T for example),
even though knowledge of initial- (or even previous) values cannot.

(5) We do not require ‘‘low-view determinism’’ [23, IV-B]. This is induced by our explicit policy of retaining abstraction, and
of determining exactly when we can ‘‘refine it away’’ and when we cannot. Roscoe and others instead require low-level
behaviour to be deterministic [27].

Our emphasis on refinement continues the spirit of Mantel’s work [28,18], but is different in its framework. Like Bossi et
al. [29], Mantel takes an unwinding-style approach [21] in which the focus is on events and their possible occurrences, with
relations between possible traces that express what can or cannot be deduced, about a trace that includes high-security
events, based on projections of it from which the high-security events have been erased.
We focus instead primarily on variables’ values, and our interest in the traces is not intrinsic but rather is induced

temporarily by the refinement principles and their consequences (Section 3). While traces feature in our underlying model
(Section 4.1), we abstract almost completely from that (Section 4.2) into a variable (the Shadow variable H) which we can
then ‘‘blend in’’ to a semi-conventional program-logic formulation of correctness: thus our case-study example (Section 11)
does not refer to traces at all. Nevertheless other authors’ trace-style abstract criteria for refinement (i.e. preservation of
properties), and ours, agree with each other and with the general literature of refinement and its issues [2–9,30].

We conclude that ignorance refinement is able to handle examples of simple design, at least — even though their
significance may be far from simple. Because wp-logic for ignorance retains most structural features of classical wp,
we expect that loops and their invariants, divergence, and concurrency via e.g. action systems [31] could all be feasible
extensions.
Adding probability via modal ‘‘expectation transformers’’ [30] is a longer-term goal, but will require a satisfactory

treatment of conditional probabilities (the probabilistic version of Shrink Shadow) in that context.
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Appendix. Proofs of certain lemmas (Section 9)

Proof of Lemma 2. When x is visible v, say, we have for any Ψ that

wp.([Kφ]; v:∈ E).Ψ
= Kφ ⇒ (∀e: E · [⇓ e∈E][v\e]Ψ ) ‘‘definitions’’
= (∀e: E · Kφ ⇒ [⇓ e∈E][v\e]Ψ ) ‘‘e fresh’’
= (∀e: E · Kφ ⇒ [⇓φ][⇓ e∈E][v\e]Ψ ) ‘‘Kφ ⇒ (Pψ ⇔ P(φ ∧ ψ))’’
= (∀e: E · Kφ ⇒ [⇓φ ∧ e∈E][v\e]Ψ ) ‘‘merge Shrink Shadows’’
= (∀e: E · Kφ ⇒ [⇓φ ∧ e∈F ][v\e]Ψ ) ‘‘assumption’’
= wp.([Kφ]; v:= F).Ψ . ‘‘symmetric argument’’

When x is hidden h, say, we have for any Ψ that
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wp.([Kφ]; h:∈ E).Ψ
= Kφ ⇒ (∀h: E · [h⇐E]Ψ ) ‘‘definitions’’
= (∀h: E · Kφ ⇒ [h⇐E]Ψ ) ‘‘h not free in Kφ’’
= (∀h: E · Kφ ⇒ [h⇐F ]Ψ ) ‘‘Kφ ⇒ (Pψ ⇔ P(φ ∧ ψ))’’
= wp.([Kφ]; h:∈ F).Ψ . ‘‘symmetric argument’’

Proof of Lemma 4. The proof is by structural induction over programs; we give the base cases here, using Ψ for a general
(non-classical) ignorant postcondition formula. For skipwe have
wp.(skip; [Kψ]).Ψ

= Kψ ⇒ Ψ ‘‘(7)’’
⇒ Kφ ⇒ Ψ ‘‘assumption φ ⇒ skip.ψ ’’
= wp.([Kφ]; skip).Ψ

For Choose visible (of which Assign to visible is a special case), we have
wp.(v:∈ E; [Kψ]).Ψ

= (∀e: E · [⇓ e∈E][v\e](Kψ ⇒ Ψ )) ‘‘Choose visible; (7)’’
= (∀e: E · K(e∈E ⇒ [v\e]ψ)⇒ [⇓ e ∈ E][v\e]Ψ ) ‘‘Fig. 7’’
⇒ (∀e: E · Kφ ⇒ [⇓ e∈E][v\e]Ψ ) ‘‘assumption φ ⇒ wp.(v:∈ E).ψ ’’
= Kφ ⇒ (∀e: E · [⇓ e∈E][v\e]Ψ ) ‘‘e is fresh’’
= wp.([Kφ]; v:∈ E).Ψ . ‘‘Choose visible; (7)’’

For Choose hiddenwe have
wp.(h:∈ E; [Kψ]).Ψ

= (∀h: E · [h⇐E](Kψ ⇒ Ψ )) ‘‘Choose hidden; (7)’’
= (∀h: E · K(∀h: E · ψ)⇒ [h⇐E]Ψ ) ‘‘Fig. 7’’
⇒ (∀h: E · Kφ ⇒ [h⇐E]Ψ ) ‘‘assumption φ ⇒ wp.(h:∈ E).ψ ’’
= Kφ ⇒ (∀h: E · [h⇐E]Ψ ) ‘‘e is fresh’’
= wp.([Kφ]; h:∈ E).Ψ . ‘‘Choose hidden; (7)’’

Proof of Lemma 5. The proof is by structural induction. Let S(x) be a program possibly containing references to a free
variable x. We show for all ignorant postconditionsΦ that

|H wpvx .S(x).Φ ⇒ wp
h
x .S(x).Φ,

where wpvx treats x as visible and wp
h
x treats it as hidden, working through the cases of Fig. 8.

Identity Trivial.
Assign to visible/hidden Special case of Choose visible/hidden.
Choose visible If x occurs in E then [⇓ e∈E]PΨ will differ in the two cases: when x is visible, it will be free in [⇓ e∈E]PΨ

for any PΨ occurring (positively) within Φ; when it is hidden, however, it will be captured by the P-modality.
Examination of the logical interpretation (Section 6) shows however that the former implies the latter, and this
implication will propagate unchanged to the whole ofΦ , since PΨ occurs positively within it.

Choose hidden By similar reasoning to Choose visible, different treatment of [h⇐E] can only result in an implication
overall.

Choose x We must compare (∀e: E · [⇓ e∈E] [x\e]Φ), for when x is visible, with (∀x: E · [x⇐E]Φ) for when x is hidden.
Because both [⇓ e∈E] and [x⇐E] have no effect on the classical part of Φ , we can concentrate on the case PΨ —
thus we compare

(∀e: E · · · · [⇓ e∈E] [x\e] PΨ ) and (∀x: E · · · · [x⇐E] PΨ )

which, from Fig. 7, is in fact a comparison between

(∀e: E · · · · P(e∈E ∧ [x\e]Ψ )) and · · · P(∃e: E · [x\e]Ψ ),

where the (∀x: E · · · ·) is dropped in the rhs because the body contains no free x, and we have introduced the
renaming to make it more like the lhs. Section 6 now shows, again, that the lhs implies the rhs.

Demonic choice Trivial (inductively).
Sequential composition Trivial (inductively).
Conditional This too is trivial, because if E · · · can be rewritten using a fresh visible as |[vis b · b:= E; if b · · · ]| and it is

then handled by the other cases.
Local variables Trivial since the substitution simply distributes through in both cases.
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