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Abstract

The X = M conjecture of Hatayama et al. asserts the equality between the one-dimensional con-
figuration sum X expressed as the generating function of crystal paths with energy statistics and the
fermionic formula M for all affine Kac–Moody algebras. In this paper we prove the X = M conjec-
ture for tensor products of Kirillov–Reshetikhin crystals B1,s associated to symmetric powers for all
nonexceptional affine algebras.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

In two extraordinary papers, Hatayama et al. [6,7] recently conjectured the equality
between the one-dimensional configuration sum X and the fermionic formula M for all
affine Kac–Moody algebras. The one-dimensional configuration sum X originates from the
corner-transfer-matrix method [1] used to solve exactly solvable lattice models in statistical
mechanics. It is the generating function of highest weight crystal paths graded by the en-
ergy statistic. The fermionic formula M comes from the Bethe Ansatz [2] and exhibits the
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quasiparticle structure of the underlying model. In combinatorial terms, it can be written
as the generating function of rigged configurations.

The one-dimensional configuration sum depends on the underlying tensor product
of crystals. In [6,7], the X = M conjecture was formulated for tensor products of
Kirillov–Reshetikhin (KR) crystals Br,s . Kirillov–Reshetikhin crystals are crystals for
finite-dimensional irreducible modules over quantum affine algebras. The irreducible
finite-dimensional U ′

q(g)-modules were classified by Chari and Pressley [3,4] in terms
of Drinfeld polynomials. The Kirillov–Reshetikhin modules Wr,s , labeled by a Dynkin
node r of the underlying classical algebra and a positive integer s, form a special class of
these finite-dimensional modules. They naturally correspond to the weight sΛr , where Λr

is the r th fundamental weight of g. It was conjectured in [6,7], that there exists a crystal
Br,s for each Wr,s . In general, the existence of Br,s is still an open question. For type
A

(1)
n the crystal Br,s is known to exist [12] and its combinatorial structure has been stud-

ied [22]. The crystals B1,s for nonexceptional types, which are relevant for this paper, are
also known to exist and their combinatorics has been worked out [10,12].

The purpose of this paper is to establish the X = M conjecture for tensor products of
KR crystals of the form B1,s for nonexceptional affine algebras. This extends [18], where
X = M is proved for tensor powers of B1,1, and [14,15], where X = M is proved for
type A

(1)
n .

Our method to prove X = M for symmetric powers combines various previous results
and techniques. X = M is first proved for g such that g is simply-laced (see Corol-
lary 8.9). This is accomplished by exhibiting a grade-preserving bijection from U ′

q(g)-
highest weight vectors (paths) to rigged configurations (RCs). This was already proved for
the root system A

(1)
n [15]. For type D

(1)
n we exhibit such a path–RC bijection. The proof

essentially reduces to the previously known s = 1 case [18] using the “splitting” maps
B1,s → B1,s−1 ⊗ B1,1 which are Uq(g)-equivariant grade-preserving embeddings.

To prove that the bijection preserves the grading, we consider an involution denoted ∗
on crystal graphs that combines contragredient duality with the action of the longest ele-
ment w0 of the Weyl group of g. This duality on the crystal graph, corresponds under the
path–RC bijection to the involution on RCs given by complementing the quantum numbers
with respect to the vacancy numbers.

We then reduce to the case that g is simply-laced. This is achieved using the embedding
of an affine algebra g into one (call it gY ) whose canonical simple Lie subalgebra is simply-
laced. On the X side we use the virtual crystal construction developed in [16,17]. It is
shown in [17] that the KR U ′

q(g)-crystals B1,s embed into tensor products of KR U ′
q(gY )-

crystals such that the grading is respected. One may define the VX (“virtual X”) formula
in terms of the image of this embedding and show that X = VX (see Section 3.10). This is
proved for tensor products of crystals B1,s in [17]. On the M side, it is observed in [17]
that the RCs giving the fermionic formula M for type g, embed into the set of RCs giving a
fermionic formula for type gY . Let us denote by VM (“virtual M”) the generating function
over the image of this embedding of fermionic formulas. It is shown in [17] that M = VM.
It then suffices to prove VX = VM. That is, one must show that the path-to-RC bijection
that has already been established for the simply-laced cases, restricts to a bijection between
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the subsets of objects in the formulas VX and VM. This is shown in Theorem 10.1 and as a
corollary proves X = M for nonsimply-laced algebras, as stated in Corollary 10.2.

In Section 2 we review the crystal theory, the definition of the one-dimensional config-
uration sum X, contragredient duality and the ∗ involution. Virtual crystals are reviewed
in Section 3. Right and left splitting of crystals are discussed in Sections 4 and 5, respec-
tively. Rigged configurations and the analogs of the splitting maps are subject of Section 6.
The fermionic formulas M and their virtual counterparts VM are stated in Section 7. The
X = M conjecture for types A

(1)
n and D

(1)
n is proven in Section 8 by establishing a statistic

preserving bijection. Finally, in Section 10 the equality X = VX = VM = M is established
for nonsimply-laced types.

2. Formula X

2.1. Affine algebras

Let g ⊃ g′ ⊃ g be a nonexceptional affine Kac–Moody algebra, its derived subalgebra
and canonical simple Lie subalgebra [8]. Denote the corresponding quantized universal
enveloping algebras by Uq(g) ⊃ U ′

q(g) ⊃ Uq(g) [9]. Let I = Ī ∪ {0} (respectively Ī ) be
the vertex set of the Dynkin diagram of g (respectively g). For i ∈ I , let αi , hi , Λi be
the simple roots, simple coroots, and fundamental weights of g. Let {Λi | i ∈ Ī } be the
fundamental weights of g. Let (a0, a1, . . . , an) be the smallest tuple of positive integers
giving a dependency relation on the columns of the Cartan matrix of g. Write a∨

i for the
corresponding integers for the Langlands dual Lie algebra, the one whose Cartan matrix
is the transpose of that of g. Let c = ∑

i∈I a∨
i hi be the canonical central element and δ =∑

i∈I aiαi the generator of null roots. Let Q,Q∨,P be the root, coroot, and weight lattices
of g. Let 〈·,·〉 :Q∨ ⊗ P → Z be the pairing such that 〈hi,Λj 〉 = δij . Let P → P ′ → P

be the natural surjections of weight lattices of g ⊃ g′ ⊃ g. Let P + ⊂ P be the dominant
weights for g. Let W and W be the Weyl groups of g and g, respectively.

2.2. Crystal graphs

Let M be a finite-dimensional U ′
q(g)-module. Such modules are not highest weight

modules (except for the zero module) and therefore need not have a crystal base. Suppose
M has a crystal base B . This is a special basis of M ; it possesses the structure of a colored
directed graph called the crystal graph. By abuse of notation the vertex set of the crystal
graph is also denoted B . The edges of the crystal graph are colored by the set I . It has the
following properties (that of a regular P -weighted I -crystal):

(1) Fix an i ∈ I . If all edges are removed except those colored i, the connected compo-
nents are finite directed linear paths called the i-strings of B . Given b ∈ B , define
fi(b) (respectively ei(b)) to be the vertex following (respectively preceding) b in its
i-string; if there is no such vertex, declare the result to be the special symbol ∅. Define
ϕi(b) (respectively εi(b)) to be the number of arrows from b to the end (respectively
beginning) of its i-string.
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(2) There is a function wt : B → P such that

wt
(
fi(b)

) = wt(b) − αi,

ϕi(b) − εi(b) = 〈
hi,wt(b)

〉
.

A morphism g :B → B ′ of P -weighted I -crystals is a map g :B ∪ {∅} → B ′ ∪ {∅} such
that g(∅) = ∅ and for any b ∈ B and i ∈ I , g(fi(b)) = fi(g(b)) and g(ei(b)) = ei(g(b)).
An isomorphism of crystals is a morphism of crystals which is a bijection whose inverse
bijection is also a morphism of crystals.

If Bi is the crystal base of the U ′
q(g)-module Mi for i = 1,2 then the tensor product

M2 ⊗ M1 is a U ′
q(g)-module with crystal base denoted B2 ⊗ B1. Its vertex set is just the

cartesian product B2 × B1. Its edges are given in terms of those of B1 and B2 as follows.

Remark 2.1. We use the opposite of Kashiwara’s tensor product convention.

One has wt(b2 ⊗ b1) = wt(b2) + wt(b1) and

fi(b2 ⊗ b1) =
{

fi(b2) ⊗ b1, if εi(b2) � ϕi(b1),

b2 ⊗ fi(b1), otherwise,

ei(b2 ⊗ b1) =
{

ei(b2) ⊗ b1, if εi(b2) > ϕi(b1),

b2 ⊗ ei(b1), otherwise,

where the result is declared to be ∅ if either of its tensor factors are.
The tensor product construction is associative up to isomorphism.
Define ϕ, ε :B → P ′ by

ϕ(b) =
∑
i∈I

ϕi(b)Λi, ε(b) =
∑
i∈I

εi(b)Λi.

Every irreducible integrable finite-dimensional Uq(g)-module is a highest weight mod-
ule with some highest weight λ ∈ P +; denote its crystal graph by B(λ). It is a P -weighted
Ī -crystal with a unique classical highest weight vector.

A classical component of the crystal graph B of a U ′
q(g)-module is a connected com-

ponent of the graph obtained by removing all 0-arrows from B . The vertex b ∈ B is a
classical highest weight vector if εi(b) = 0 for all i ∈ Ī . Each classical component of a
U ′

q(g)-module has a unique classical highest weight vector.

2.3. Finite crystals

Let Cfin be the category of finite crystals as defined in [5]. Every B ∈ Cfin has the fol-
lowing properties.

(1) B is the crystal base of an irreducible U ′
q(g)-module and is therefore connected.
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(2) There is a weight λ ∈ P + such that there is a unique u(B) ∈ B with wt(u(B)) = λ and
for all b ∈ B , wt(b) is in the convex hull of Wλ.

Cfin is a tensor category [5]. If B,B ′ ∈ Cfin then B ⊗ B ′ ∈ Cfin is connected and
u(B ⊗ B ′) = u(B) ⊗ u(B ′). Due to the existence of the universal R-matrix for U ′

q(g) it
follows from [11] that:

(1) there is a unique U ′
q(g)-crystal isomorphism RB,B ′ :B ⊗B ′ → B ′ ⊗B called the com-

binatorial R-matrix;
(2) there is a unique function (the local coenergy) H = HB,B ′ :B ⊗B ′ → Z�0 that is con-

stant on classical components, zero on u(B ⊗ B ′), and is such that if RB,B ′(b ⊗ b′) =
c′ ⊗ c then

H
(
e0(b ⊗ b′)

) = H(b ⊗ b′) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if e0(b ⊗ b′) = e0(b) ⊗ b′ and

e0(c
′ ⊗ c) = e0(c

′) ⊗ c,

−1, if e0(b ⊗ b′) = b ⊗ e0(b
′) and

e0(c
′ ⊗ c) = c′ ⊗ e0(c),

0, otherwise.

(2.1)

The combinatorial R-matrices satisfy

RB,B = 1B⊗B,

RB1,B2 ◦ RB2,B1 = 1B2⊗B1

and the Yang–Baxter equation, the equality of isomorphisms B3 ⊗ B2 ⊗ B1 → B1 ⊗ B2 ⊗
B3 given by

(1B1 ⊗ RB3,B2) ◦ (RB3,B1 ⊗ 1B2) ◦ (1B3 ⊗ RB2,B1)

= (RB2,B1 ⊗ 1B3) ◦ (1B2 ⊗ RB3,B1) ◦ (RB3,B2 ⊗ 1B1). (2.2)

We shall abuse notation and write Rj (respectively Hj ) to denote the application of an
appropriate combinatorial R-matrix (respectively local coenergy function) on the (j +1)th
and j th tensor factors from the right. Then (2.2) reads R1R2R1 = R2R1R2. One has the
following identities on a three-fold tensor product:

H2 + H1R2 = H2R1 + H1R2R1,

H1 + H2R1 = H1R2 + H2R1R2.

Proposition 2.2 [16]. Let B = BL ⊗ · · · ⊗ B1 and B ′ = B ′
M ⊗ · · · ⊗ B ′

1.

(1) RB,B ′ is equal to any composition of R-matrices of the form RBi,B
′
j

which shuffle the

Bi to the right, past the B ′ .
j
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(2) For b ⊗ b′ ∈ B ⊗ B ′, the value of HB,B ′ is the sum of the values HBi⊗B ′
j

evaluated at

the pairs of elements in Bi ⊗ B ′
j that must be switched by an R-matrix RBi,B

′
j

in the

computation of RB,B ′(b ⊗ b′).

2.4. Categories C and CA of KR crystals

We work with two categories of crystals. Let g be of nonexceptional affine type. The KR
modules W

(1)
s and their crystal bases Bs := B1,s were constructed in [10]. See also [17]

for an explicit description of Bs . Let C be the category of tensor products of KR crystals
of the form Bs . One has that C ⊂ Cfin.

With the labeling of the Dynkin nodes as in [16,17], the crystal Bs has the Uq(g)-
decomposition

Bs ∼=

⎧⎪⎪⎨⎪⎪⎩
B(sΛ1), for A

(1)
n ,B

(1)
n ,D

(1)
n ,A

(2)
2n−1,⊕s

r=0 B((s − r)Λ1), for A
(2)
2n ,D

(2)
n+1,⊕� s

2 �
r=0 B((s − 2r)Λ1), for C

(1)
n ,A

(2)†
2n .

(2.3)

In particular u(Bs) is the unique vector of weight sΛ1 in Bs .
Let CA be the category of all tensor products of KR crystals Br,s in type A

(1)
n . Here

Br,s ∼= B(sΛr). So u(Br,s) is the unique vector in Br,s of weight sΛr . Br,s consists of the
semistandard Young tableaux of shape given by an r × s rectangle, with entries in the set
{1,2, . . . , n+1} [13]. The structure of Br,s as an affine crystal was given explicitly in [22].

We fix some notation for B ∈ C or B ∈ CA. Let H = Ī × Z>0 where recall that Ī =
{1,2, . . . , n} is the set of Dynkin nodes for g. The multiplicity array of B is the array
L = (L

(a)
i | (a, i) ∈ H) such that L

(a)
i is the number of times Ba,i occurs as a tensor factor

in B for all (a, i) ∈H. Up to reordering of tensor factors B = ⊗
(a,i)∈H(Ba,i)⊗L

(a)
i .

2.5. Intrinsic coenergy

For B ∈ Cfin, say that D :B → Z is an intrinsic coenergy function for B if D(u(B)) = 0,
D is constant on Uq(g)-components, and

D
(
e0(b)

) − D(b) � 1 for all b ∈ B.

A graded crystal is a pair (B,D) where B ∈ Cfin and D is an intrinsic coenergy function
on B .

We shall give each B ∈ C a particular graded crystal structure.
For B ∈ Cfin define

level(B) = min
{〈

c,ϕ(b)
〉 | b ∈ B

}
.

One may verify that there is a unique element b� ∈ Bs such that

ϕ(b�) = level
(
Bs

)
Λ0.
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Define the intrinsic coenergy function DBs :Bs → Z by

DBs (b) = HBs,Bs

(
b ⊗ b�

) − HBs,Bs

(
u
(
Bs

) ⊗ b�
)
.

Example 2.3. DBs has value r on the r th summand in (2.3).

Proposition 2.4 [16]. Graded crystals form a tensor category as follows. If (Bj ,Dj ) is a
graded crystal for 1 � j � L, then their tensor product B = BL ⊗ · · · ⊗ B1 is a graded
crystal with

DB =
∑

1�i<j�L

HiRi+1Ri+2 . . .Rj−1 +
L∑

j=1

DBj
R1R2 . . .Rj−1 (2.4)

where DBj
acts on the rightmost tensor factor.

2.6. X formula

Let (B,D) be a graded crystal. For λ ∈ P + let P(B,λ) be the set of classical highest
weight vectors in B of weight λ. Define the one-dimensional sum

XB,λ(q) =
∑

b∈P(B,λ)

qDB(b)/a0 . (2.5)

Recall that a0 = 1 unless g = A
(2)
2n in which case a0 = 2.

2.7. Contragredient duality

Given a U ′
q(g)-module M with crystal base B , the contragredient dual module M∨ has

a crystal base B∨ = {b∨ | b ∈ B} such that

wt(b∨) = −wt(b),

fi(b
∨) = ei(b)∨

for i ∈ I and b ∈ B such that ei(b) �= ∅.

Proposition 2.5.

(B2 ⊗ B1)
∨ ∼= B∨

1 ⊗ B∨
2 .

Example 2.6. Assume type A
(1)
n . We have

Br,s∨ ∼= Bn+1−r,s . (2.6)
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The composite map

Br,s ∨−→ Br,s∨ ∼= Bn+1−r,s

is given explicitly as follows. Let b ∈ Br,s . Replace each column of b, viewed as a subset
of {1,2, . . . , n + 1} of size r , by the column of size n + 1 − r given by its complement.
Then reverse the order of the columns. For n = 5, r = 2, and s = 3, a tableau b ∈ Br,s and
its image in Bn+1−r,s are given below:

1 1 2

3 4 6
�→

1 2 2

3 3 4

4 5 5

5 6 6

.

Example 2.7. By definition B1,1∨ is defined by replacing each element of b ∈ B1,1 by an
element b∨ and reversing arrows. B1,s∨ can be realized by the weakly increasing words
of length s in the alphabet {(n + 1)∨ < · · · < 2∨ < 1∨}. The arrow-reversing map from Bs

to Bs∨ is given by taking a word of length s, replacing each symbol i with i∨, and revers-
ing.

2.8. Dynkin automorphisms

Let σ be an automorphism of the Dynkin diagram of g. Then this induces isometries
σ :P → P and σ :P → P given by σ(Λi) = Λσ(i) for i ∈ I , σ(δ) = δ, and σ(Λi) = Λσ(i)

for i ∈ Ī .
If M is a U ′

q(g)-module with crystal base B , then by carrying out the construction of M

but with i replaced everywhere by σ(i), there is a U ′
q(g)-module Mσ with crystal base Bσ

and a bijection σ :B → Bσ such that

wt
(
σ(b)

) = σ
(
wt(b)

)
,

σ
(
ei(b)

) = eσ(i)(b),

σ
(
fi(b)

) = fσ(i)(b)

for all b ∈ B and i ∈ I .
In particular, if the appropriate KR modules have been constructed then(

Br,s
)σ = Bσ(r),s .

2.9. The Dynkin involution τ

We fix a canonical Dynkin automorphism τ of the affine Dynkin diagram in the fol-
lowing manner. There is a length-preserving involution on W given by conjugation by the
longest element w0 ∈ W . Restricting this involution to elements of length one, one obtains
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an involution τ on the set of simple reflections {si | i ∈ Ī } of W . For simplicity of notation
this can be written as an involution on the index set Ī . This gives an automorphism of the
Dynkin diagram of τ . Call the resulting Dynkin automorphism τ .

Explicitly, τ is the identity except when g = An−1 where τ exchanges i and n − i, and
g = Dn with n odd, where τ exchanges n−1 and n and fixes all other Dynkin nodes. τ may
be extended to the Dynkin diagram of g by fixing the 0 node. It satisfies w0siw0 = sτ(i) for
all i ∈ I .

The automorphism τ induces the following action on the weight lattice P :

τ(Λi) = Λτ(i) for i ∈ I.

One may show that this is equivalent to

τ(Λ) = −w0Λ for Λ ∈ P.

In particular

τ(αi) = ατ(i) = −w0αi. (2.7)

2.10. The ∗-involution

Let M be a U ′
q(g)-module with crystal base B . With τ as above, define the module

M∗ = Mτ∨.

It has crystal base B∗, with elements b∗ for b ∈ B such that

wt(b∗) = w0wt(b) (2.8)

and

ei(b
∗) = fτ(i)(b)∗,

fi(b
∗) = eτ(i)(b)∗

(2.9)

for all i ∈ I .

Remark 2.8. By (2.9) for i ∈ Ī it follows that the map ∗ sends classical components of B

to classical components of B∗, which by (2.8) must have the same classical highest weight.

Proposition 2.9. (B1 ⊗ B2)
∗ ∼= B∗

2 ⊗ B∗
1 with (b1 ⊗ b2)

∗ �→ b∗
2 ⊗ b∗

1 .

Conjecture 2.10. Let B ∈ Cfin. Then there is a unique involution ∗ :B → B such that (2.8)
and (2.9) hold.

Uniqueness follows from the connectedness of B and the fact that u(B) is the unique
vector in B of its weight.
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Remark 2.11. The crystals satisfying Conjecture 2.10 form a tensor category. Given invo-
lutions ∗ on B1 and B2 satisfying Conjecture 2.10, define ∗ on B1 ⊗ B2 by (b1 ⊗ b2)

∗ =
R(b∗

2 ⊗ b∗
1).

Remark 2.12. For λ ∈ P + define the involution ∗ on B(λ) to be the unique map that
sends the highest weight vector uλ to the lowest weight vector (the unique vector of
weight w0(λ)) and satisfies (2.9) for i ∈ Ī . By (2.7) it follows that wt(b∗) = w0wt(b) for
all b ∈ B(λ).

Explicitly, the involution ∗ on the Uq(g)-crystal B(Λ1) is given by

i ↔ ī,

◦ ↔ ◦

except for

g = An−1: i ↔ n + 1 − i,

g = Dn, n odd: n ↔ n, n̄ ↔ n̄.

Here we use that the crystal of B(Λ1) has underlying set [13]:

{1 < 2 < · · · < n}, for An−1,

{1 < 2 < · · · < n < ◦ < n̄ < · · · < 2̄ < 1̄}, for Bn,

{1 < 2 < · · · < n < n̄ < · · · < 2̄ < 1̄}, for Cn,

{1 < 2 < · · · < n

n̄
< · · · < 2̄ < 1̄}, for Dn.

2.11. Explicit formula for ∗

We wish to determine the map ∗ of Conjecture 2.10 explicitly for Bs ∈ C and for
Br,s ∈ CA. The map ∗ :Bs → Bs must stabilize classical components by Remark 2.8 and
the multiplicity-freeness of Bs as a classical crystal. On each classical component B(s′Λ1)

of Bs , ∗ is uniquely defined by Remark 2.12. Using the Uq(g)-embedding B(s′Λ1) →
B(Λ1)

⊗s′
and Proposition 2.9, we have (b1b2 . . . bs′)∗ = b∗

s′ . . . b∗
2b∗

1 . For Br,s ∈ CA and
b ∈ Br,s , b∗ is the tableau obtained by replacing every entry c of b by c∗ and then rotating
by 180 degrees. The resulting tableau is sometimes called the antitableau of b.

Example 2.13. For type D
(1)
5 we have

1 1 3 5̄
∗ = 5̄ 3̄ 1̄ 1̄ .
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For type A
(1)
4 :

1 1

2 3

∗
= 3 4

5 5
.

Proposition 2.14. With ∗ defined as above, Conjecture 2.10 holds for Bs ∈ C and for
Br,s ∈ CA.

Remark 2.15. From now on the notation ∗ will only be used in the following way. Let
B = BL ⊗· · ·⊗B1 be a tensor product of factors Bj = Bsj . Since ∗ may be regarded as an
involution on Bs , by Proposition 2.9 we may write B∗ = B∗

1 ⊗ · · · ⊗ B∗
L = B1 ⊗ · · · ⊗ BL

for the reversed tensor product. Then ∗ :B → B∗ is defined by (bL ⊗ · · · ⊗ b1)
∗ �→ b∗

1 ⊗
· · · ⊗ b∗

L.

Proposition 2.16. Let Rj be the R-matrix acting at the j th and (j + 1)st tensor positions
from the right. On an L-fold tensor product of crystals of the form Bs ,

Rj ◦ ∗ = ∗ ◦ RL−j (2.10)

for 1 � j � L − 1.

Proof. One may reduce to the case L = 2. Since B2 ⊗ B1 is connected, R is an isomor-
phism, and since (2.9) holds, it suffices to check (2.10) on u(B2 ⊗ B1). But this holds by
weight considerations. �

3. Virtual crystals

We review the virtual crystal construction [16,17]. This allows one to reduce the study
of affine crystal graphs to those of simply-laced type.

3.1. Embeddings of affine algebras

Any affine algebra g of type X can be embedded into a simply-laced affine algebra gY

of type Y [6]. For g nonexceptional the embeddings are listed below. The notation A
(2)
2n and

A
(2)†
2n is used for two different vertex labelings of the same Dynkin diagram, in which α0

is respectively the extra short and extra long root.

C
(1)
n ,A

(2)
2n ,A

(2)†
2n ,D

(2)
n+1 ↪→ A

(1)
2n−1,

B
(1)
n ,A

(2)
2n−1 ↪→ D

(1)
n+1.

(3.1)
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3.2. Folding automorphism

Let σ be the following automorphism of the Dynkin diagram of Y . For A
(1)
2n−1, σ(i) =

2n − i (mod 2n). For type D
(1)
n+1, σ exchanges the nodes n and n + 1 and fixes all others.

Let IX and IY be the vertex sets of the diagrams X and Y , respectively, IY /σ the set of
orbits of the action of σ on IY , and ι : IX → IY /σ a bijection which preserves edges and
sends 0 to 0.

Example 3.1. If Y = A
(1)
2n−1, then ι(0) = {0}, ι(i) = {i,2n− i} for 0 < i < n and ι(n) = {n}.

If Y = D
(1)
n+1, then ι(i) = i for i < n and ι(n) = {n,n + 1}.

3.3. Embedding of weight lattices

For i ∈ IX define γi as follows.

(1) Let Y = D
(1)
n+1.

(a) Suppose the arrow points towards the component of 0. Then γi = 1 for all i ∈ IX .
(b) Suppose the arrow points away from the component of 0. Then γi is the order of σ

for i in the component of 0 and is 1, otherwise.
(2) Let Y = A

(1)
2n−1. Then γi = 1 for 1 � i � n − 1. For i ∈ {0, n}, γi = 2 (which is the

order of σ ) if the arrow incident to i points away from it and is 1, otherwise.

Example 3.2. For X = B
(1)
n and Y = D

(1)
n+1 we have γi = 2 if 0 � i � n − 1 and γn = 1.

For X = A
(2)
2n−1 and Y = D

(1)
n+1 we have γi = 1 for all i.

The embedding Ψ :P X → P Y of weight lattices is defined by

Ψ
(
ΛX

i

) = γi

∑
j∈ι(i)

ΛY
j .

As a consequence we have

Ψ
(
αX

i

) = γi

∑
j∈ι(i)

αY
j , Ψ

(
δX

) = aX
0 γ0δ

Y . (3.2)

3.4. Virtual crystals

Fix an embedding gX ↪→ gY in (3.1). Let V̂ be a Y -crystal. For i ∈ IX define the virtual
crystal operators êi , f̂i on V̂ , as the composites of Y -crystal operators ej , fj given by

êi =
∏

e
γi

j , f̂i =
∏

f
γi

j .
j∈ι(i) j∈ι(i)
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A virtual crystal (aligned in the sense of [16,17]) is an injection Ψ :B → V̂ from an
X-crystal B to a Y -crystal V̂ such that:

(1) for all b ∈ B , i ∈ IX , and j ∈ ι(i) ⊂ IY , ϕj (Ψ (b)) = γiϕi(b) and εj (Ψ (b)) = γiεi(b);
(2) Ψ ◦ ei = êi and Ψ ◦ fi = f̂i for all i ∈ IX .

A virtual crystal realizes the X-crystal B as the subset of the Y -crystal V̂ given by its
image under Ψ , equipped with the virtual Kashiwara operators êi and f̂i .

A morphism g of virtual crystals Ψ :B → V̂ and Ψ ′ :B ′ → V̂ ′ consists of a morphism
gX :B → B ′ of X-crystals and a morphism gY : V̂ → V̂ ′ of Y -crystals, such that the dia-
gram commutes:

B
Ψ

gX

V̂

gY

B ′
Ψ ′ V̂ ′.

An isomorphism g of virtual crystals is a morphism (gX,gY ) such that gX (respectively
gY ) is an isomorphism of X- (respectively Y -) crystals.

3.5. Tensor product of virtual crystals

Let Ψ :B → V̂ and Ψ ′ :B ′ → V̂ ′ be virtual crystals. It is straightforward to verify that
Ψ ⊗Ψ ′ :B ⊗B ′ → V̂ ⊗ V̂ ′ is a virtual crystal. Virtual crystals form a tensor category [16].

3.6. Virtual Bs

We recall from [17] the virtual crystal construction of Bs = B1,s for g of nonexceptional
affine type. Let V̂ s be given by

V̂ s =

⎧⎪⎪⎨⎪⎪⎩
Bs∨

Y ⊗ Bs
Y , if gY = A

(1)
2n−1,

Bs
Y , if gY = D

(1)
n+1 and g = A

(2)
2n−1,

B2s
Y , if gY = D

(1)
n+1 and g = B

(1)
n .

Theorem 3.3 [17]. There is a unique virtual crystal Ψ :Bs → V̂ s such that Ψ (u(Bs)) =
u(V̂ s).

Example 3.4. Let X = B
(1)
3 and Y = D

(1)
4 . Then V̂ s = B2s

Y . Let b = 1 ◦ 2̄ ∈ B3
X . Then

Ψ (b) = 1 1 3 3̄ 2̄ 2̄ and f3(b) = 1 3̄ 2̄ .
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Furthermore,

f̂3
(
Ψ (b)

) = f3 ◦ f4
(
Ψ (b)

) = 1 1 3̄ 3̄ 2̄ 2̄ .

3.7. Virtual R-matrix

Proposition 3.5 [17]. Let R̂ : V̂ t ⊗ V̂ s → V̂ s ⊗ V̂ t be the composition of combinatorial
R-matrices of type Y . Then the diagram commutes:

Bt ⊗ Bs
Ψ

R

V̂ t ⊗ V̂ s

R̂

Bs ⊗ Bt

Ψ
V̂ s ⊗ V̂ t .

That is, the pair (R, R̂) is an isomorphism of virtual crystals Ψ :Bt ⊗ Bs → V̂ t ⊗ V̂ s and
Ψ :Bs ⊗ Bt → V̂ s ⊗ V̂ t .

3.8. Virtual local coenergy

Proposition 3.6 [17]. Let Ψ :B → V̂ and Ψ ′ :B ′ → V̂ ′ be virtual crystals where B,B ′ ∈ C
both of type X. Then

HX
B,B ′ = 1

γ0
· HY

V̂ ,V̂ ′ ◦
(
Ψ ⊗ Ψ ′).

3.9. Virtual graded crystal

Proposition 3.7 [17]. Let B ∈ C be a crystal of type X and Ψ :B → V̂ the corresponding
virtual crystal. Then

DX = 1

γ0
· DY ◦ Ψ.

3.10. Virtual X formula

Let B ∈ C be a crystal of type X. Let Ψ :B → V̂ be the corresponding virtual crystal.
For λ ∈ P + let P v(B,λ) be image under Ψ of the set P(B,λ). Define the virtual X formula
by

VXB,λ(q) =
∑

b∈Pv(B,λ)

qD(Ψ (b))/γ0 .

Theorem 3.8 (X = VX [17]). For g of nonexceptional affine type X and B ∈ C a crystal of
type X, one has XB,λ(q) = VXB,λ(q).
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3.11. Virtual crystals and ∗-duality

We believe that the following is true for any virtual crystal, namely, that up to R-
matrices, Ψ takes the ∗ involution of type X to the ∗ involution of type Y .

Proposition 3.9. Let Bs ∈ C and let Ψ :Bs → V̂ s be a virtual crystal. Then the following
diagram commutes, where ι is either a composition of R-matrices or the identity:

Bs Ψ

∗
V̂ s

ι◦∗

Bs

Ψ
V̂ s .

Proof. Note that for the nonsimply-laced types X the Dynkin involution τX is the identity.
The virtual raising and lowering operators are invariant under τY . It is therefore sufficient
to check the above commutation on v ∈ P(Bs), where P(Bs) is the set of classical highest
weight vectors in Bs . But Bs and V̂ s are multiplicity-free as a classical crystals and ∗ sta-
bilizes classical components and modifies the weight of a crystal element by applying w0.
The following are equivalent:

(1) Ψ (v)∗ ∈ V̂ s is a classical lowest weight vector and wt(Ψ (v)∗) = wY
0 (Ψ (λ)).

(2) Ψ (v) ∈ P(V̂ s) and wt(Ψ (v)) = Ψ (λ).
(3) v ∈ P(Bs) and wt(v) = λ.
(4) v∗ ∈ Bs is a classical lowest weight vector and wt(v∗) = wX

0 λ.
(5) Ψ (v∗) is a classical lowest weight vector and wt(Ψ (v∗)) = Ψ (wX

0 λ).

One may verify that wY
0 (Ψ (λ)) = Ψ (wX

0 (λ)) using linearity, to reduce to the case λ = ΛX
i

for i ∈ Ī . It follows that Ψ (v)∗ and Ψ (v∗) are classical lowest weight vectors in V̂ s of the
same weight. But then they must be equal. �
4. Right splitting

Let g be of nonexceptional affine type. We define a family of Uq(g)-crystal embeddings
which is well behaved with respect to intrinsic coenergy. They are denoted rs := rsr;a,b

which stands for “right-split,” because when b = 0, the map splits off the rightmost column
of an element in Br,s .

Conjecture 4.1. Let a − 2 � b � 0. Suppose C′ is a set of KR crystals whose modules have
been constructed, which contains Br,s for a particular r ∈ Ī and all s ∈ Z>0. Then there is
an injective Uq(g)-crystal morphism

rsr;a,b :Br,a ⊗ Br,b → Br,a−1 ⊗ Br,b+1

such that for any crystal B which is the tensor product of crystals in C′, the map
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1B ⊗ rsr;a,b :B ⊗ Br,a ⊗ Br,b → B ⊗ Br,a−1 ⊗ Br,b+1 (4.1)

is an injective Uq(g)-crystal morphism which preserves intrinsic coenergy.

Theorem 4.2. Conjecture 4.1 holds for g = A
(1)
n for all r ∈ Ī and the set C′ of all KR

crystals.

Proof. This follows from [20–22]. �
Theorem 4.3. Conjecture 4.1 holds for any nonexceptional affine algebra g for r = 1 and
C′ the set of KR crystals of the form B1,s .

The proof of Theorem 4.3 occupies the remainder of this section.

4.1. Explicit definition of splitting

This paper only requires the case b = 0 for the map rs. Except for type A
(1)
n only the

case r = 1 is needed. For s � 2 define the map rs := rs1;s,0 as follows. For types A
(1)
n , D(1)

n ,
B

(1)
n , and A

(2)
2n−1, define rs :Bs → Bs−1 ⊗B1 by rs(wx) = w ⊗x for x ∈ B1 and w ∈ Bs−1

such that wx ∈ Bs . For the other types, in addition to the above rules we have rs(x) = ∅⊗x

for x ∈ B(Λ1) ⊆ Bs , and rs(∅) = 1̄ ⊗ 1. For Br,s ∈ CA and b ∈ Br,s , let rs(b) = b2 ⊗ b1,
where b1 is the rightmost column of the rectangular tableau b and b2 is the rest of b.

Remark 4.4. Suppose s � 2. Here r = 1 for C. For Br,s ∈ C (or CA) we write rs for the
map 1B ⊗ rs on B ⊗ Br,s and write rs(B ⊗ Br,s) := B ⊗ Br,s−1 ⊗ Br,1.

4.2. Simply-laced g

The case g = A
(1)
n is covered by Theorem 4.2. The other simply-laced nonexceptional

family is g = D
(1)
n .

It is straightforward to check directly using the explicit description of Bs in [17] that
rs is an injective Uq(g)-crystal morphism. Let B be the tensor product of crystals in C′.
To check that 1B ⊗ rs preserves intrinsic coenergy, by (2.4) it suffices to check this prop-
erty for B the trivial crystal and for B = Bt . Since 1B ⊗ rs is a Uq(g)-crystal morphism,
it is sufficient to prove that intrinsic coenergy is preserved for classical highest weight
vectors. Suppose B is trivial. By (2.3) Bs has a single classical highest weight vector,
namely, u(Bs) = 1s . By Example 2.3 DBs = 0. On the other hand rs(1s) = 1s−1 ⊗ 1 =
u(Bs−1 ⊗ B1) so its intrinsic energy is also zero. For B = Bt we require the following
lemma, which is easily verified directly.

Lemma 4.5. For g = D
(1)
n and s, t � 1, P(Bt ⊗ Bs) consists of the elements

vt,s
p,q = 1t−p−q 2p 1̄q ⊗ 1s

where p + q � min(s, t). In particular, Bt ⊗ Bs is multiplicity-free as a Uq(Dn)-crystal.
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Recall that DBt and DBs are identically zero by Example 2.3. By (2.4) and explicit
calculation,

DBt⊗Bs

(
vt,s
p,q

) = HBt ,Bs

(
vt,s
p,q

) = p + 2q. (4.2)

Since R is a Uq(D
(1)
n )-crystal isomorphism, Lemma 4.5 implies that

RBt ,Bs

(
vt,s
p,q

) = vs,t
p,q .

We compute HBt ,Bs−1⊗B1 on rs(vt,s
p,q) = (1t−p−q2p1̄q ⊗ 1s−1 ⊗ 1) using Proposition 2.2.

We have

RBt ,Bs−1

(
1t−p−q2p1̄q ⊗ 1s−1) =

⎧⎨⎩
1s−1−p−q2p1̄q ⊗ 1t , if p + q < s,

1q−1 ⊗ 1t−11̄, if p + q = s, q = s,

2p−11q ⊗ 1t−12, if p + q = s, q < s.

By (4.2) we have

HBt ,Bs−1

(
1t−p−q2p1̄q ⊗ 1s−1) =

{
p + 2q, if p + q < s,

p + 2q − 2, if p + q = s, q = s,

p + 2q − 1, if p + q = s, q < s.

By (4.2) we have H(1t ⊗ 1) = 0, H(1t−11̄ ⊗ 1) = 2, and H(1t−12 ⊗ 1) = 1. It follows in
any case that 1Bt ⊗ rs preserves intrinsic coenergy.

4.3. Nonsimply-laced g

Suppose g is not simply-laced. Let g ↪→ gY be as in (3.1). It is not hard to show that
rsX is a Uq(g)-crystal injection. To show that the map (4.1) preserves intrinsic coenergy
(and thereby complete the proof of Theorem 4.3), by Proposition 3.7 the following result
suffices.

Proposition 4.6. There is an injective Uq(gY )-crystal map r̂s : V̂ s → V̂ s−1 ⊗ V̂ 1 such that:

(1) the following diagram commutes:

Bs
X

Ψ

rsX

V̂ s

r̂s

Bs−1
X ⊗ B1

X Ψ ⊗Ψ
V̂ s−1 ⊗ V̂ 1;

(4.3)

(2) for any B ∈ C, let Ψ :B → V̂ be its virtual crystal embedding. Then 1
V̂

⊗ r̂s preserves
intrinsic coenergy;

(3) if v ∈ V̂ s and r̂s(v) ∈ Im(Ψ ⊗ Ψ ) then v ∈ Im(Ψ ).
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Proof. Suppose first that Y = A
(1)
2n−1. Then V̂ s = Bs∨

Y ⊗ Bs
Y . Define the map r̂s : V̂ s →

V̂ s−1 ⊗ V̂ 1 by the composition

Bs∨
Y ⊗ Bs

Y

1⊗rsY−−−→ Bs∨
Y ⊗ Bs−1

Y ⊗ B1
Y

R−→ Bs−1
Y ⊗ B1

Y ⊗ Bs∨
Y

1⊗1⊗rs∨Y−−−−−→ Bs−1
Y ⊗ B1

Y ⊗ Bs−1∨
Y ⊗ B1∨

Y
R−→ Bs−1∨

Y ⊗ Bs−1
Y ⊗ B1∨

Y ⊗ B1
Y . (4.4)

Here rs∨
Y (wx) = w ⊗ x where wx ∈ Bs∨

Y , w ∈ Bs−1∨
Y and x ∈ B1∨

Y . Note that (4.4) is
a composition of combinatorial R-matrices and rs maps for type A. Point (2) holds by
Theorem 4.2.

One need only verify (1) on classical highest weight vectors, by the definition of Ψ and
the fact that rsY and rs∨

Y (respectively rsX) are morphisms of Uq(Y )- (respectively Uq(X)-)
crystals.

Let N = 2n. The classical highest weight vectors in Bs
X have the form 1s−p for 0 �

p � s; if g is C
(1)
n or A

(2)†
2n then p must also be even. For p < s the element 1s−p ∈

B((s − p)Λ1) ⊂ Bs
X is sent to the following elements under the maps in (4.3):

1s−p 1s−1−p ⊗ 1

N∨(s−p)1∨p ⊗ 1s N∨s−p−11∨p ⊗ 1s−1 ⊗ N∨ ⊗ 1

where the intermediate results under the maps in (4.4) are given by N∨(s−p)1∨p ⊗1s−1 ⊗1,
1s−p−1Np ⊗1⊗N∨s , 1s−p−1Np ⊗1⊗N∨(s−1)⊗N∨, and N∨s−p−11∨p ⊗1s−1 ⊗N∨⊗1.

Under the maps in (4.3), the element ∅ is sent to

∅ 1 ⊗ 1

Ns ⊗ N∨s 1∨s−1 ⊗ 1s−2N ⊗ N∨ ⊗ 1

with intermediate values in (4.4) given by Ns ⊗ N∨s−1 ⊗ N∨, 1∨s−1 ⊗ 1∨ ⊗ 1s , 1∨s−1 ⊗
1∨ ⊗ 1s−1 ⊗ 1, and 1∨s−1 ⊗ 1s−2N ⊗ N∨ ⊗ 1.

Since these are all the possible classical highest weight vectors, point (1) follows.
For point (3), let v ∈ V̂ s and r̂s(v) ∈ Im(Ψ ⊗ Ψ ). Without loss of generality we may

assume that v ∈ P(V̂ s) since r̂s is a Uq(Y )-morphism. Now v must have the form vs,p :=
N∨(s−p)1∨p ⊗ 1s for 0 � p � s. By computations similar to those above, r̂s(v) = vs−1,p ⊗
Ψ (1) if p < s and r̂s(v) = 1∨(s−1) ⊗ 1s−2N ⊗ Ψ (1) if p = s. But r̂s(v) ∈ Im(Ψ ⊗ Ψ )

means that vs−1,p ∈ Im(Ψ ) if p < s and 1∨(s−1) ⊗ 1s−2N ∈ Im(Ψ ) if p = s. The parity
condition for this to occur implies the parity condition that guarantees that vs,p ∈ Im(Ψ ).

Suppose next that Y = D
(1)
n+1 and X = A

(2)
2n−1. Then V̂ s = Bs

Y . Define r̂s = rsY : Bs
Y →

Bs−1
Y ⊗ B1

Y . Point (2) follows by the simply-laced D
(1)
n case. Point (3) is trivial. For

point (1) it is enough to consider elements of P(Bs) = {1s}. Under the maps in (4.3),
1s goes to

1s 1s−1 ⊗ 1
1s 1s−1 ⊗ 1

and (4.3) commutes.
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Suppose that Y = D
(1)
n+1 and X = B

(1)
n . Then V̂ s = B2s

Y . Define r̂s : B2s
Y → B2s−2

Y ⊗ B2
Y

by wv �→ w⊗v where wv ∈ B2s
Y , w ∈ B2s−2

Y , and v ∈ B2
Y . This map is clearly injective and

Uq(Y )-equivariant. Point (3) is obvious. For point (1) it is enough to consider the unique
element 1s ∈ P(Bs

X). Under (4.3) 1s goes to

1s 1s−1 ⊗ 1
12s 12s−2 ⊗ 12

so that (4.3) commutes. For point (2) define r̂s′ :B2s
Y → B2s−2

Y ⊗B1
Y ⊗B1

Y by the composite
map

B2s
Y

rsY−−→ B2s−1
Y ⊗ B1

Y
R−→ B1

Y ⊗ B2s−1
Y

1⊗rsY−−−→ B1
Y ⊗ B2s−2

Y ⊗ B1
Y

R−→ B2s−2
Y ⊗ B1

Y ⊗ B1
Y .

Since r̂s′ is the composition of rsY maps and R-matrices, it preserves intrinsic coenergy by
the simply-laced case. It suffices to show that

B2s
Y

r̂s

r̂s′

B2s−2
Y ⊗ B1

Y ⊗ B1
Y

B2s−2
Y ⊗ B2

Y

1⊗rsY

commutes since r̂s′ and 1 ⊗ rsY both preserve intrinsic coenergy. It suffices to check this
for the lone classical highest weight vector 12s ∈ P(B2s

Y ). Clearly r̂s′(12s) = 12s−2 ⊗1⊗1,
while r̂s(12s) = 12s−2 ⊗ 12 and this is sent by 1 ⊗ rsY to 12s−2 ⊗ 1 ⊗ 1, as desired. �

5. Left splitting and duality

We define dual analogues of the intrinsic coenergy D and right splitting.

5.1. Tail coenergy

For Bs ∈ C define
←−
DBs = DBs . For Br,s ∈ CA, define

←−
DBr,s = DBr,s = 0. If B1,B2, . . . ,

BL ∈ C (or CA) and B = BL ⊗ · · · ⊗ B1 are such that
←−
DBj

:Bj → Z�0 are given, then
define

←−
DB =

∑
Hj−1Rj−2 . . .Ri+1Ri +

L∑←−
DBj

RL−1RL−2 . . .Rj (5.1)

1�i<j�L j=1
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with
←−
DBj

acting on the leftmost tensor position. This is a different associative tensor prod-
uct on graded crystals than the one given in Section 2.5.

Recall the notation B∗ of Remark 2.15.

Proposition 5.1. Let B ∈ C (or B ∈ CA) and b ∈ B . Then
←−
DB(b) = DB∗(b∗).

Proof. For B a single KR crystal, the result follows from the fact that the involution ∗
on B stabilizes classical components. By Proposition 2.16 and comparing (5.1) with (2.4)
it suffices to show that

HB1,B2(b
∗) = HB2,B1(b) (5.2)

for B1,B2 KR crystals. Since B2 ⊗B1 is connected, the proof may proceed by induction on
the number of steps (either of the form ei or fi ) in B2 ⊗B1 from u(B2 ⊗B1) to b. Suppose
first that b = u(B2 ⊗ B1). By the definition of u(B) in Section 2.3, B2 ⊗ B1 (and therefore
B1 ⊗B2) contain a unique classical component isomorphic to B(λ) where λ = wt(b). And
B(λ) contains a unique vector of the extremal weight w0λ. Since wt(b∗) = w0wt(b) it
follows that b∗ and u(B1 ⊗ B2) are in the same classical component, so that HB1,B2(b

∗) =
HB1,B2(b) = 0 by the definition of H .

Now suppose b = fi(c) where c is closer to u(B2 ⊗ B1) than b is. If i �= 0 then we are
done since both sides of (5.2) do not change under passing from c to b, by the definition
of H and (2.9). So assume i = 0. By (2.9) b∗ = e0(c

∗). But then one may conclude the
validity of (5.2) for b from that of c using rules for the Kashiwara operators on the tensor
product and (2.1). �

Define
←−
X just like the one-dimensional sum X but use

←−
DB instead of DB . Proposi-

tion 5.1 has this corollary.

Corollary 5.2.
←−
X(B,λ) = X(B,λ).

5.2. Left splitting

Whenever the right-splitting map rs :Br,s → Br,s−1 ⊗ Br,1 is defined, we may define
the left-splitting map ls :Br,s → Br,1 ⊗ Br,s−1 by the commutation of the diagram

Br,s
ls

∗

Br,1 ⊗ Br,s−1

∗

Br,s
rs Br,s−1 ⊗ Br,1.

(5.3)

In particular, it is defined for Bs ∈ C and Br,s ∈ CA.
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Corollary 5.3. Here r = 1 for the category C. ls is a Uq(g)-crystal embedding such that,
for any Br,s ∈ C (or CA) and for any B ∈ C (or CA), the map

ls ⊗ 1B :Br,s ⊗ B → Br,1 ⊗ Br,s−1 ⊗ B

is injective and preserves
←−
D.

Proof. ls is a Uq(g)-crystal embedding since rs is, by Theorem 4.3, the definition of ∗ and
(5.3). For the preservation of

←−
D, let b1 ⊗ b2 ∈ Br,s ⊗ B . We have

←−
D

(
ls(b1) ⊗ b2

) = D
(
b∗

2 ⊗ ls(b1)
∗) = D

(
b∗

2 ⊗ rs
(
b∗

1

)) = D
(
b∗

2 ⊗ b∗
1

) = ←−
D(b1 ⊗ b2)

by Proposition 5.1 and (5.3). �
Remark 5.4. Suppose s � 2. Here r = 1 for C as usual. For Br,s ∈ C (or CA) we write ls
for the map ls ⊗ 1B on Br,s ⊗ B . Also we write ls(Br,s ⊗ B) := Br,1 ⊗ Br,s−1 ⊗ B .

5.3. Explicit left-splitting

Lemma 5.5. For Bs ∈ C the map ls :Bs → B1 ⊗ Bs−1 is given explicitly by ls(xw) =
x ⊗ w for x ∈ B1 and w ∈ Bs−1 such that xw ∈ Bs , ls(x) = x ⊗ ∅ for x ∈ B(Λ1) ⊆ Bs ,
ls(∅) = 1̄ ⊗ 1. For Br,s ∈ CA and b ∈ Br,s , ls(b) = b2 ⊗ b1 where b2 is the leftmost column
in the r × s semistandard tableau b and b1 is the rest of b.

5.4. Box-splitting

Let Br,1 ∈ CA with r � 2. There is a Uq(g)-crystal embedding lb :Br,1 → B1,1 ⊗Br−1,1

given by b �→ b2 ⊗b1 where b2 is the bottommost entry in the column tableau b of height r ,
and b1 is the remainder of b. There is a Uq(g)-crystal embedding rb :Br,1 → Br−1,1 ⊗B1,1

given by b �→ b2 ⊗ b1 where b1 is the topmost entry in the column b and b2 is the rest of b.
The map lb is only used to define the path–RC bijection for B ∈ CA in Section 8.
In general, morphism rb does not preserve intrinsic coenergy, but another grading called

intrinsic energy. It was proved in [15] that the path–RC bijection preserves the grading
for CA using a different method, namely, the rank-level duality for type A(1).

5.5. Projections and commutations

Define the (“left-hat”) map lh :B2 ⊗ B1 → B1 by b2 ⊗ b1 �→ b1. It just removes the left
tensor factor. Define the “right-hat” map rh :B2 ⊗ B1 → B2 by b2 ⊗ b1 �→ b2.

It is immediate that the following diagram commutes:

B2 ⊗ B1
lh

∗

B1

∗

B1 ⊗ B2
rh

B1.

(5.4)
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Let P(B) be the set of classical highest weight vectors in B , or equivalently, the set of
classical components of B .

Lemma 5.6. The maps lh :B2 ⊗B1 → B1 and rh :B2 ⊗B1 → B2 induce maps lh :P(B2 ⊗
B1) → P(B1) and rh :P(B2 ⊗ B1) → P(B2).

Proof. If b2 ⊗ b1 is a classical highest weight vector of B2 ⊗ B1 then by the definitions,
b1 is a classical highest weight vector of B1. Thus lh is well defined on components.

For rh we work with classical components. By (2.9) the map ∗ takes classical com-
ponents to classical components. But then rh is well defined on components since lh is,
by (5.4). �
Example 5.7. Let b = 3 ⊗ 2 2̄ ⊗ 1 2 ⊗ 1 ∈ P(B1 ⊗ B2 ⊗ B2 ⊗ B1) of type D

(1)
4 .

Then

lh(b) = 2 2̄ ⊗ 1 2 ⊗ 1

and

rh(b) = 3 ⊗ 2 2̄ ⊗ 1 2 .

The induced map on highest weight vectors yields rh(b) = 3 ⊗ 2 2 ⊗ 1 1 .

One has the commutation of induced maps on classical highest weight vectors:

P(B2 ⊗ B1)
lh

∗

P(B1)

∗

P(B1 ⊗ B2)
rh

P(B1).

Remark 5.8. From now on, unless explicitly indicated otherwise, we only consider the
map lh (respectively rh) on tensor products whose left (respectively right) factor is B1. In
these cases, we use the notation lh(B1 ⊗ B) = B and rh(B ⊗ B1) = B .

For λ ∈ P + let

λ− = {
μ ∈ P + ∣∣ B(λ) occurs in B1 ⊗ B(μ)

}
where B1 is regarded as a Uq(g)-crystal by restriction.

By Lemma 5.6 there are well-defined bijections

lh :P(B,λ) →
⋃

−
P

(
lh(B),μ

)
, (5.5)
μ∈λ
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rh :P(B,λ) →
⋃

μ∈λ−
P

(
rh(B),μ

)
(5.6)

except in the case g = D
(2)
n+1. Note that B1 has at most one vector of each weight except

when g = D
(2)
n+1, which has two vectors 0 and ∅ of weight 0. If μ = λ, then there can be

elements b ∈ P(lh(B),λ) such that both 0 ⊗ b and ∅ ⊗ b are in P(B,λ). If so, then the
right-hand side of (5.5) must be modified to include two copies of b, one coming from
∅ ⊗ b and the other from 0 ⊗ b. There is no analogous problem for rh since 0 /∈ P(B1).

Proposition 5.9. Let r = r ′ = 1 for C.

(1) [lh, rh] = 0 on B1 ⊗ B ⊗ B1.
(2) [lh, rs] = 0 on B1 ⊗ B ⊗ Br,s for s � 2.
(3) [rh, ls] = 0 on Br,s ⊗ B ⊗ B1 for s � 2.
(4) [ls, rs] = 0 on Br,s ⊗ B ⊗ Br ′,s′

for s, s′ � 2.
(5) ∗ ◦ lh = rh ◦ ∗ on B1 ⊗ B .

Moreover, these commutations also hold for the induced maps on sets of classical highest
weight vectors.

Proof. The operators on the entire crystals commute more or less by definition. We now
prove that these identities hold for the induced maps between sets of classical highest
weight vectors.

The proof is again trivial except for cases involving rh. Point (1) follows from
Lemma 5.6. Point (3) follows from Lemma 5.6 and the Uq(g)-equivariance of ls given
in Corollary 5.3. Finally, point (5) follows from Lemma 5.6 and the fact (2.9) that the
map ∗ respects classical raising and lowering operators. �
5.6. Right hat and classical highest weight vectors

We need to know precisely how the highest weights change when passing from an ele-
ment of P(B1 ⊗ B ⊗ B1) to P(B) via either rh ◦ lh or lh ◦ rh. In this section we assume
type Dn. The answer is given by van Leeuwen [23]. We translate his answer into the lan-
guage of partitions.

Let P be the set of dominant weights that can occur in a tensor product of crystals of
the form B(Λ1). A dominant weight

∑n
i=1 aiΛi is in P if and only if an−1 and an have the

same parity. We put a graph structure on P by declaring that weights λ and μ are adjacent
if there is an element x ∈ B(Λ1) such that λ − μ = wt(x).

We realize P as a subset of Zn by letting Λi = (1i ,0n−i ) for 1 � i � n − 2, Λn−1 =
1
2 (1n) and Λn = 1

2 (1n−1,−1). As such P is given by the tuples λ = (λ1, λ2, . . . , λn) ∈ Zn

with λ1 � λ2 � · · · � λn−1 � |λn|.
We modify this notation slightly in order to use partitions. Let Y be the lattice of parti-

tions λ = (λ1 � λ2 � · · · � λn) ∈ Zn
�0 with at most n parts. A graph structure on Y is given

by declaring that two partitions are connected with an edge if their partition diagrams differ
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by one cell. Define the graph G by glueing two copies Y+ and Y− of Y together such that,
if λ ∈ Y is such that λn = 0, then λ ∈ Y+ and λ ∈ Y− are identified.

Then P ∼= G where the weight (μ1, . . . ,μn) is identified with the partition (μ1,μ2, . . . ,

μn−1,0) if μn = 0, with the “positive” partition (μ1, . . . ,μn−1,μn) ∈ Y+ if μn > 0, and
with the “negative” partition (μ1, . . . ,μn−1,−μn) ∈ Y− if μn < 0.

Let μ and λ be adjacent in P , and x ∈ B(Λ1) such that λ − μ = wt(x). We think of this
as walking from μ to λ by the step x. In terms of partitions, if x = i for 1 � i � n − 1 then
a cell is added to the ith row. If x = i for 1 � i � n − 1 then a cell is removed from the ith
row. If i = n then the above rules hold provided that λ,μ ∈ Y+. If λ,μ ∈ Y− then the roles
of n and n are reversed.

Let B = B(Λ1)
⊗L. Let b = bL . . . b1 ∈ P(B) with bj ∈ B(Λ1). In the usual way, b can

be regarded as a path in the set of dominant weights: the ith weight is given by the weight
of bi . . . b1. Alternatively b describes a walk in G from the empty partition to the element
of G corresponding to the weight of b.

Example 5.10. Let n = 4. Consider b = 4441321 ∈ P(B) where B = B(Λ1)
⊗7. The ele-

ment b corresponds to the walk in G given by

∅ → → → → →
+

→ →
−

where the + and − markings on a partition indicate membership in Y+ and Y−, respec-
tively.

In the following proposition, for weights λ,μ ∈ P , we write μ ⊂ λ if the corresponding
elements of G are both in Y+ or both in Y− and the diagram of the partition associated
with μ is contained in that of λ.

Proposition 5.11. Suppose b ∈ P(B1 ⊗B ⊗B1, λ), rh(b) ∈ P(B1 ⊗B,α), lh(b) ∈ P(B ⊗
B1, β) and rh(lh(b)) = lh(rh(b)) ∈ P(B,γ ). Then α is uniquely determined by λ, β , and
by γ . More precisely,

(1) If |λ| = |γ | + 2:
(a) if the cells λ/β and β/γ are in different rows and different columns, then α =

λ − {β/γ };
(b) if λ/β and β/γ are in the same row or in the same column, then α = β .

(2) If |λ| = |γ | − 2:
(a) if the cells β/λ and γ /β are in different rows and different columns, then α =

λ ∪ {γ /β};
(b) if β/λ and γ /β are in the same row or the same column, then α = β .

(3) If |λ| = |γ | and λ �= γ :
(a) if λ ⊃ β then α = λ ∪ {γ /β};
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(b) if λ ⊂ β then α = λ − {β/γ }.
(4) If λ = γ :

(a) if λ ⊂ β:
(i) if β/λ is in the first column of λ:

(A) if β/λ is in the nth row, for β ∈ Y± let α ∈ Y∓ be the corresponding
partition;

(B) otherwise let α = β;
(ii) else α ⊂ λ and α is obtained from λ by removing the corner cell in the column

to the left of β/λ;
(b) if λ ⊃ β then α is obtained from λ by adjoining a cell to the column to the right of

λ/β .

Proof. The rule for the weight α is given by van Leeuwen [23, Rule 4.1.1]: α is the unique
dominant element in the Weyl group orbit of the weight λ + γ − β . Using this rule the
proof is straightforward. �
Remark 5.12. The two operations rh ◦ lh and lh ◦ rh define a pair of two-step walks in
the graph G from λ to γ , whose intermediate vertices are β and α, respectively. If there is
only one such walk then α = β; this occurs in cases (1)(b) and (2)(b). If there are exactly
two such walks then α is always chosen to be the intermediate vertex not equal to β; this
occurs in cases (1)(a), (2)(a), (3)(a), and (3)(b). In the case that λ = γ there may be many
such walks; the proper choice of α given β is described in the proposition.

Example 5.13. Let b be as in Example 5.10. Then lh(b) = 441321, rh(b) = 243121, and
rh(lh(b)) = lh(rh(b)) = 43121. Therefore λ is the weight (2,1,1,−1) or the partition
(2,1,1,1) ∈ Y−, β is the weight and partition (2,1,1,0), α is the weight (2,2,1,−1)

and the partition (2,2,1,1) ∈ Y−, and γ is the weight (2,1,1,−1) and the partition
(2,1,1,1) ∈ Y−. Since λ = γ (as elements of P or G) and β ⊂ λ as partitions, case (4)(b)
applies. The cell λ/β is in the first column; therefore α should be obtained from γ by
adjoining a cell at the end of the second column, which agrees with the example.

Example 5.14. In D
(1)
4 let b = 44321 ∈ (B1,1)⊗5. Then lh(b) = 4321, rh(b) = 4321,

rh(lh(b)) = lh(rh(b)) = 321. Therefore λ = (1,1,1,0), β is the weight (1,1,1,−1) or the
partition (1,1,1,1) ∈ Y−, γ = (1,1,1,0), and α is the weight (1,1,1,1) or the partition
(1,1,1,1) ∈ Y+. This is case (4aiA).

6. Rigged configurations

In this section it is assumed that g is nonexceptional and simply-laced, that is, g = A
(1)
n

or g = D
(1)
n .

6.1. Definition

Let B ∈ C for type D
(1)
n and B ∈ CA for type A

(1)
n . Recall the notation in Section 2.4,

where L = (L
(a) | (a, i) ∈ H) is the multiplicity array of B . The sequence of partitions
i
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ν = {ν(a) | a ∈ Ī } is a (L,λ)-configuration if∑
(a,i)∈H

im
(a)
i αa =

∑
(a,i)∈H

iL
(a)
i Λa − λ,

where m
(a)
i is the number of parts of length i in partition ν(a). A (L,λ)-configuration is

admissible if p
(a)
i � 0 for all (a, i) ∈H, where p

(a)
i is the vacancy number

p
(a)
i =

∑
j�1

min(i, j)L
(a)
j −

∑
b∈Ī

(αa|αb)
∑
j�1

min(i, j)m
(b)
j .

Here (·|·) is the normalized invariant form on P such that (αi |αj ) is the Cartan matrix.
Let C(L,λ) be the set of admissible (L,λ)-configurations. A rigged configuration (ν, J )

consists of a configuration ν ∈ C(L,λ) together with a double sequence of partitions J =
{J (a,i) | (a, i) ∈ H} such that the partition J (a,i) is contained in a m

(a)
i × p

(a)
i rectangle.

The set of rigged configurations is denoted by RC(L,λ).
The partition J (a,i) is called singular if it has a part of size p

(a)
i . The partition J (a,i)

is called cosingular if it has a part of size zero, or equivalently, its complement in the
rectangle of size m

(a)
i × p

(a)
i has a part of size p

(a)
i .

It is often useful to view a rigged configuration (ν, J ) as a sequence of partitions ν

where the parts of size i in ν(a) are labeled by the parts of J (a,i). The pair (i, x) where i is
a part of ν(a) and x is a part of J (a,i) is called a string of the ath rigged partition (ν, J )(a).
The label x is called a rigging or quantum number. The corresponding coquantum number
is p

(a)
i − x.

Example 6.1. Let g = D
(1)
4 , B = B1 ⊗ B2 ⊗ B2 ⊗ B3 and λ = 2Λ1. Then the following

three sequences of partitions are admissible (L,λ)-configurations:

2
1

0

0
0

0 0

1
1

0
0

0
0

0
0

0
0

0
0

2
2

0
0

0 0

where the corresponding vacancy numbers are written next to each part. Hence, writing the
parts of J (a,i) next to the parts of size i of partition ν(a) the following would be a particular
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rigged configuration:

(ν, J ) = 0
1

0

0
0

0 0.

6.2. Quantum number complementation

Let θ = θL : RC(L,λ) → RC(L,λ) be the involution that preserves configurations and
complements riggings with respect to the vacancy numbers. More precisely, each parti-
tion J (a,i) is replaced by the partition that is complementary to it within the m

(a)
i × p

(a)
i

rectangle.

6.3. The RC reduction steps δ and δ̃

Suppose L
(1)
1 > 0. Let lh(L) and rh(L) be obtained from L by removing one tensor

factor B1. In particular, if B has B1 as its left (respectively right) tensor factor, then lh(L)

(respectively rh(L)) is the multiplicity array for lh(B) (respectively rh(B)). In [17] a quan-
tum number bijection φ :P(B) → RC(L) was defined when B is a tensor power of B1. The
key step in the definition of φ is an algorithm that defines a map δ : RC(L) → RC(lh(L)).
The same algorithm defines such a map for the current case.

For (ν, J ) ∈ RC(L,λ), the algorithm produces a smaller rigged configuration δ(ν, J ) ∈
RC(lh(L),μ) for some μ ∈ λ− and an element rk(ν, J ) ∈ B1 such that

μ + wt
(
rk(ν, J )

) = λ. (6.1)

We recall the algorithm for δ explicitly for type A
(1)
n and D

(1)
n . Although we do not use

them here, the explicit algorithms exists for the other nonexceptional affine types and can
be found in [18].

String selection for type A
(1)
n . Set �(0) = 1 and repeat the following process for a =

1,2, . . . , n or until stopped. Find the smallest index i � �(a−1) such that J (a,i) is singular.
If no such i exists, set rk(ν, J ) = a and stop. Otherwise set �(a) = i and continue with
a + 1.

String selection for type D
(1)
n . Set �(0) = 1 and repeat the following process for a =

1,2, . . . , n−2 or until stopped. Find the smallest index i � �(a−1) such that J (a,i) is singu-
lar. If no such i exists, set rk(ν, J ) = a and stop. Otherwise set �(a) = i and continue with
a + 1. Set all yet undefined �(a) to ∞.

If the process has not stopped at a = n − 2, find the minimal indices i, j � �(n−2) such
that J (n−1,i) and J (n,j) are singular. If neither i nor j exist, set rk(ν, J ) = n−1 and stop. If
i exists, but not j , set �(n−1) = i, rk(ν, J ) = n and stop. If j exists, but not i, set �(n) = j ,
rk(ν, J ) = n and stop. If both i and j exist, set �(n−1) = i, �(n) = j and continue with
a = n − 2.
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Now continue for a = n − 2, n − 3, . . . ,1 or until stopped. Find the minimal index
i � �̄(a+1) where �̄(n−1) = max(�(n−1), �(n)) such that J (a,i) is singular (if i = �(a) then
there need to be two parts of size p

(a)
i in J (a,i)). If no such i exists, set rk(ν, J ) = a + 1

and stop. If the process did not stop, set rk(ν, J ) = 1. Set all yet undefined �(a) and �̄(a)

to ∞.

The new rigged configuration. The rigged configuration (ν̃, J̃ ) = δ(ν, J ) is obtained by
removing a box from the selected strings and making the new strings singular again. Ex-
plicitly (ignoring the statements about �̄(a) for type A

(1)
n )

m
(a)
i (ν̃) = m

(a)
i (ν) +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if i = �(a) − 1,

−1, if i = �(a),

1, if i = �̄(a) − 1 and 1 � a � n − 2,

−1, if i = �̄(a) and 1 � a � n − 2,

0, otherwise.

The partition J̃ (a,i) is obtained from J (a,i) by removing a part of size p
(a)
i (ν) for i = �(a)

and i = �̄(a), adding a part of size p
(a)
i (ν̃) for i = �(a) − 1 and i = �̄(a) − 1, and leaving it

unchanged otherwise.

Example 6.2. For the rigged configuration (ν, J ) of Example 6.1, we have

δ(ν, J ) = 0
1

0
0

0 0

with rk(ν, J ) = 2.

The next proposition was proved in [15,18].

Proposition 6.3. The map δ : RC(L,λ) → ⋃
μ∈λ− RC(lh(L),μ) is injective.

Note that for simply-laced type, knowing λ and μ uniquely determines rk(ν, J ) by (6.1).
We may define the inverse of δ. To this end, let

λ+ = {
μ ∈ P + ∣∣ B(μ) occurs in B1 × B(λ)

}
.

Denote by R̃C(L,λ) the subset of RC(L,λ)×B1 given by ((ν, J ), b) such that λ+wt(b) ∈
P +. By abuse of notation define

δ−1 : R̃C(L,λ) →
⋃

β∈λ+
RC

(
lh−1(L),β

)
by the following algorithm, where lh−1(L) is obtained from L by replacing L

(1)
1 by

L
(1) + 1.
1
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String selection for type A
(1)
n . In this case wt(b) = εr for some 1 � r � n + 1, where εr

is the r th canonical unit vector in Zn+1. Set s(r) = ∞ and repeat the following process for
a = r − 1, r − 2, . . . ,1. Find the largest index i � s(a+1) such that J (a,i) is singular and set
s(a) = i; if no such i exists set s(a) = 0. Set all undefined s(a) to infinity.

String selection for type D
(1)
n . In this case wt(b) = εr or wt(b) = −εr for 1 � r � n,

where εr is the r th canonical unit vector in Zn. In the first case proceed exactly as for
type A

(1)
n . Throughout the whole algorithm, if an index i does not exist, set i = 0.

If wt(b) = −εn, find the largest index i such that J (n,i) is singular and set s(n) = i. Find
the largest index i � s(n) such that J (n−2,i) is singular and set s(n−2) = i. Then proceed as
in type A

(1)
n .

If wt(b) = −εn−1, find the largest indices i and j such that J (n−1,i) and J (n,j) are
singular and set s(n−1) = i and s(n) = j . Then find the largest index i � min{s(n−1), s(n)}
such that J (n−2,i) is singular and set s(n−2) = i. After this proceed as in type A

(1)
n .

Finally, if wt(b) = −εr for 1 � r � n − 2, set s̄(r−1) = ∞ and proceed for a = r,

r + 1, . . . , n − 2 as follows. Find the largest index i � s̄(a−1) such that J (a,i) is singular
and set s̄(a) = i. Then find the largest indices i � s̄(n−2) and j � s̄(n−2) such that J (n−1,i)

and J (n,j) are singular and set s(n−1) = i and s(n) = j . After this proceed as for the case
wt(b) = −εn−1.

Set all yet undefined s(a) and s̄(a) to ∞.

The new rigged configuration. The rigged configuration (ν̃, J̃ ) = δ−1(ν, J ) is obtained
by adding a box to the selected strings and making the new strings singular again.

Define δ̃ : RC(L) → RC(lh(L)) by θlh(L) ◦δ◦θL. Alternatively, δ̃ is defined by a coquan-
tum number version of the map δ. Instead of selecting singular strings it selects cosingular
strings and keeps coquantum numbers constant for unselected strings. It also produces an
element r̃k(ν, J ) ∈ B1. If (ν, J ) ∈ RC(L,λ) and δ̃(ν, J ) ∈ RC(lh(L),μ) then

μ + wt
(
r̃k(ν, J )

) = λ.

6.4. Splitting on RCs

Let s � 2. Suppose B contains a distinguished tensor factor Br,s , which is the case when
we consider the maps ls and rs. Let L be the multiplicity array of B and ls(L) that which
is obtained from L by replacing Br,s by Br,1 and Br,s−1.

Proposition 6.4. Let L be such that L
(r)
s � 1 for a particular (r, s) ∈ H with s � 2 and let

ls(L) be defined with respect to (r, s). Then C(L,λ) ⊂ C(ls(L),λ). Under this inclusion
map, the vacancy number p

(a)
i for ν increases by δa,rχ(i < s) where χ(P ) = 1 if P is

true and χ(P ) = 0 otherwise. Hence there are well-defined injective maps j, j̃ : RC(L) →
RC(ls(L)) given by:

(1) j(ν, J ) = (ν, J );
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(2) j̃ (ν, J ) = (ν, J ′) where J ′ is obtained from J by adding 1 to the rigging of each string
in (ν, J )(r) of length strictly less than s.

In particular, j preserves quantum numbers, j̃ preserves coquantum numbers, and

j̃ = θls(L) ◦ j ◦ θL. (6.2)

Proof. Immediate from the definitions. �
6.5. Box-splitting for RCs

Suppose r � 2 and B ∈ CA has a distinguished tensor factor Br,1. Let L be the multi-
plicity array for B and lb(L) that for the crystal obtained from B by replacing Br,1 by B1,1

and Br−1,1.

Proposition 6.5. Let L be such that L
(r)
1 � 1 for some r � 2. Let lb(L) be defined with

respect to r . Then there are injections i, ĩ : RC(L,λ) → RC(lb(L),λ) defined by adding
singular (respectively cosingular) strings of length 1 to (ν, J )(a) for 1 � a < r . Moreover,
the vacancy numbers stay the same.

7. Fermionic formula M

In this section we state the fermionic formula M associated with rigged configura-
tions for simply-laced algebras as introduced in [7] and virtual fermionic formulas for
nonsimply-laced algebras (see [16,17]).

7.1. Fermionic formula M

Let (q)m = (1 − q)(1 − q2) · · · (1 − qm) and let us define the q-binomial coefficient for
m,p ∈ Z�0 as [

m + p

m

]
= (q)m+p

(q)m(q)p
.

The fermionic formula for types A
(1)
n and D

(1)
n is given by [7]:

ML,λ(q) =
∑

ν∈C(L,λ)

qcc(ν)
∏

(a,i)∈H

[
m

(a)
i + p

(a)
i

m
(a)
i

]
(7.1)

with m
(a)
i , p

(a)
i and C(L,λ) as in Section 6.1 and

cc(ν) = 1

2

∑
a,b∈Ī

∑
j,k�1

(αa |αb)min(j, k)m
(a)
j m

(b)
k .

Fermionic formula (7.1) can be restated solely in terms of rigged configurations. To this
end recall that the q-binomial coefficient [ m+p ] is the generating function of partitions in
m
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a box of width p and height m. Hence

ML,λ(q) =
∑

(ν,J )∈RC(L,λ)

qcc(ν,J ), (7.2)

where cc(ν, J ) = cc(ν) + ∑
(a,i)∈H |J (a,i)|.

7.2. Virtual fermionic formula

Fermionic formulae for nonsimply-laced algebras were defined in [6, Section 4]. For
A

(2)†
2n it was defined in [16]. Here we recall virtual rigged configurations in analogy to

virtual crystals as defined in [17].

Definition 7.1. Let X and Y be as in Section 3.1, and λ, B and L as in Section 6.1
for type X. Let Ψ :B → V̂ be the corresponding virtual Y -crystal and L̂ the multiplic-
ity array corresponding to V̂ . For X /∈ {A(2)

2n ,A
(2)†
2n }, RCv(L,λ) is the set of elements

(ν̂, Ĵ ) ∈ RC(L̂,Ψ (λ)) such that:

(1) for all i ∈ Z>0, m̂(a)
i = m̂

(b)
i and Ĵ (a,i) = Ĵ (b,i) if a and b are in the same σ -orbit in IY ;

(2) for all i ∈ Z>0, a ∈ Ī X , and b ∈ ι(a) ⊂ Ī Y , we have m̂
(b)
j = 0 if j /∈ γaZ and the parts

of Ĵ (b,i) are multiples of γa .

For X = A
(2)
2n the following changes must be made:

(A2) m̂
(n)
j may be positive for any j � 1.

For X = A
(2)†
2n one makes the exception (A2) and the additional condition that:

(A2D) the parts of Ĵ (n,i) must have the same parity as i.

Theorem 7.2 [17, Theorem 4.2]. There is a bijection Ψ : RC(L,λ) → RCv(L,λ) sending
(ν, J ) �→ (ν̂, Ĵ ) given as follows. For all a ∈ Ī X , b ∈ ι(a) ⊂ Ī Y , and i ∈ Z>0,

m̂
(b)
γai = m

(a)
i ,

Ĵ (b,γai) = γaJ
(a,i),

except when X = A
(2)
2n or X = A

(2)†
2n and a = n, in which case

m̂
(n)
i = m

(n)
i ,

Ĵ (n,i) = 2J (n,i).

The cocharge changes by cc(ν̂, Ĵ ) = γ0 cc(ν, J ).
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Defining the virtual fermionic formula as

VML,λ(q) =
∑

(ν̂,Ĵ )∈RCv(L,λ)

qcc(ν̂,Ĵ )/γ0

we obtain as a corollary:

Corollary 7.3 (M = VM). ML,λ(q) = VML,λ(q).

8. Bijection

8.1. Quantum number bijection

The following result defines the bijection from paths to rigged configurations. It is valid
for both B ∈ C and B ∈ CA.

Proposition 8.1. There exists a unique family of bijections φ :P(B,λ) → RC(L,λ) such
that the empty path maps to the empty rigged configuration, and:

(1) Suppose B = B1 ⊗B ′. Let lh(B) = B ′ with multiplicity array lh(L). Then the diagram

P(B,λ)
φ

lh

RC(L,λ)

δ⋃
μ∈λ−

P(lh(B),μ)
φ

⋃
μ∈λ−

RC(lh(L),μ)

(8.1)

commutes.
(2) Suppose B = Br,s ⊗ B ′ with s � 2 (and r = 1 for C). Let ls(B) = Br,1 ⊗ Br,s−1 ⊗ B ′

with multiplicity array ls(L). Then the diagram

P(B,λ)
φ

ls

RC(L,λ)

j

P (ls(B),λ)
φ

RC(ls(L),λ)

(8.2)

commutes.
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(3) For CA, suppose B = Br,1 ⊗B ′ with r � 2. Let lb(B) = B1,1 ⊗Br−1,1 ⊗B ′ and lb(L)

its multiplicity array. Then the following diagram commutes:

P(B,λ)
φ

lb

RC(L,λ)

i

P (lb(B),λ)
φ

RC(lb(L),λ).

(8.3)

For type A
(1)
n the existence of φ was proven in [15]. The proof in case (1) for other

nonexceptional types is essentially done in [18]. It remains to prove case (2) for type D
(1)
n .

Lemma 8.2. Let B = Bs ⊗ B ′ with s � 2. For type D
(1)
n , the map φ :P(ls(B),λ) →

RC(ls(L),λ) restricts to a bijection φ : ls(P (B,λ)) → j(RC(L,λ)).

Proof. Let b = x ⊗ b2 ⊗ b′ ∈ B1 ⊗ Bs−1 ⊗ B ′ and ls(b2) = y ⊗ b3 ∈ B1 ⊗ Bs−2. Then
b ∈ Im(ls) if and only if x � y. (Note that this implies in particular that n and n̄ cannot
appear in the same one-row crystal element.)

By Proposition 6.4, (ν, J ) ∈ RC(ls(L),λ) is in the image of j if and only if (ν, J )(1)

has no singular strings of length smaller than s.
Let us first show that if b ∈ Im(ls) then φ(b) ∈ Im(j). Hence assume that b = x⊗b2 ⊗b′

with x � y with y as defined above. By induction (ν′, J ′) = φ(y ⊗b3 ⊗b′) has no singular
strings in the first rigged partition of length smaller than s − 1. Denote the lengths of
the strings selected by δ associated with the letter y by �

(k)
y and �̄

(k)
y . Then in particular

�
(1)
y � s − 1. “Unsplitting” yields on the path side b2 ⊗ b′ and on the rigged configuration

side (ν′, J ′) with a change in the vacancy numbers by −δa,1χ (i < s − 1). Since x � y it
follows that �

(k)
x > �

(k)
y and �̄

(k)
x > �̄

(k)
y , where �

(k)
x and �̄

(k)
x are the lengths of the strings

selected by δ associated with x. This shows in particular that �
(1)
x � s, and from the change

in vacancy numbers from φ(b2 ⊗ b′) to φ(x ⊗ b2 ⊗ b′) it follows that there are no singular
strings in the first rigged partition of φ(x ⊗ b2 ⊗ b′) of length smaller than s.

Conversely, assume that (ν, J ) ∈ RC(ls(L),λ) is in the image if j . We need to show
that then b = φ−1(ν, J ) has the property that x � y in the above notation. Call the strings
selected by δ in (ν, J ) �

(k)
x and �̄

(k)
x . By assumption (ν, J )(1) has no singular string of length

smaller than s. Hence �
(1)
x � s. By the definition of j , we have that the first rigged partition

of (ν′, J ′) = j ◦ δ(ν, J ) has no singular strings of length smaller than s − 1. Hence s − 1 �
�
(1)
y < �

(1)
x , where �

(k)
y and �̄

(k)
y are the lengths of the strings selected by δ on (ν′, J ′). The

algorithm of δ implies that �
(k)
y < �

(k)
x and �̄

(k)
y < �̄

(k)
x , so that x � y as desired. �

8.2. Coquantum number bijection

Let φ̃ = θ ◦ φ; it can be characterized as follows.
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Proposition 8.3. There exists a unique family of bijections φ̃ :P(B,λ) → RC(L,λ) with
the same properties as in Proposition 8.1 except that δ, j and i are replaced by δ̃, j̃ and ĩ

in (8.1), (8.2) and (8.3), respectively.

8.3. Commutations of the basic steps

We record the commutations among the basic steps of the path–RC bijection. Here r = 1
for C.

Theorem 8.4.

(1) [δ, δ̃] = 0.
(2) [j̃ , δ] = 0 and [j, δ̃] = 0.
(3) [j, j̃ ] = 0.
(4) [ĩ, δ] = 0 and [i, δ̃] = 0.
(5) [ĩ, j ] = 0 and [i, j̃ ] = 0.

The proof of part (1) for type A
(1)
n is given in [15, Appendix A]. The proof of part (1)

for type D
(1)
n is quite technical and follows similar arguments as [15, Appendix A] (see

also [19, Appendix C]). Details are available upon request. Parts (2) and (3) follow easily
from the definitions. Parts (4) and (5) only apply for CA and follow from [15].

For type D
(1)
n , there is an analogue of Proposition 5.11 for the commutation of δ and δ̃.

Let (ν, J ) ∈ RC(L,λ), δ̃(ν, J ) ∈ RC(rh(L),α), δ(ν, J ) ∈ RC(lh(L),β) and δ̃(δ(ν, J )) =
δ(δ̃(ν, J )) ∈ RC(lh(rh(L)), γ ). Then α is uniquely determined by λ, β , and γ .

Proposition 8.5. For λ, α, β , and γ as above the statements of Proposition 5.11 hold.

The proof is an easy consequence of the commutation [δ, δ̃] = 0 and is available upon
request.

8.4. The bijection and the various operations

Theorem 8.6. Under the family of bijections φ the following operations correspond:

(1) ls with j .
(2) lh with δ.
(3) rs with j̃ .
(4) rh with δ̃.
(5) ∗ with θ .
(6) R with the identity.
(7) lb with i and rb with ĩ.

Example 8.7. To illustrate point (4) of the above theorem, take

b = 3 ⊗ 2 3 ⊗ 1 2 ⊗ 1
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of type D
(1)
4 . Then

rh(b) = 3 ⊗ 2 2 ⊗ 1 1

and

φ(b) = 0
0
0

1
0

0 0

φ
(
rh(b)

) = δ̃
(
φ(b)

) = 0
0 0

∅ ∅.

Proof. Everything is proved for CA in [15], including part (7), which only applies in that
case. We assume that B ∈ C for type D

(1)
n . Parts (1) and (2) hold by Proposition 8.1. We

prove parts (3)–(5) simultaneously by induction. The induction is based first on the quantity∑
i si for the crystal

⊗
i B

si , and then by decreasing induction on the number of tensor
factors.

Consider part (3). Suppose first that B = Bs for some s � 2. Then P(B) has only one
element 1s . It is easy to show that φ(1s) is the empty RC and that (3) holds. Suppose next
that B = B1 ⊗ B ′ ⊗ Bs . Consider the diagram

P(B)
rs

φ

lh

P(rs(B))

φ

lh

RC(L)
j̃

δ

RC(rs(L))

δ

RC(lh(L))
j̃

RC(rs(lh(L)))

P (lh(B))

φ

rs
P(rs(lh(B))).

φ

(8.4)

Here L, rs(L), lh(L), rs(lh(L)) are the multiplicity arrays corresponding to B , rs(B),
lh(B), rs(lh(B)), respectively. We shall view such a diagram as a cube in which the small
square is in the background. The left and right faces commute by Proposition 8.1. The
front and back faces commute by Proposition 5.9(2) and Theorem 8.4(2), respectively. The
bottom face commutes by induction. It follows that the top face “commutes up to δ,” that
is, δ ◦ j̃ ◦ φ = δ ◦ φ ◦ rs. But all maps in the top face preserve the highest weight. By
Proposition 6.3 it follows that the top face commutes.
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The remaining case is B = Bs′ ⊗ B ′ ⊗ Bs for s, s′ � 2. Consider the diagram below,
where rs(ls(L)) is obtained from ls(L) by splitting a Bs′

into Bs′−1 and B1.

P(B)
rs

φ

ls

P(rs(B))

φ

ls

RC(L)
j̃

j

RC(rs(L))

j

RC(ls(L))
j̃

RC(rs(ls(L))

P (ls(B))

φ

rs
P(rs(ls(B))).

φ

(8.5)

The left and right faces commute by Proposition 8.1. The front and back faces commute
by Proposition 5.9(4) and Theorem 8.4(3), respectively. The bottom face commutes by
induction. Since j is injective, it follows that the top face commutes. This finishes the
proof of part (3).

We now prove part (4). The proof is trivial for the base case B = B1. Suppose next that
B = B1 ⊗ B ′ ⊗ B1.

P(B)
rh

φ

lh

P(rh(B))

φ

lh

RC(L)
δ̃

δ

RC(lh(L))

δ

RC(lh(L))
δ̃

RC(rh(lh(L)))

P (lh(B))

φ

rh
P(rh(lh(B))).

φ

(8.6)

The left and right faces commute by Proposition 8.1. The front and back faces commute
by Proposition 5.9(1) and Theorem 8.4(1), respectively. The bottom face commutes by
induction. Thus the top face commutes up to δ. By Proposition 6.3 it suffices to show
that both ways around the top face, result in elements with the same highest weight. This
follows from Propositions 5.11 and 8.5.
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The remaining case is B = Bs ⊗ B ′ ⊗ B1. Consider the diagram

P(B)
rh

φ

ls

P(rh(B))

φ

ls

RC(L)
δ̃

j

RC(rh(L))

j

RC(ls(L))
δ̃

RC(rh(ls(L)))

P (ls(B))

φ

rh
P(rh(ls(B))).

φ

(8.7)

The left and right faces commute by Proposition 8.1. The front and back faces commute
by Proposition 5.9(3) and Theorem 8.4(2), respectively. The bottom face commutes by
induction. Since j is injective it follows that the top face commutes. This proves part (4).

For part (5) the proof of the base case B = Bs is trivial. Suppose next that B = B1 ⊗
B ′ ⊗ B1. Consider the diagram

P(B)
∗

φ

rh

P(B∗)

φ

lh

RC(L)
θ

δ̃

RC(L)

δ

RC(rh(L))
θ

RC(rh(L))

P (rh(B))

φ

∗ P(rh(B)∗).

φ

(8.8)

The right face commutes by Proposition 8.1. The left commutes by part (4) which was
just proved above. The back face commutes by the definition of δ̃. The commutation of
the front face is given by Proposition 5.9(5). The bottom face commutes by induction. It
follows that the top face commutes up to δ. Again it suffices to show that both ways around
the top face produce elements of the same highest weight. But this holds since φ, θ , and ∗
preserve the highest weight. Here we are using the fact that for λ ∈ P +, V ∗ ∼= Vλ.
λ
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Next let B = B ′ ⊗ Bs with s � 2.

P(B)
∗

φ

rs

P(B∗)

φ

ls

RC(L)
θ

j̃

RC(L)

j

RC(ls(L))
θ

RC(ls(L))

P (rs(B))

φ

∗ P(rs(B)∗).

φ

(8.9)

The right face commutes by Proposition 8.1. The left face commutes by part (3) which was
proved above. The back face commutes by the definition of j̃ . The commutation of the
front face is given by the definition of ls in (5.3). The bottom face commutes by induction.
Since j is injective, the top face commutes.

For B = Bs ⊗ B ′ with s � 2 the proof is similar to the previous case.
This concludes the proof of part (5).
For the proof of part (6), let B = Bk ⊗Bk−1 ⊗· · ·⊗B1. We may assume that R = Rj is

the R-matrix being applied at tensor positions j and j +1 (from the right). By induction we
may assume that j = k − 1, that is, R acts at the leftmost two tensor positions. By part (5)
and Proposition 2.16 we may assume that j = 1. Again by induction we may assume that
k = 2. Let B = Bt ⊗Bs (of type D

(1)
n ). By Lemma 4.5 B is multiplicity-free as a Uq(Dn)-

crystal. Since R preserves weights it follows that R(v
t,s
p,q) = v

s,t
p,q . A direct computation

shows that φ(v
t,s
p,q) = φ(v

s,t
p,q). �

8.5. X = M for types A
(1)
n and D

(1)
n

In this subsection we will show that XB,λ = ML,λ for B ∈ CA for type A
(1)
n and

B ∈ C for type D
(1)
n . By Proposition 8.1 there is a bijection between the sets P(B,λ) and

RC(L,λ). Hence it remains to show that the statistics is preserved.

Theorem 8.8. Let B ∈ CA be a crystal of type A
(1)
n or B ∈ C a crystal of type D

(1)
n and λ a

dominant integral weight. The coquantum number bijection φ̃ preserves the statistics, that
is DB(b) = cc(φ̃(b)) for all b ∈ P(B,λ).

Proof. For type A
(1)
n the theorem follows from [15, Theorem 9.1]. Hence assume that

B ∈ C of type D
(1)
n . By Theorem 8.6(3) and Eqs. (5.3) and (6.2) the maps rs and j corre-

spond under φ̃. By Theorem 4.3 we have D(rs(b)) = D(b). Similarly, it follows immedi-
ately from the definition of j in Proposition 6.4 that cc(j(ν, J )) = cc(ν, J ). The maps R
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and the identity also correspond under φ̃ by Theorem 8.6(6), and neither of them changes
the statistics.

There exists a sequence SP of maps rs and R which transforms a path b ∈ P(B,λ)

into a path of single boxes. By Theorem 8.6 there exists a corresponding sequence SRC of
maps j and the identity. Since neither of these maps changes the statistics it follows that

D
(
SP (b)

) = cc
(
SRC

(
φ̃(b)

))
implies that D(b) = cc

(
φ̃(b)

)
.

The theorem for the case B = (B1,1)⊗N has already been proven in [18]. �
Corollary 8.9. For B ∈ CA of type A

(1)
n or B ∈ C of type D

(1)
n , L the corresponding multi-

plicity array and λ a dominant integral, we have

XB,λ(q) = ML,λ(q).

Proof. This follows from Theorem 8.8, (7.2) and (2.5). �

9. Type A
(1)
n dual bijection

For this section we assume type A
(1)
n . We define and study the properties of a dual ana-

logue δ∨ of the δ map that corresponds to removing a tensor factor B1∨ from the left. This
is used to prove a duality symmetry (Theorem 9.4) for the path–RC bijection in type A

(1)
n .

This, in turn, is useful for establishing the virtual bijections in Section 10.
Let CA∨ ⊂ CA be the category of tensor products of crystals of the form B1,s and B1,s∨.
One goal of this section is to give a simpler way to compute φ for B ∈ CA∨. Since

CA∨ ⊂ CA, Proposition 8.1 gives the definition of φ. By (2.6) B1,s∨ is isomorphic to Bn,s .
The definition of φ involves left-splitting Bn,s , which produces columns Bn,1, each of
which have to be “box split” into boxes B1,1 and removed by lh.

We introduce a dual analogue δ∨ of δ, which removes an entire column Bn,1 in a single
step whose computation is entirely similar to a single δ (rather than n of them).

Using δ∨, we can compute φ for B ∈ CA∨ using essentially single row techniques.

9.1. Dual left hat

Suppose that B = B1∨ ⊗ B ′. In this particular case we write lh∨(B) = B ′. By
Lemma 5.6 there is a map lh∨ :P(B) → P(lh∨(B)) given by removing the left tensor
factor. Let lh∨(L) be the multiplicity array of lh∨(B).

The following algorithm is the same as δ except that it starts from large indices instead
of small. The map δ∨ : RC(L) → RC(lh∨(L)) is defined as follows. Let (ν, J ) ∈ RC(L).
Initialize �(n+1) = 0 and �(0) = ∞. For i from n down to 1, assuming that �(i+1) has
already been defined, let �(i) be the smallest integer such that (ν, J )(i) has a singular string
of length �(i) and �(i) � �(i+1). If no such singular string exists, let �(j) = ∞ for 1 � j � i.
Let rk∨(ν, J ) = (i + 1)∨ ∈ B1∨ where i is the maximum index i such that �(i) = ∞.
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Example 9.1. For B = B1∨ ⊗ (B1)⊗2 ⊗ (B2)⊗3 ⊗ (B3)⊗2 of type A
(1)
5 and λ = Λ1 +Λ2 +

2Λ3 + Λ4 + Λ6 the rigged configuration

(ν, J ) =
0

0
0
0

0
0

0

0
0

1 0

is in RC(L,λ) with L the multiplicity array corresponding to B . The same configuration
now written with the vacancy number next to each part is

1
1
1
1

0
0

0

0
0

1 0.

Then

δ∨(ν, J ) =
0

0
0
0

0
0

0 ∅ ∅

and rk∨(ν, J ) = 2∨.

Given μ ∈ λ−, there is also an inverse of the dual algorithm δ∨ associated with the
weight (λ − μ)∨ similar to the inverse of δ as defined in Section 6.3.

Proposition 9.2. δ∨ : RC(L) → RC(lh∨(L)) is a well-defined injective map such that the
diagram commutes:

P(B)
φ

lh∨

RC(L)

δ∨

P(lh∨(B))
φ

RC(lh∨(L)).

(9.1)

Moreover, if φ(b1 ⊗ b) = (ν, J ) then φ(b) = δ∨(ν, J ) and b1 = rk∨(ν, J ).

Proof. The map lh∨ removes B1∨ ∼= Bn,1. This may be achieved by n applications of
lh ◦ lb, which splits a box from a column and then removes it. Let Δ be the corresponding
n-fold composition of maps δ ◦ i. It must be shown that Δ(ν,J ) = δ∨(ν, J ).
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Let a∨ = b1. The letters 1 � a1 < a2 < · · · < an � n + 1 in b1 (where b1 is viewed as
an element of Bn,1) satisfy

ai =
{

i, for 1 � i < a,

i + 1, for a � i � n.

It is clear from Proposition 6.5 and the algorithm for δ of Section 6.3 that the composition
δ ◦ i corresponding to the letter ai for a � i � n in b1 removes a box from one string of
length s(i) in the ith rigged partition and leaves all other strings unchanged. It also follows
from the algorithms and change of vacancy numbers that s(i) � s(i+1) and that s(i) is the
length of the smallest singular string in (ν, J )(i) with this property. For 1 � i < a the
composition δ ◦ i leaves the rigged configuration unchanged with s(i) = ∞. It follows by
induction that s(i) = �(i), where �(i) as in the definition of δ∨, and hence that Δ(ν,J ) =
δ∨(ν, J ). �
9.2. Dual left split

We restate left splitting for a special case. Suppose B = Bs∨ ⊗ B ′ for s � 2. Define
ls∨ :Bs∨ → ls∨(B) := B1∨ ⊗ Bs−1∨ to be the composite map

Bs∨ ∼
Bn,s

ls
Bn,1 ⊗ Bn,s−1

∼
B1∨ ⊗ Bs−1∨.

By Example 2.7 we may write b ∈ Bs∨ as a word of length s in the dual alphabet. Com-
puting ls∨ using Example 2.6, it is seen that ls(b) = b2 ⊗ b1 where b2 is the leftmost dual
letter in b and b1 is the remaining word of length s − 1 in the dual alphabet.

Let ls∨(L) be the multiplicity array for ls∨(B). Let us denote by j∨ the map on RCs
which corresponds to ls∨ under the path–RC bijection φ. It is the map j with respect
to Bn,s and is therefore inclusion (with some changes in vacancy numbers). With these
definitions the following diagram commutes by Proposition 8.1 for A

(1)
n :

P(B,λ)
φ

ls∨

RC(L,λ)

j∨

P(ls∨(B),λ)
φ

RC(ls∨(L),λ).

(9.2)

9.3. The bijection φ for CA∨

The results of this section to this point may be summarized as follows.

Proposition 9.3. There is a unique bijection φ :P(B) → RC(L) satisfying the following
properties. It sends the empty path to the empty rigged configuration, and if the leftmost
tensor factor in B is:
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(1) B1: (8.1) holds.
(2) Bs for s � 2: (8.2) holds.
(3) B1∨: (9.1) holds.
(4) Bs∨ for s � 2: (9.2) holds.

9.4. Duality on paths and the bijection

Let B ∈ CA∨. Let L and L∨ be the multiplicity arrays for B and B∨, respectively. Ex-
plicitly, L

∨(a)
i = L

(n+1−a)
i for 1 � a � n. Given a classical highest weight λ, let λ∨ =

−w0λ be the highest weight of the contragredient dual module to the An-module high-
est weight λ. There is a bijection ∨ : RC(L,λ) → RC(L∨, λ∨) given by (ν, J ) �→ (ν′, J ′)
where ν′(a) = ν(n+1−a) and J ′(a,i) is obtained from J (n+1−a,i) by complementation within
the m

(n+1−a)
i (ν) × p

(n+1−a)
i (ν) rectangle.

Theorem 9.4 [16]. Let B ∈ CA, B∨ its contragredient dual, and L and L∨ their respective
multiplicity arrays. The diagram commutes:

P(B)
φ

∨

RC(L)

∨

P(B∨)
φ

RC(L∨).

10. Virtual bijection

In this section we will prove X = M for the category C for the nonsimply-laced alge-
bras. For the simply-laced types A

(1)
n and D

(1)
n this was proved in Corollary 8.9. For the

nonsimply-laced affine families it suffices to prove the following theorem.

Theorem 10.1. For B ∈ C, let Ψ :B → V̂ be the virtual crystal embedding, L and L̂ the
multiplicity arrays for B and V̂ , respectively. Then the simply-laced bijection φ

L̂
:P(V̂ ) →

RC(L̂) restricts to a bijection φv :P v(B) → RCv(L).

As an immediate corollary we obtain:

Corollary 10.2. For λ ∈ P +, B ∈ C and L the corresponding multiplicity array we have

XB,λ(q) = VXB,λ(q) = VML,λ(q) = ML,λ(q).

Proof. The left and right equalities were proven in Theorem 3.8 and Corollary 7.3, respec-
tively. The middle equality follows from Theorems 8.8 and 10.1. �

The remainder of this section is occupied with the proof of Theorem 10.1.
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10.1. Virtual lh

Suppose B = BX = B1
X ⊗ B ′

X ∈ C with virtual crystal embeddings Ψ :BX → V̂ and
Ψ ′ :B ′

X → V̂ ′. By abuse of notation we write l̂h(V̂ ) = V̂ ′. The map l̂h : V̂ → V̂ ′ is defined
by:

(1) if Y = A
(1)
2n−1 then l̂h :B1∨

Y ⊗ B1
Y ⊗ V̂ ′ → V̂ ′ is defined by l̂h = lh ◦ lh∨, which drops

the two leftmost factors in V̂ ;
(2) if Y = D

(1)
n+1 and X = B

(1)
n then l̂h : B2

Y ⊗ V̂ ′ → V̂ ′ is defined by l̂h = lh ◦ lh ◦ ls. This
accomplishes the same thing as deleting the tensor factor B2

Y ;

(3) if Y = D
(1)
n+1 and X = A

(2)
2n−1 then l̂h :B1

Y ⊗ V̂ ′ → V̂ ′ is defined by l̂h = lh.

Note that in each case the total effect of the map l̂h : V̂ 1 ⊗ V̂ ′ → V̂ ′ is to drop the tensor
factor V̂ 1. Therefore the following diagram commutes trivially:

B1
X ⊗ B ′

X

Ψ ⊗Ψ

lh

V̂ 1 ⊗ V̂ ′

l̂h

B ′
X

Ψ
V̂ ′.

10.2. Virtual ls

Let s � 2. Recall the virtual rs map r̂s : V̂ s → V̂ s−1 ⊗ V̂ 1 defined in the proof of Propo-
sition 4.6. Define the virtual ls map l̂s : V̂ s → V̂ 1 ⊗ V̂ s−1 by

l̂s = ∗ ◦ r̂s ◦ ∗. (10.1)

Proposition 10.3. The map l̂s : V̂ s → V̂ 1 ⊗ V̂ s−1 is described explicitly as follows.

(1) If Y = A
(1)
2n−1 then l̂s : Bs∨

Y ⊗ Bs
Y → B1∨

Y ⊗ B1
Y ⊗ Bs−1∨

Y ⊗ Bs−1
Y is the composition

Bs∨
Y ⊗ Bs

Y

ls∨Y ⊗1−−−→ B1∨
Y ⊗ Bs−1∨

Y ⊗ Bs
Y

R−→ Bs
Y ⊗ B1∨

Y ⊗ Bs−1∨
Y

lsY ⊗1⊗1−−−−−→ B1
Y ⊗ Bs−1

Y ⊗ B1∨
Y ⊗ Bs−1∨

Y
R−→ B1∨

Y ⊗ B1
Y ⊗ Bs−1∨

Y ⊗ Bs−1
Y .

(2) If Y = D
(1)
n+1 and X = B

(1)
n then l̂s :B2s

Y → B2
Y ⊗ B2s−2

Y is the map that splits off the

first two symbols, that is, uv �→ u ⊗ v where uv ∈ B2s
Y , u ∈ B2

Y , and v ∈ B2s−2
Y .

(3) If Y = D
(1)
n+1 and X = A

(2)
2n−1 then define l̂s = lsY :Bs

Y → B1
Y ⊗ Bs−1

Y .

Proof. It is enough to check these on classical highest weight vectors. This is easy because
the various crystals are multiplicity-free as classical crystals. �
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Remark 10.4. Let B = BX = Bs ⊗ B ′ and let Ψ :B → V̂ and Ψ ′ :B ′ → V̂ ′ be the virtual
crystal, realizations. By abuse of notation we write l̂s(V̂ ) = V̂ 1 ⊗ V̂ s−1 ⊗ V̂ ′. We also use
the notation l̂s for the map l̂s ⊗ 1

V̂ ′ : V̂ s ⊗ V̂ ′ → V̂ 1 ⊗ V̂ s−1 ⊗ V̂ ′. It also satisfies (10.1).

10.3. Virtual δ and j

Given the virtual crystal embedding Ψ :BX → V̂ , let L and L̂ be the multiplicity ar-
rays for BX and V̂ , respectively. The maps δ̂ and ĵ are defined to be the maps on rigged
configurations which correspond under φ to the maps l̂h and l̂s. More precisely, since φ is
a bijection for type Y there are unique maps δ̂ and ĵ defined by the commutation of the
diagrams

P(V̂ )
φ

L̂

l̂h

RC(L̂)

δ̂

P (l̂h(V̂ ))
φ l̂h(L̂)

RC(l̂h(L̂))

and

P(V̂ )
φ

L̂

l̂s

RC(L̂)

ĵ

P (l̂s(V̂ ))
φ l̂s(L̂)

RC(l̂s(L̂))

(10.2)

where l̂h(L̂) and l̂s(L̂) are the multiplicity arrays for l̂h(V̂ ) and l̂s(V̂ ), respectively.
For λ ∈ P +(X) let r̂k : RC(L̂,Ψ (λ)) → V̂ 1 be the map which gives the tensor product

of the ranks of the sequence of rigged configurations that occur during the computation
of δ̂.

Lemma 10.5. δ̂ maps RCv(L) into RCv(lh(L)) and r̂k maps RCv(L) into Im(Ψ :B1
X →

V̂ 1).

Proof. The proof proceeds by cases.

X = C
(1)
n and Y = A

(1)
2n−1. According to Definition 7.1 the elements (ν̂, Ĵ ) ∈ RCv(L)

have the following properties:

(1) m̂
(a)
i = m̂

(2n−a)
i and Ĵ (a,i) = Ĵ (2n−a,i);

(2) m̂
(n)
i = 0 if i is odd;

(3) the parts of Ĵ (n,i) are even.

From (10.2) and Proposition 9.2 it is clear that δ̂ = δ ◦ δ∨. It must be shown that δ̂(ν̂, Ĵ )

also possesses the three properties (1)–(3). Let �∨(a) the lengths of the strings selected
by δ∨ and �(a) be the lengths of the strings selected by the subsequent application of δ. Let
rk∨(ν̂, Ĵ ) = (2n + 1 − r)∨ for some 1 � r � 2n. If r � n, it is clear from the definitions
that �(a) = �∨(2n−a) for 1 � a < r , so that points (1)–(3) still hold. Here r̂k(ν̂, Ĵ ) = (2n +
1 − r)∨ ⊗ r = Ψ (r). For r = n + 1, we must have �∨(n+1) < �∨(n) since otherwise by
the symmetry (1) �∨(n−1) = �∨(n) = �∨(n+1) < ∞ which contradicts the assumption that



606 A. Schilling, M. Shimozono / Journal of Algebra 295 (2006) 562–610
r = n + 1. However, this implies that �(a) = �∨(2n−a) for 1 � a < n and �(n) = �∨(n) − 1.
Since the vacancy numbers are all even (1)–(3) remain valid. One has r̂k(ν̂, Ĵ ) = n∨ ⊗
(n+1) = Ψ (n). Finally let r > n+1 and let r ′ � n be minimal such that �∨(2n−r ′) = �∨(n).
By symmetry (1) we have �∨(a) = �∨(n) for all r ′ � a � 2n − r ′. By the algorithms for δ∨
and δ and properties (1)–(3) for (ν̂, Ĵ ) it follows that �(a) = �∨(2n−a) for 1 � a < r ′ and
2n − r ′ < a < r , and �(a) = �∨ (2n−a) − 1 for r ′ � a � 2n − r ′. Again this implies that
properties (1)–(3) hold for δ̂(ν̂, Ĵ ). Then r̂k(ν̂, Ĵ ) = (2n + 1 − r)∨ ⊗ r = Ψ (2n + 1 − r).

X = A
(2)
2n and Y = A

(1)
2n−1. The elements in RCv(L) are characterized by points (1)

and (3). Everything goes through as for the case X = C
(1)
n except that, since ν̂(n) may

contain odd parts, it is possible that �∨(n) = 1. In this case �∨(a) = 1 for all 1 � a � 2n − 1
by point (1). Then �(a) = ∞ for all 1 � a � 2n − 1, so that δ̂(ν̂, Ĵ ) again satisfies (1)
and (3). Then r̂k(ν̂, Ĵ ) = 1∨ ⊗ 1 = Ψ (∅).

X = D
(2)
n+1 and Y = A

(1)
2n−1. The elements in RCv(L) are characterized by point (1). The

proof goes through as before except that Ĵ (n,i) could have an odd part. This could only
change the computation of δ ◦ δ∨ if such an odd part were selected. Recall that p

(n)
i is even

for all i. Therefore the odd part cannot be selected by δ∨. It can only be selected by δ if
rk∨(ν̂, Ĵ ) = (n + 1)∨ and the odd part has size p

(n)
i − 1 for some i � �∨(n+1). By point (1)

and the fact that (ν̂, Ĵ )(a) is unchanged by δ∨ for 1 � a � n − 1, we have �(a) = �∨(2n−a)

for 1 � a � n − 1 and �(n) is the odd (now singular) part. Thus after applying δ ◦ δ∨
point (1) still holds. r̂k(ν̂, Ĵ ) = (n+ 1)∨ ⊗ (n+ 1) = Ψ (0). Note that �(n+1) = ∞ since δ∨
caused the strings in the (n+1)th rigged partition that were longer than �∨(n+1), to become
nonsingular.

X = A
(2)†
2n and Y = A

(1)
2n−1. The elements in RCv(L) are characterized by (1) and:

(3′) the parts of Ĵ (n,i) have the same parity as i.

Let rk∨(ν̂, Ĵ ) = (2n + 1 − r)∨ for some 1 � r � 2n. If r � n, we have as for the case
X = C

(1)
n that �(a) = �∨(2n−a) for 1 � a < r , so that (1), and (3′) still hold and r̂k(ν̂, Ĵ ) =

(2n + 1 − r)∨ ⊗ r = Ψ (r).
If r = n + 1, note that �∨(n) ∈ 2Z since all vacancy numbers p

(n)
i are even, so that

by (3′) only the riggings for i even can possibly be singular. As in case C
(1)
n we must have

�∨(n+1) < �∨(n). By symmetry (1) we have �(a) = �∨(2n−a) for 1 � a < n. The application
of δ∨ changes the vacancy numbers in the nth rigged partition corresponding to the strings
of length i for �∨(n+1) � i < �∨(n) by −1, which makes these vacancy numbers odd. In
particular, the rigging of the new string of length �∨(n) − 1 is odd. In addition, �∨(n+1) �
�(n) < �∨(n) and by (3′) �(n) must be odd. By the change in vacancy number after the
application of δ, the new rigging of the string of length �(n) − 1 must be even. Hence (1)
and (3′) hold for δ̂(ν̂, Ĵ ) and r̂k(ν̂, Ĵ ) = (n + 1)∨ ⊗ (n + 1) = Ψ (0).

If r > n + 1, let r ′ � n be defined as for the case C
(1)
n . As before �∨(a) = �∨(n) for

r ′ � a � 2n− r ′. If r ′ < n everything goes through as in case C
(1)
n . If r ′ = n (which means
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that �∨(n+1) < �∨(n)), by the same arguments as for r = n + 1, we have �(a) = �∨(2n−a)

for a �= n, �∨(n+1) � �(n) < �∨(n) and (3′) holds for the new riggings. Hence properties (1)
and (3′) hold for δ̂(ν̂, Ĵ ) and r̂k(ν̂, Ĵ ) = (2n + 1 − r)∨ ⊗ r = Ψ (2n + 1 − r).

X = B
(1)
n and Y = D

(1)
n+1. The elements in RCv(L) are characterized by

(1) m
(n)
i = m

(n+1)
i and J (n,i) = J (n+1,i) for all i > 0;

(2) ν(a) and J (a,i) have only even parts for 1 � a < n.

By Section 10.1 and (10.2) we have δ̂ = δ ◦ δ ◦ j . Let �(a) and �̄(a) (respectively s(a)

and s̄(a)) be the length of the selected strings for the right (respectively left) δ. Then it
follows from the definition of j , δ and point (2) that s(a) = �(a) − 1 for 1 � a < n. Further-
more, from point (1) we obtain that �(n) = �(n+1) > s(n) = s(n+1), and again by point (2)
that s̄(a) = �̄(a) − 1 for 1 � a < n. This implies that points (1) and (2) hold for δ̂(ν̂, Ĵ ).
Moreover, let x = rk(ν̂, Ĵ ) and y = rk(δ(ν̂, Ĵ )). Note that x, y �= n + 1, n + 1 because of
point (1). Also x = y except possibly x = n and y = n. Then r̂k(ν̂, Ĵ ) = xx = Ψ (x) if
x = y or r̂k(ν̂, Ĵ ) = nn = Ψ (0) if x �= y.

X = A
(2)
2n−1 and Y = D

(1)
n+1. The elements in RCv(L) are characterized by point (1). It is

obvious from its definition that δ̂ = δ preserves this property. Let x = rk(ν̂, Ĵ ). As before
x �= n + 1, n + 1 because of point (1). Then r̂k(ν̂, Ĵ ) = x = Ψ (x). �

Thus we may define the virtual rank map rkv : RCv(L) → B1
X by rkv(ν̂, Ĵ ) = x where

Ψ (x) = r̂k(ν̂, Ĵ ) for all (ν̂, Ĵ ) ∈ RCv(L). Then we have:

Proposition 10.6. The map (δ̂, rkv) : RCv(L,λ) → ⋃
μ∈λ− RCv(lh(L),μ) × B1

X is injec-
tive.

For the proof of Theorem 10.1 we also need the inverse to Lemma 10.5 which in-
volves the inverse of δ̂. Let λ ∈ P +

X , L = (L1,L2, . . .) a multiplicity array and lh−1(L) =
(L1 + 1,L2,L3, . . .). Denote by R̃C

v
(L,λ) the subset of RCv(L,λ) × B1 given by

((ν, J ), b) such that λ + wt(b) ∈ P + and if b = 0 then also λn > 0. Let b̂ = Ψ (b). By
abuse of notation we define

δ̂−1 : R̃C
v
(L,λ) →

⋃
β∈λ+

RC
( ̂lh−1(L),Ψ (β)

)
.

If Y = A
(1)
2n−1, let b̂ = b1 ⊗ b2. Then δ̂−1((ν, J ), b) = δ∨−1

(δ−1((ν, J ), b2), b1), with δ−1

as defined in Section 6.3 and δ∨−1
as defined in Section 9.1. If Y = D

(1)
n+1 and X = B

(1)
n ,

let b̂ = xy. Then δ̂−1((ν, J ), b) = δ
−1

(δ−1((ν, J ), y), x). Finally for Y = D
(1)
n+1 and X =

A
(2) , let b̂ = x. Then δ̂−1((ν, J ), b) = δ−1((ν, J ), x).
2n−1
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Lemma 10.7. Given λ, L, lh−1(L), b and b̂ as above the map δ̂−1 maps R̃C
v
(L,λ) into⋃

β∈λ+ RCv(lh−1(L),β).

Proof. The proof is very similar to the proof of Lemma 10.5. �
Lemma 10.8. ĵ maps RCv(L) into RCv(ls(L)).

Proof. Let Y = A
(1)
2n−1. By (10.2) and Section 10.2 we have ĵ = j ◦ j∨. Both j and j∨

are inclusions that do not change the rigged configuration (only certain vacancy numbers).
Hence if (ν̂, Ĵ ) ∈ RCv(L) has the characterization as stated in the previous lemma, then so
does ĵ (ν̂, Ĵ ).

Let Y = D
(1)
n+1. If X = A

(2)
2n−1, we have ĵ = j . For X = B

(1)
n , let B = Bs ⊗ B ′ for

s � 2 and embeddings Ψ :B → V̂ and Ψ ′ :B ′ → V̂ ′ with V̂ = B2s
Y ⊗ V̂ ′. It can be shown

(using ∗ and properties of rs) that if x, y ∈ B1
Y and u ∈ B2s−2

Y are such that xyu ∈ B2s
Y then

for any b′ ∈ V̂ ′ one has l̂s(xyu ⊗ b′) = xy ⊗ u ⊗ b′. One may show that the corresponding
operation on RCs is inclusion. This may be seen by observing that ls ◦ l̂s :B2s

Y ⊗ V̂ ′ →
B1

Y ⊗B1
Y ⊗B2s−2

Y ⊗ V̂ ′, which sends xyu⊗b′ to x ⊗y ⊗u⊗b′, can also be computed by a
composition of ls maps and R-matrices, whose corresponding maps on RCs are inclusions.
This proves that ĵ (ν̂, Ĵ ) ∈ RCv(ls(L)). �
10.4. Proof of Theorem 10.1

It must be shown that the bijection φ
L̂

:P(V̂ ) → RC(L̂) maps P v(B) (1) into and (2)
onto RCv(L), thereby defining a bijection φv

L :P v(B) → RCv(L) by restriction. Let B =
Bs ⊗ B ′ with Ψ :B → V̂ s ⊗ V̂ ′.

The case s = 1. For (1) consider a typical element of P v(B,λ), given by Ψ (b) with b ∈
P(B,λ). Write b = x ⊗ b′ with x ∈ B1

X and b′ ∈ P(B ′,μ). Then Ψ (b′) ∈ P v(lh(B),μ).
Let (ν̂, Ĵ ) = φ

L̂
(Ψ (b)) ∈ RC(L̂). It must be shown that (ν̂, Ĵ ) ∈ RCv(L,λ). By (10.2) and

induction one has δ̂(ν̂, Ĵ ) ∈ RCv(lh(L),μ) and r̂k(ν̂, Ĵ ) = Ψ (x). By Lemma 10.7 we can
conclude that (ν̂, Ĵ ) ∈ RCv(L,λ).

For (2) let (ν̂, Ĵ ) ∈ RCv(L). Let b̂ = x̂ ⊗ b̂′ ∈ P(V̂ ) (with x̂ ∈ V̂ 1 and b̂′ ∈ V̂ ′)
be such that φ

L̂
(b̂) = (ν̂, Ĵ ). It must be shown that b̂ ∈ P v(B). By (10.2) we have

φ l̂h(L̂)
(l̂h(b̂)) = δ̂(φ

L̂
(b̂)) = δ̂(ν̂, Ĵ ) ∈ RCv(l̂h(L̂)). By induction b̂′ = l̂h(b̂) ∈ P v(lh(B));

write b̂′ = Ψ (b′) for some b′ ∈ B ′. By Lemma 10.5 and (10.2), x̂ = Ψ (x) for x = rkv(ν̂, Ĵ ).
Let b = x ⊗ b′ ∈ B . By definition Ψ (b) = Ψ (x) ⊗ Ψ (b′) = x̂ ⊗ b̂′ = b̂. Therefore b̂ ∈
P v(B) as desired.

The case s � 2. For (1), a typical element of P v(B) has the form Ψ (b) for b ∈ P(B).
Let φ

L̂
(Ψ (b)) = (ν̂, Ĵ ) ∈ RC(L̂). It must be shown that (ν̂, Ĵ ) ∈ RCv(L). Note that

ĵ (ν̂, Ĵ ) = ĵ (φ
L̂
(Ψ (b))) = φ

L̂s (l̂s(Ψ (b))) ∈ RCv(ls(L)) by (10.2) and induction. But

ĵ (ν̂, Ĵ ) = (ν̂, Ĵ ) and (ν̂, Ĵ ) ∈ RC(L̂). It follows that (ν̂, Ĵ ) ∈ RCv(L).
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For (2), let (ν̂, Ĵ ) ∈ RCv(L). Let b̂ ∈ P(V̂ ) be such that φ
L̂
(b̂) = (ν̂, Ĵ ). It must

be shown that b̂ ∈ P v(B). By (10.2) and induction, ĵ (ν̂, Ĵ ) = ĵ (φ
L̂
(b̂)) = φ

L̂s (l̂s(b̂)) ∈
RCv(ls(L)). Therefore l̂s(b̂) ∈ P v(ls(B)). We conclude that b̂ ∈ P v(B) by (10.1), Propo-
sitions 4.6(3) and 3.9.

This concludes the proof of Theorem 10.1.
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