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Abstract

The X = M conjecture of Hatayama et al. asserts the equality between the one-dimensional con-
figuration sum X expressed as the generating function of crystal paths with energy statistics and the
fermionic formula M for all affine Kac—-Moody algebras. In this paper we prove the X = M conjec-
ture for tensor products of Kirillov—Reshetikhin crystals B1-% associated to symmetric powers for all
nonexceptional affine algebras.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

In two extraordinary papers, Hatayama et al. [6,7] recently conjectured the equality
between the one-dimensional configuration sum X and the fermionic formula M for all
affine Kac—Moody algebras. The one-dimensional configuration sum X originates from the
corner-transfer-matrix method [1] used to solve exactly solvable lattice models in statistical
mechanics. It is the generating function of highest weight crystal paths graded by the en-
ergy statistic. The fermionic formula M comes from the Bethe Ansatz [2] and exhibits the
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quasiparticle structure of the underlying model. In combinatorial terms, it can be written
as the generating function of rigged configurations.

The one-dimensional configuration sum depends on the underlying tensor product
of crystals. In [6,7], the X = M conjecture was formulated for tensor products of
Kirillov—Reshetikhin (KR) crystals B™*. Kirillov—Reshetikhin crystals are crystals for
finite-dimensional irreducible modules over quantum affine algebras. The irreducible
finite-dimensional U(;(g)-modules were classified by Chari and Pressley [3,4] in terms
of Drinfeld polynomials. The Kirillov—Reshetikhin modules W"*, labeled by a Dynkin
node r of the underlying classical algebra and a positive integer s, form a special class of
these finite-dimensional modules. They naturally correspond to the weight s A,., where A,
is the rth fundamental weight of g. It was conjectured in [6,7], that there exists a crystal
B™S for each WS, In general, the existence of B™* is still an open question. For type
A,(ll) the crystal B™* is known to exist [12] and its combinatorial structure has been stud-
ied [22]. The crystals B for nonexceptional types, which are relevant for this paper, are
also known to exist and their combinatorics has been worked out [10,12].

The purpose of this paper is to establish the X = M conjecture for tensor products of
KR crystals of the form BL* for nonexceptional affine algebras. This extends [18], where
X = M is proved for tensor powers of B!, and [14,15], where X = M is proved for
type AD.

Our method to prove X = M for symmetric powers combines various previous results
and techniques. X = M is first proved for g such that g is simply-laced (see Corol-
lary 8.9). This is accomplished by exhibiting a grade-preserving bijection from U(; (9)-
highest weight vectors (paths) to rigged configurations (RCs). This was already proved for
the root system Aﬁll) [15]. For type D,ﬁl) we exhibit such a path-RC bijection. The proof
essentially reduces to the previously known s = 1 case [18] using the “splitting” maps
BLs — BYs~1 ® BL.1 which are U, (g)-equivariant grade-preserving embeddings.

To prove that the bijection preserves the grading, we consider an involution denoted *
on crystal graphs that combines contragredient duality with the action of the longest ele-
ment wq of the Weyl group of g. This duality on the crystal graph, corresponds under the
path—RC bijection to the involution on RCs given by complementing the quantum numbers
with respect to the vacancy numbers.

We then reduce to the case that g is simply-laced. This is achieved using the embedding
of an affine algebra g into one (call it gy) whose canonical simple Lie subalgebra is simply-
laced. On the X side we use the virtual crystal construction developed in [16,17]. It is
shown in [17] that the KR U,; (g)-crystals B* embed into tensor products of KR U,; (gy)-
crystals such that the grading is respected. One may define the VX (“virtual X””) formula
in terms of the image of this embedding and show that X = VX (see Section 3.10). This is
proved for tensor products of crystals B:* in [17]. On the M side, it is observed in [17]
that the RCs giving the fermionic formula M for type g, embed into the set of RCs giving a
fermionic formula for type gy. Let us denote by VM (“virtual M) the generating function
over the image of this embedding of fermionic formulas. It is shown in [17] that M = VM.
It then suffices to prove VX = VM. That is, one must show that the path-to-RC bijection
that has already been established for the simply-laced cases, restricts to a bijection between
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the subsets of objects in the formulas VX and VM. This is shown in Theorem 10.1 and as a
corollary proves X = M for nonsimply-laced algebras, as stated in Corollary 10.2.

In Section 2 we review the crystal theory, the definition of the one-dimensional config-
uration sum X, contragredient duality and the * involution. Virtual crystals are reviewed
in Section 3. Right and left splitting of crystals are discussed in Sections 4 and 5, respec-
tively. Rigged configurations and the analogs of the splitting maps are subject of Section 6.
The fermionic formulas M and their virtual counterparts VM are stated in Section 7. The
X = M conjecture for types A,(f) and D,ﬁl) is proven in Section 8 by establishing a statistic
preserving bijection. Finally, in Section 10 the equality X = VX =VM = M is established
for nonsimply-laced types.

2. Formula X
2.1. Affine algebras

Let g D g’ D g be a nonexceptional affine Kac—-Moody algebra, its derived subalgebra
and canonical simple Lie subalgebra [8]. Denote the corresponding quantized universal
enveloping algebras by U, (g) D U/ (g) D U, (g) [9]. Let I =1 U {0} (respectively I) be
the vertex set of the Dynkin diagram of g (respectively g). For i € I, let «;, h;, A; be
the simple roots, simple coroots, and fundamental weights of g. Let {A; | i € I} be the
fundamental weights of §. Let (ag, a1, ..., a,) be the smallest tuple of positive integers
giving a dependency relation on the columns of the Cartan matrix of g. Write a.” for the
corresponding integers for the Langlands dual Lie algebra, the one whose Cartan matrix
is the transpose of that of g. Let c =Y, _; a;"h; be the canonical central element and § =
Y ;e aia; the generator of null roots. Let O, 0V, P be the root, coroot, and weight lattices
of g. Let (-,-): Q¥ ® P — Z be the pairing such that (h;,A;) = &;;. Let P —> P’ — P
be the natural surjections of weight lattices of g > g’ O g. Let P* C P be the dominant
weights for g. Let W and W be the Weyl groups of g and g, respectively.

2.2. Crystal graphs

Let M be a finite-dimensional U, (g)-module. Such modules are not highest weight
modules (except for the zero module) and therefore need not have a crystal base. Suppose
M has a crystal base B. This is a special basis of M it possesses the structure of a colored
directed graph called the crystal graph. By abuse of notation the vertex set of the crystal
graph is also denoted B. The edges of the crystal graph are colored by the set 7. It has the
following properties (that of a regular P-weighted -crystal):

(1) Fixani € I. If all edges are removed except those colored i, the connected compo-
nents are finite directed linear paths called the i-strings of B. Given b € B, define
fi(b) (respectively e; (b)) to be the vertex following (respectively preceding) & in its
i-string; if there is no such vertex, declare the result to be the special symbol @. Define
@; (b) (respectively ¢; (b)) to be the number of arrows from & to the end (respectively
beginning) of its i-string.



A. Schilling, M. Shimozono / Journal of Algebra 295 (2006) 562-610 565
(2) There is a function wt: B — P such that

wt(fi (b)) = Wt(b) — s,
@i (b) — &i(b) = (hi,Wt()).

A morphism g: B — B’ of P-weighted /-crystalsisamap g: B U {#}} — B’ U{@} such
that g(@) =0 and forany b e Band i € I, g(f; (b)) = fi(g(b)) and g(e; (b)) = e; (g(b)).
An isomorphism of crystals is a morphism of crystals which is a bijection whose inverse
bijection is also a morphism of crystals.

If B; is the crystal base of the U(; (g)-module M; for i =1, 2 then the tensor product
M>® My is a U‘; (g)-module with crystal base denoted By ® Bj. Its vertex set is just the
cartesian product B, x Bj. Its edges are given in terms of those of B; and B> as follows.

Remark 2.1. We use the opposite of Kashiwara’s tensor product convention.
One has wt(by ® b1) = wt(bo) + wt(b1) and

fi(b2) ® b1, ifei(b2) = ¢i(b1),
by ® fi(b1), otherwise,

ei(bp) ® by, ifei(b2) > ¢i(b1),
by ® e;(b1), otherwise,

filb2®b1) = {
ei(bp ®by) = {

where the result is declared to be @ if either of its tensor factors are.
The tensor product construction is associative up to isomorphism.
Define ¢, ¢: B — P’ by

) =Y gib)Ai,  eb)=) b4

iel iel

Every irreducible integrable finite-dimensional U, (g)-module is a highest weight mod-
ule with some highest weight A € P*; denote its crystal graph by B(}). It is a P-weighted
I-crystal with a unique classical highest weight vector.

A classical component of the crystal graph B of a U,; (g)-module is a connected com-
ponent of the graph obtained by removing all 0-arrows from B. The vertex b € B is a
classical highest weight vector if &;(b) =0 for all i € I. Each classical component of a
Ugl (g)-module has a unique classical highest weight vector.

2.3. Finite crystals

Let C be the category of finite crystals as defined in [5]. Every B e " has the fol-
lowing properties.

(1) B isthe crystal base of an irreducible Uy (g)-module and is therefore connected.
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(2) There isaweight » € P* such that there is aunique u(B) € B with wt(u(B)) = A and
for all b € B, wt(b) is in the convex hull of WA.

¢fin is a tensor category [5]. If B, B’ € C'™ then B ® B’ € C" is connected and
u(B® B") =u(B)® u(B’). Due to the existence of the universal R-matrix for U‘;(g) it
follows from [11] that:

(1) there is a unique U(; (g)-crystal isomorphism Rg g : B® B’ — B’ ® B called the com-
binatorial R-matrix;

(2) there is a unique function (the local coenergy) H = Hp p': B® B’ — Zx> that is con-
stant on classical components, zero on u(B ® B’), and is such that if Rp g (b QD) =
¢’ ® c then

1, ifeg(b®b) =en(h) ® b and
eo(c' ®c) =ep(c) ®c,
H(eob®b))=HMB V) +{ -1, ifegb@b)=b®eo(®)and (2.1)
eo(c’ ®c) =" ®ep(o),
0, otherwise.

The combinatorial R-matrices satisfy

Rp B =1peB,
Rpy.B, © RBy. By = 1B,98;

and the Yang—-Baxter equation, the equality of isomorphisms B3 ® Bo ® By — B1 ® B> ®
B3 given by

(1B, ® Rpy,B,) © (Rpy, B, ®1p,) 0 (1p, ® Rp,,B;)
= (RBz,B]_ ® 133) o (132 ® RBg,Bl) o (RB3,BZ & 131)' (22)
We shall abuse notation and write R; (respectively H;) to denote the application of an
appropriate combinatorial R-matrix (respectively local coenergy function) on the (j + 1)th

and jth tensor factors from the right. Then (2.2) reads R1R2R1 = R2R1R>. One has the
following identities on a three-fold tensor product:

H> + HiR) = Hy)R1 + HIR>R1,
Hi + H2R1 = HiR2 + H2R1R3.
Proposition 2.2[16]. Let B=B;, ®---® Biand B'= B}, ® --- ® Bj.

(1) Rp p isequal to any composition of R-matrices of the form RBi,B} which shuffle the
B; to the right, past the B}.
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(2) Forb® ' € B® B, the value of Hp p' is the sum of the values Hy, o5 evaluated at
J
the pairs of elements in B; ® B; that must be switched by an R-matrix R, g in the
J T
computation of Rp g/ (b ® b).

2.4. Categories C and C# of KR crystals

We work with two categories of crystals. Let g be of nonexceptional affine type. The KR
modules Ws(l) and their crystal bases B® := B were constructed in [10]. See also [17]
for an explicit description of B*. Let C be the category of tensor products of KR crystals
of the form B*. One has that C c Cfin.

With the labeling of the Dynkin nodes as in [16,17], the crystal B* has the U, (g)-
decomposition

B(sAy), for AL BY D® A
~ Y 2 2
B* =1 @_oB((s —r)A1), for AL, D, (2.3)

L3] - 2
B, % B((s —2r)Ay), forcP, AP,

In particular u(B*) is the unique vector of weight s A1 in BS.
Let C4 be the category of all tensor products of KR crystals B™* in type Aﬁll). Here
" = B(sA,). SO u(B"*) is the unique vector in B"* of weight s A,. B™* consists of the
semistandard Young tableaux of shape given by an r x s rectangle, with entries in the set
{1,2,...,n+ 1} [13]. The structure of B"* as an affine crystal was given explicitly in [22].
We fix some notation for B € C or B € CA. Let H = I x Z-q where recall that [ =
{1,2,...,n} is the set of Dynkin nodes for g. The multiplicity array of B is the array
L= (Ll?“) | (a,i) € H) such that Llf“) is the number of times B% occurs as a tensor factor

. . . (a)
in B for all (a, i) € H. Up to reordering of tensor factors B = ®(a’i)€H(B”v’)®Li .

2.5. Intrinsic coenergy

For B € C" say that D : B — Z is an intrinsic coenergy function for B if D(u(B)) =0,
D is constant on U, (g)-components, and

D(eo(b)) — D(b) <1 forallbe B.

A graded crystal is a pair (B, D) where B € C" and D is an intrinsic coenergy function
on B.

We shall give each B € C a particular graded crystal structure.

For B € C'" define

level(B) = min{(c,¢(b)) | b € B}.
One may verify that there is a unique element 5% € B* such that

@(b") = level(B*) Ao.
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Define the intrinsic coenergy function Dps : B — Z by
Dps(b) = Hps ps (b ® b*) — Hps ps (u(B*) ® b°).
Example 2.3. Dps has value r on the rth summand in (2.3).
Proposition 2.4 [16]. Graded crystals form a tensor category as follows. If (B;, D;) is a

graded crystal for 1 < j < L, then their tensor product B = B; ® --- ® B is a graded
crystal with

L
Dg= Y HiRij1Ri12...Rji.1+Y DgRiRy...Rj_1 (2.4)
1<i<j<L j=1
where Dp; acts on the rightmost tensor factor.

2.6. X formula

Let (B, D) be a graded crystal. For A € P let P(B, 1) be the set of classical highest
weight vectors in B of weight A. Define the one-dimensional sum

Xpal@)= Y q"r®w. (2.5)
beP(B,2)

Recall that ag = 1 unless g = Agz) in which case ag = 2.

2.7. Contragredient duality

Given a U[; (g)-module M with crystal base B, the contragredient dual module MV has
acrystal base BY = {b" | b € B} such that

wi(b") = —wt(b),
fi(0") =ei(b)”
fori € I and b € B such that e; (b) # 9.
Proposition 2.5.
(B,®B1)" =B/ ® By.
Example 2.6. Assume type A,(ql). We have

Br,sv ~ Bn-i—l—r,s' (26)
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The composite map
B L) Br,sv ~ Bn+l—r,s

is given explicitly as follows. Let b € B™*. Replace each column of b, viewed as a subset
of {1,2,...,n+ 1} of size r, by the column of size n + 1 — r given by its complement.
Then reverse the order of the columns. For n =5, r =2, and s = 3, a tableau b € B"™* and
its image in B"+1="5 are given below:

g |WikF
o OT|W (N
(o2 BN N IE-N N V)

Example 2.7. By definition BL1V is defined by replacing each element of » € B by an
element 5" and reversing arrows. B1*V can be realized by the weakly increasing words
of length s in the alphabet {(n +1)¥ < --- <2V < 1V}. The arrow-reversing map from B*
to B*Y is given by taking a word of length s, replacing each symbol i with iV, and revers-

ing.
2.8. Dynkin automorphisms

Let o be an automorphism of the Dynkin diagram of g. Then this induces isometries
o:P— Pando:P — Pgivenby o(A;) = Ay fori e 1,0(8) =8,and o (A;) = Ay
foriel.

IfMisa U,; (g)-module with crystal base B, then by carrying out the construction of M
but with i replaced everywhere by o (i), there is a Ugl (g)-module M with crystal base B
and a bijection o : B — B such that

wt(o (b)) = o (Wt(b)),
o(ei(b)) = eq (i) (b),
o (fi®) = foii)(b)

forallbe Bandiel.
In particular, if the appropriate KR modules have been constructed then

(Br,s)U — Ba(r),s.
2.9. The Dynkin involution ¢
We fix a canonical Dynkin automorphism t of the affine Dynkin diagram in the fol-

lowing manner. There is a length-preserving involution on W given by conjugation by the
longest element wg € W. Restricting this involution to elements of length one, one obtains
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an involution t on the set of simple reflections {s; | i € I} of W. For simplicity of notation
this can be written as an involution on the index set 7. This gives an automorphism of the
Dynkin diagram of . Call the resulting Dynkin automorphism z.
Explicitly, T is the identity except when g = A, _1 where t exchanges i and n — i, and
g = D, with n odd, where 7 exchanges n — 1 and n and fixes all other Dynkin nodes. t may
be extended to the Dynkin diagram of g by fixing the 0 node. It satisfies wos; wo = s ;) for
allieI.
The automorphism t induces the following action on the weight lattice P:
T(A;)=A foriel
One may show that this is equivalent to
T(A)=—wgA forAeP.
In particular
‘L'(Ol,') =0Ur(j) = —Wo;. (2.7)
2.10. The x-involution
Let M be a U{; (g)-module with crystal base B. With t as above, define the module
M* =M.

It has crystal base B*, with elements b* for b € B such that

wt(b*) = wowt(b) (2.8)
and
i b*) = (i b *a
e;(b*) = fri)(b) 2.9)
fi(b™) = ey (D)*
foralli eI.

Remark 2.8. By (2.9) for i e I it follows that the map s sends classical components of B
to classical components of B*, which by (2.8) must have the same classical highest weight.

Proposition 2.9. (B1 ® B2)* = B; ® B with (b1 ® b2)* — b3 ® bj.

Conjecture 2.10. Let B € Ci". Then there is a unique involution % : B — B such that (2.8)
and (2.9) hold.

Uniqueness follows from the connectedness of B and the fact that u(B) is the unique
vector in B of its weight.
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Remark 2.11. The crystals satisfying Conjecture 2.10 form a tensor category. Given invo-
lutions % on By and B» satisfying Conjecture 2.10, define x on B1 ® By by (b1 ® bp)* =
R(b} @ b).

Remark 2.12. For A € Pt define the involution = on B(X) to be the unique map that
sends the highest weight vector u; to the lowest weight vector (the unique vector of
weight wo (1)) and satisfies (2.9) for i € I. By (2.7) it follows that wt(b*) = wowt(b) for
all b e B(»).

Explicitly, the involution x on the U, (g)-crystal B(A1) is given by

i <1,

O <>0

except for

g=A,—1. i<on+l-—i,

g=D,, nodd: n<n, n<n.
Here we use that the crystal of B(A1) has underlying set [13]:

{1<2<---<n}, forA,_1,
{(l<2<---<n<o<i<---<2<1}, forB,,

1<2<---<n<n<---<2<1}, forcC,,

{1<2<--~<Z<~--<é<i}, for D,,.

2.11. Explicit formula for *

We wish to determine the map = of Conjecture 2.10 explicitly for B* € C and for
B"$ € CA. The map =: B® — B* must stabilize classical components by Remark 2.8 and
the multiplicity-freeness of B* as a classical crystal. On each classical component B(s’ A1)
of B*, «x is uniquely defined by Remark 2.12. Using the U, (g)-embedding B(s'A1) —
B(Zl)@/ and Proposition 2.9, we have (b1b;...by)* = b}, ...bsb]. For B™* cA and
b € B"™*, b* is the tableau obtained by replacing every entry ¢ of b by ¢* and then rotating
by 180 degrees. The resulting tableau is sometimes called the antitableau of 5.

Example 2.13. For type Dél) we have

[1[2]a]5]" =[5[3]1]1]
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For type Afll):

Proposition 2.14. With =« defined as above, Conjecture 2.10 holds for B* € C and for
B e CA.

Remark 2.15. From now on the notation * will only be used in the following way. Let
B = B; ®---® By be atensor product of factors B; = B*/. Since * may be regarded as an
involution on B*, by Proposition 2.9 we may write B* =B ® ---® B =B1®---® BL
for the reversed tensor product. Then x: B — B* is defined by (b, ® --- ® b1)* > b} ®
- ®by.

Proposition 2.16. Let R; be the R-matrix acting at the jth and (j + 1)st tensor positions
from the right. On an L-fold tensor product of crystals of the form B,

RjO*:*oRL_j (2.10)
forl<;j<L-1.

Proof. One may reduce to the case L = 2. Since B, ® Bj is connected, R is an isomor-
phism, and since (2.9) holds, it suffices to check (2.10) on u(B2 ® B1). But this holds by
weight considerations. O

3. Virtual crystals

We review the virtual crystal construction [16,17]. This allows one to reduce the study
of affine crystal graphs to those of simply-laced type.

3.1. Embeddings of affine algebras

Any affine algebra g of type X can be embedded into a simply-laced affine algebra gy
of type Y [6]. For g nonexceptional the embeddings are listed below. The notation Agf and

A(Zi” is used for two different vertex labelings of the same Dynkin diagram, in which «q
is respectively the extra short and extra long root.

D) 4@ 4@QF /@ (1)
C” ’ AZn ’ A2n ’ Dn+l — A2n—1’ (3 1)

BY 42 | < p®)
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3.2. Folding automorphism

Let o be the following automorphism of the Dynkin diagram of Y. For A, o (i) =

2n — i (mod 2n). For type D,(lljl, o exchanges the nodes n and n + 1 and fixes all others.

Let 7X and 7" be the vertex sets of the diagrams X and Y, respectively, ¥ /o the set of
orbits of the action of o on 1Y, and ¢: 71X — I /o a bijection which preserves edges and
sends 0 to 0.

Example3.L If Y = ASY | then:(0) = {0}, (i) = {i, 21 —i} for 0 < i < nand i(n) = {n}.

Ify= Dﬁl, thent(i) =i fori <nand((n) ={n,n+1}.

3.3. Embedding of weight lattices
For i € I’X define y; as follows.

@
(1) Lety =D,~,.

(a) Suppose the arrow points towards the component of 0. Then y; =1 forall i € IX.
(b) Suppose the arrow points away from the component of 0. Then y; is the order of o
for i in the component of 0 and is 1, otherwise.

(2) LetY = Agl)_l. Then y; =1for 1 <i<n-—1 Forie{0,n}, y; =2 (which is the

order of o) if the arrow incident to i points away from it and is 1, otherwise.

Example 3.2. For X = B,(ll) and Y = D,(llle we have y;, =2if0<i<n—1land y, =1.
For X = Agill and Y = Dﬂl we have y; =1 forall i.

The embedding ¥ : PX — PY of weight lattices is defined by
v (A )=w D Al
O]

As a consequence we have

V) =y Y o, w(6%)=af e’ (3.2)
jeu)

3.4. Virtual crystals

Fix an embedding gx <> gy in (3.1). Let V be a Y-crystal. For i € IX define the virtual
crystal operators ¢;, f; on V, as the composites of Y-crystal operators e;, f; given by

R , R y
=11 fi=T11"

jeu@) Jjeu)
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A virtual crystal (aligned in the sense of [16,17]) is an injection ¥ : B — V from an

X-crystal B to a Y-crystal V such that:
(1) forallbe B,iel¥,and j () C 1Y, ;W (b)) = yig;(b) and &; (¥ (b)) = yi&; (b)
(2) Yoes=¢;and Wo f; = f; foralli e IX.

A virtual crystal realizes the X-crystal B as the subset of the Y cry§tal V given by its

image under ¥, equipped with the virtual Kashiwara operators ¢; and f;
A morphism g of virtual crystals ¥ : B — V and ¥’ : B’ — V’ consists of a morphism

x:B — B’ of X-crystals and a morphism gy : V — V’ of Y-crystals, such that the dia-

gram commutes:

W%m
<)%<>
z

An isomorphism g of virtual crystals is a morphism (gx, gy) such that gx (respectively

gy) is an isomorphism of X- (respectively Y-) crystals

3.5. Tensor product of virtual crystals

Letw:B — V and ¥': B’ — V' be virtual crystals. It is straightforward to verify that
Y QRW':B®B — V®V’isavirtual crystal. Virtual crystals form a tensor category [16].

3.6. Virtual B*
We recall from [17] the virtual crystal construction of B* = B for g of nonexceptional
affine type. Let V* be given by

. 1
B} ® B, ifgy=A} ..
~ o . 2
Vi=1 By, ifgy = D( )1 and g = Agn)_l,
1
BZ, if gy =D, and g = B\".

Theorem 3.3 [17]. There is a unique virtual crystal ¥ : B — V* such that ¥ (u(B%)) =

u(V*).
Example3.4. Let X = B{" and ¥ = D{". Then V* = B Let b =[1[0[2| € B}. Then

) =[1]1[33[2[2] and f3(b)=[1]3]2].
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Furthermore,

f(#®) = fr0 fa(w ®) =[1]1]3[3]2]2]-

3.7. Virtual R-matrix

Proposition 3.5 [17]. Let R: V' ® V* — V5 ® V' be the composition of combinatorial
R-matrices of type Y. Then the diagram commutes:

"4 N N
B'"®@ B ——= ViQVs

. |
B*®@B' — > V'@V
That is, the pair (R, R) is an isomorphism of virtual crystals ¥ : B' ® BS — V' ® V* and
V:B*QB > Vi@V,
3.8. Virtual local coenergy

Proposition 3.6[17]. Let ¥ : B — V and ¥': B’ — V' be virtual crystals where B, B’ € C
both of type X. Then

1
HY, == H po(Wevw
B,B Yo 0( )

3.9. Virtual graded crystal

Proposition 3.7 [17]. Let B € C be a crystal of type X and ¥ : B — V the corresponding
virtual crystal. Then

1
D¥=—_.DYow.
Y0

3.10. Virtual X formula

Let B € C be a crystal of type X. Let ¥ : B — V be the corresponding virtual crystal.
For A e P™ let PY(B, 1) be image under ¥ of the set P (B, 1). Define the virtual X formula

by

VXpa@= Y qP@®m,
bePV(B,A)

Theorem 3.8 (X = VX [17]). For g of nonexceptional affine type X and B € C a crystal of
type X, one has Xp ;(g) =VXg.1(q).
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3.11. Virtual crystals and x-duality

We believe that the following is true for any virtual crystal, namely, that up to R-
matrices, ¥ takes the «x involution of type X to the * involution of type Y.

Proposition 3.9. Let B* € C and let ¥ : B — V* be a virtual crystal. Then the following
diagram commutes, where ¢ is either a composition of R-matrices or the identity:

Proof. Note that for the nonsimply-laced types X the Dynkin involution Ty is the identity.
The virtual raising and lowering operators are invariant under ty. It is therefore sufficient
to check the above commutation on v € P(B*), where P(B*) is the set of classical highest
weight vectors in BS. But B* and V* are multiplicity-free as a classical crystals and « sta-
bilizes classical components and modifies the weight of a crystal element by applying wpg.
The following are equivalent:

1) vw*e Vs is a classical lowest weight vector and wt(¥ (v)*) = wg(lp(k)).
(2) ¥(v) € P(VS) and Wt(¥ (v)) = ¥ (A).

(3) v e P(B%) and wt(v) = A.

(4) v* € BY is aclassical lowest weight vector and wt(v*) = wé‘k.

(5) w(v*) isa classical lowest weight vector and wt(¥ (v*)) = lI/(wé‘k).

One may verify that w} (¥ (1)) = ¥ (w{ (1)) using linearity, to reduce to the case A = AX
fori e I. It follows that ¥ (v)* and ¥ (v*) are classical lowest weight vectors in Vs of the
same weight. But then they must be equal. O

4. Right splitting

Let g be of nonexceptional affine type. We define a family of U, (g)-crystal embeddings
which is well behaved with respect to intrinsic coenergy. They are denoted rs :=rs,.,.p
which stands for “right-split,” because when b = 0, the map splits off the rightmost column
of an element in B"*.

Conjecture4.l. Leta —2 > b > 0. Suppose C' is a set of KR crystals whose modules have
been constructed, which contains B™* for a particular r € I and all s € Z¢. Then there is
an injective Uy (g)-crystal morphism

ISrab B ® Br,h - Br,a—l ® Br,h+l

such that for any crystal B which is the tensor product of crystals in C’, the map
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13 ®1S:.05:B® B ® B’ - B® Bt @ B/’ (4.1)

is an injective U, (g)-crystal morphism which preserves intrinsic coenergy.

Theorem 4.2. Conjecture 4.1 holds for g = Af,l) for all r € I and the set C’ of all KR
crystals.

Proof. This follows from [20-22]. O

Theorem 4.3. Conjecture 4.1 holds for any nonexceptional affine algebra g for »r =1 and
C’ the set of KR crystals of the form B,

The proof of Theorem 4.3 occupies the remainder of this section.

4.1. Explicit definition of splitting

This paper only requires the case b = 0 for the map rs. Except for type Af,l) only the
case r = 1 is needed. For s > 2 define the map rs :=rsy. o as follows. For types A,Sl), D,(ll),
BY and Agill, definers: BS — B~ 1@ Bl by rs(wx) =w®x forx € Bland w € B5~1
such that wx € B*. For the other types, in addition to the above rules we have rs(x) = 9 ®x
for x € B(A1) € B*, and rs(¥) =1 ® 1. For B € CA and b € B"*, let rs(b) = by @ by,
where b1 is the rightmost column of the rectangular tableau b and b is the rest of b.

Remark 4.4. Suppose s > 2. Here r = 1 for C. For B"* e C (or C*) we write rs for the
map 1z ® rs on B ® B* and write rs(B ® B"*) := B® B"*"1 ® B"1.

4.2. Simply-laced g

The case g = A is covered by Theorem 4.2. The other simply-laced nonexceptional
family is g = DV.

It is straightforward to check directly using the explicit description of B* in [17] that
rs is an injective U, (g)-crystal morphism. Let B be the tensor product of crystals in C’.
To check that 15 ® rs preserves intrinsic coenergy, by (2.4) it suffices to check this prop-
erty for B the trivial crystal and for B = B'. Since 1z ® rs is a U, (g)-crystal morphism,
it is sufficient to prove that intrinsic coenergy is preserved for classical highest weight
vectors. Suppose B is trivial. By (2.3) B® has a single classical highest weight vector,
namely, u(B*) = 1°. By Example 2.3 Dps = 0. On the other hand rs(1*) = 1*"1 @ 1 =
u(B*~1 @ BY) so its intrinsic energy is also zero. For B = B’ we require the following
lemma, which is easily verified directly.

Lemma4.5. For g = D,(zl) ands,t > 1, P(B' ® B®) consists of the elements

t,s _1t—pP—q 9p 14 s
vp’q_l 27191

where p 4+ ¢ < min(s, ). In particular, B* ® B* is multiplicity-free as a U, (D,)-crystal.
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Recall that Dg: and Dps are identically zero by Example 2.3. By (2.4) and explicit
calculation,

DB’®BS (v;fq) = HBt’BA' (U;”Sq) =p+ 2q. (42)
Since R isa U,,(D,(,l))—crystal isomorphism, Lemma 4.5 implies that
RB’,BS ('U;’,Yq) = U;"tq.

We compute Hp: gs-1gg1 ON IS(vy;5,) = (17P~92P19 @ 1571 ® 1) using Proposition 2.2.
We have

1-1-p-a2r1a @1, ifp+q <s,

Rpi pei(U7P92r1 @ 1) = 191 @ 1111, ifp+qg=sg=s,
2r-117 @ 11712, ifp+g=s, g <s.
By (4.2) we have
p+2q, ifp+qg<s,

Hp g (17P792°P11 @1 =1 p+2g—2, ifp+g=s, qg=s,
p+2q-1 ifp+qg=s, qg<s.

By (4.2) we have H(1' ®1) =0, H(1' 11® 1) =2,and H(1'"12® 1) = 1. It follows in
any case that 15 ® rs preserves intrinsic coenergy.

4.3. Nonsimply-laced g

Suppose g is not simply-laced. Let g < gy be as in (3.1). It is not hard to show that
rsx is a U, (g)-crystal injection. To show that the map (4.1) preserves intrinsic coenergy
(and thereby complete the proof of Theorem 4.3), by Proposition 3.7 the following result
suffices.

Proposition 4.6. There is an injective U, (gy)-crystal map f5: V* — V*~t @ V! such that:

(1) the following diagram commutes:

By — s

rsx \L l s (4.3)

-1 1 Ao A~
BY ®BX7®W>VS lo vl

(2) forany B €C, let W : B — V be its virtual crystal embedding. Then 1, ® TS preserves
intrinsic coenergy;
(3) ifve VS and fi5(v) € Im(¥ ® W) then v € Im(¥).
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Proof. Suppose first that ¥ = A%Ll. Then V* = B}" ® Bj. Define the map f3: V* —
vs—1 @ V1 by the composition

1®rsy

By ® By —% B} ® By ' ® Bi % B} ' ® BL ® B}

1R1®
1, By leBl@ By Y @ BY & By @ By 0 BY © B}. (44)

Here rsy(wx) = w ® x where wx € B}", w € By ™ and x € B}". Note that (4.4) is
a composition of combinatorial R-matrices and rs maps for type A. Point (2) holds by
Theorem 4.2.

One need only verify (1) on classical highest weight vectors, by the definition of ¥ and
the fact that rsy and rsy (respectively rsx) are morphisms of U, (Y)- (respectively U, (X)-)
crystals.

Let N = 2n. The classical highest weight vectors in B} have the form 1°~7 for 0 <
p<s;ifgis C,Sl) or Agznﬁ then p must also be even. For p < s the element 1°77 ¢
B((s — p)A1) C BY is sent to the following elements under the maps in (4.3):

15=p 1rel
N\/(s—p)]_Vp Q1 NVS—p—ll\/p ® 15—1 ® NY ®1

where the intermediate results under the maps in (4.4) are given by NV6—P1VP @15-1®1,
PP INPQLIQNYS, 1P INPQIQNYED@NY, and NV P 11YP @1 1@ NY @ 1.
Under the maps in (4.3), the element ¢ is sent to

0 1®1
N* ®vi 1VS71®1572N®NV ®1

with intermediate values in (4.4) givenby N* @ NV* 1@ NV, 1" 1®1V 1,1 1®
1Vl 'l and 1 1@ " 2N@NY ® 1.

Since these are all the possible classical highest weight vectors, point (1) follows.

For point (3), let v € V* and R(v) € Im¥ ® ¥). Without loss of generality we may
assume that v € P(VS) since iSisa U, (Y)-morphism. Now v must have the form vy, pi=
NY6=P1VP @15 for0 < p <s.By computatlons similar to those above, fS(v) = vs—1,, ®
v if p<sand B)=1V6D @I 2N @ ¥ () if p=s. But B(v) € Im¥ Q ¥)
means that vs_1,, € Im(¥) if p <s and 1V6~D ® 172N e Im(¥) if p = s. The parity
condition for this to occur implies the parity condition that guarantees that vy , € Im(¥).

Suppose next that ¥ = D(l) and X = A(Z) . Then V* = By Define S =rsy : B} —

By~ '® B}. Point (2) foIIows by the S|mply-laced D,ﬁl) case. Point (3) is trivial. For
point (1) it is enough to consider elements of P(B*) = {1°}. Under the maps in (4.3),
1% goes to

7 1 iel

15 1s—l ®1

and (4.3) commutes.
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Suppose that ¥ = D\, and X = B{". Then V* = B¥". Define f5: B2 — B¥ 2 ® B2
by wv - w ®v where wv € BY, w € B2, and v € B2. This map is clearly injective and

U, (Y)-equivariant. Point (3) is obvious. For point (1) it is enough to consider the unique
element 1* € P(BY). Under (4.3) 1° goes to

15 1.?—1 ®1
12s 123—2 ® 12

so that (4.3) commutes. For point (2) define 3’ : B2* — B2 ® B} ® BL by the composite
map

B2 B, pB-lg gl K, gl g g2t
28, Bl o B¥ 2@ BL & B2 2@ Bl ® B}

Since 3’ is the composition of rsy maps and R-matrices, it preserves intrinsic coenergy by
the simply-laced case. It suffices to show that

25
BY
Fg/
R B2 ®BL® B}
25—2 2
BYY ® BY

commutes since 7§’ and 1 ® rsy both preserve intrinsic coenergy. It suffices to check this
for the lone classical highest weight vector 12 € P(BZ). Clearly (1) =122 @ 1®1,
while 3(1%) =122 ® 12 and thisis senthy 1 ® rsy t0 1% 2@ 1 ® 1, as desired. O

5. Left splitting and duality
We define dual analogues of the intrinsic coenergy D and right splitting.
5.1. Tail coenergy

For B* € C define Dys = Dps. For B"S € CA, define Dgrs = Dgrs =0. If By, By, ...,
By €C (or C*) and B =B, ® --- ® By are such that 5Bj :Bj — Zxo are given, then
define

L

<« <«
Dp = Z ijlef2~-Ri+lRi+ZDBjRL71RL72'--Rj (51)
1<i<j<L =1
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with ﬁgj acting on the leftmost tensor position. This is a different associative tensor prod-
uct on graded crystals than the one given in Section 2.5.
Recall the notation B* of Remark 2.15.

Proposition 5.1. Let B € C (or B € CA) and b € B. Then Bg(b) = Dp«(b%).

Proof. For B a single KR crystal, the result follows from the fact that the involution x
on B stabilizes classical components. By Proposition 2.16 and comparing (5.1) with (2.4)
it suffices to show that

HBl,Bz(b*) = HBz,Bl(b) (52)

for B1, B> KR crystals. Since B2 ® B is connected, the proof may proceed by induction on
the number of steps (either of the form ¢; or f;) in B, ® By from u(B2 ® B1) to b. Suppose
first that b = u(B2 ® B1). By the definition of u(B) in Section 2.3, B, ® B; (and therefore
B1 ® Bp) contain a unique classical component isomorphic to B(1) where A = wt(b). And
B()) contains a unique vector of the extremal weight wo. Since wt(b*™) = wowt(b) it
follows that »* and u(B1 ® B») are in the same classical component, so that Hp, g, (b*) =
Hp, B,(b) =0 by the definition of H.

Now suppose b = f;(c) where c is closer to u(B2 ® B1) than b is. If i # 0 then we are
done since both sides of (5.2) do not change under passing from ¢ to b, by the definition
of H and (2.9). So assume i = 0. By (2.9) b* = ep(c*). But then one may conclude the
validity of (5.2) for b from that of ¢ using rules for the Kashiwara operators on the tensor
productand (2.1). O

Define X just like the one-dimensional sum X but use BB instead of Dg. Proposi-
tion 5.1 has this corollary.

Corollary 5.2. X(B, 1) = X (B, 1).
5.2. Left splitting

Whenever the right-splitting map rs: B”* — B™~1 ® B! is defined, we may define
the left-splitting map Is: B — B"1 ® B"$~1 by the commutation of the diagram

B"S L Br.l ® Br,s—l

i l (5.3)

B T) Br,s—l ® Br,l_

In particular, it is defined for BS € C and B™* € CA.
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Corollary 5.3. Here r = 1 for the category C. Is is a U, (g)-crystal embedding such that,
for any B"* € C (or C4) and for any B € C (or C*), the map

Islz:B*®B— BB 1eB
. - . <
is injective and preserves D.

Proof. Isisa U, (g)-crystal embeddlng since rs is, by Theorem 4.3, the definition of % and
(5.3). For the preservatlon of D, let b1 ® by € B* @ B. We have

D(Is(b1) ® b2) = D (b3 @ Is(b1)*) = D(b5 @ rs(b})) = D (b5 ® b%) = D(b1 @ by)
by Proposition 5.1 and (5.3). O

Remark 5.4. Suppose s > 2. Here r = 1 for C as usual. For B"* € C (or C4) we write Is
for the map Is® 15 on B™* @ B. Also we write Is(B"* ® B) := B"1 ® B*~1 ® B.

5.3. Explicit left-splitting

Lemma 5.5. For B* € C the map Is: B® — B! @ B*~1 is given explicitly by Is(xw) =
x®w for x € B and w € B5~1 such that xw € B*, Is(x) = x ® @ for x € B(A1) € B,
Is(¥) =1® 1. For B™* € CA and b € B"*, Is(b) = by @ by Where b, is the leftmost column
in the r x s semistandard tableau » and b, is the rest of b.

5.4. Box-splitting

Let B! € CA with r > 2. There is a U, (g)-crystal embedding Ib: B! — BY1g gr—11
given by b — by ® b1 where by is the bottommost entry in the column tableau 4 of height r,
and by is the remainder of b. There is a U, (§)-crystal embedding rb: B! — B ~11g g1l
given by b — by ® by where b1 is the topmost entry in the column b and b, is the rest of b.

The map Ib is only used to define the path-RC bijection for B € C4 in Section 8.

In general, morphism rb does not preserve intrinsic coenergy, but another grading called
intrinsic energy. It was proved in [15] that the path—-RC bijection preserves the grading
for C4 using a different method, namely, the rank-level duality for type A,

5.5. Projections and commutations
Define the (“left-hat”) map Ih: B, ® By — B1 by ba ® b1 — b1. It just removes the left

tensor factor. Define the “right-hat” map rh: B, ® By — B> by by ® b1 > bs.
It is immediate that the following diagram commutes:

Ih
Bo®B —— B

l l (5.4)

B1® B> — Bi.
I
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Let P(B) be the set of classical highest weight vectors in B, or equivalently, the set of
classical components of B.

Lemmab5.6. The maps Ih: B» ® By — By andrh: B, ® By — By induce maps lh: P(B, ®
B1) — P(Bp) andrh: P(B2 ® B1) — P(B>).

Proof. If by ® by is a classical highest weight vector of B, ® B1 then by the definitions,
b1 is a classical highest weight vector of By. Thus Ih is well defined on components.
For rh we work with classical components. By (2.9) the map = takes classical com-

ponents to classical components. But then rh is well defined on components since Ih is,
by (5.4). O

Example 5.7. Let b = 3] ®[2[3] @ [1]2] ®[1] € P(B! ® B2 ® B2 ® BY) of type D"
Then
o= o

and
thv) =[3]® [2[2]®[1]2].
The induced map on highest weight vectors yields rh(b) =|3|® ® .

One has the commutation of induced maps on classical highest weight vectors:

P(B,® B1) —~ P(By)

P(B1 ® B) T) P(B1).

Remark 5.8. From now on, unless explicitly indicated otherwise, we only consider the
map lh (respectively rh) on tensor products whose left (respectively right) factor is BL. In
these cases, we use the notation Ih(B! ® B) = B and rh(B ® B!) = B.
For e Pt let
A" ={ne Pt |B®) occursin B @ B(u)}

where Bl is regarded as a U, (g)-crystal by restriction.
By Lemma 5.6 there are well-defined bijections

lh: P(B, ) — U P(Ih(B), 1), (5.5)

WEAT
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th:P(B,1) — | P((B). ) (5.6)
JWEAT
except in the case g = Dﬁl. Note that B* has at most one vector of each weight except
when g = D,le, which has two vectors 0 and ¢ of weight 0. If .« = A, then there can be
elements b € P(Ih(B), 1) such that both 0 ® b and @ ® b are in P(B, A). If so, then the
right-hand side of (5.5) must be modified to include two copies of b, one coming from
¥ ® b and the other from 0 ® b. There is no analogous problem for rh since 0 ¢ P(B1).

Proposition 5.9. Let r =r" =1 for C.

(1) [Ih,rh]=00n B! ® B ® B

(2) [Ih,rs]=00n B! ® B® B™ fors > 2.

(3) [rh,Is]=00n B"* ® B® Bl fors > 2.

(4) [Is,rs]=00n B™ ® B® B"* fors,s’ >2.
(5) *olh=rhoxon B! ® B.

Moreover, these commutations also hold for the induced maps on sets of classical highest
weight vectors.

Proof. The operators on the entire crystals commute more or less by definition. We now
prove that these identities hold for the induced maps between sets of classical highest
weight vectors.

The proof is again trivial except for cases involving rh. Point (1) follows from
Lemma 5.6. Point (3) follows from Lemma 5.6 and the U, (g)-equivariance of Is given
in Corollary 5.3. Finally, point (5) follows from Lemma 5.6 and the fact (2.9) that the
map =« respects classical raising and lowering operators. 0O

5.6. Right hat and classical highest weight vectors

We need to know precisely how the highest weights change when passing from an ele-
ment of P(B! ® B ® B1) to P(B) via either rho Ih or Ih o rh. In this section we assume
type D,,. The answer is given by van Leeuwen [23]. We translate his answer into the lan-
guage of partitions.

Let P be the set of dominant weights that can occur in a tensor product of crystals of
the form B(A1). A dominant weight Y"-"_, a; A; isin P if and only if a,,_1 and a,, have the
same parity. We put a graph structure on P by declaring that weights A and u are adjacent
if there is an element x € B(A1) such that & — u = wit(x).

We realize P as a subset of Z" by letting A; = (1/,0" ) for1<i<n—2, A,_1 =
2@ and 4, = 11", —1). As such P is given by the tuples = (A1, A2, ..., Ay) € Z"
with AMZA2Z 2l 2 |)"n|-

We modify this notation slightly in order to use partitions. Let Y be the lattice of parti-
tionsA=A1=>A2>--- =X, € Z’;O with at most n parts. A graph structure on Y is given
by declaring that two partitions are connected with an edge if their partition diagrams differ
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by one cell. Define the graph G by glueing two copies Y and Y_ of Y together such that,
if L e Y issuch that A, =0, then A € Y, and A € Y_ are identified.

Then P = G where the weight (w1, ..., u,) is identified with the partition (w1, uz, ...,
Un—1,0) if w, =0, with the “positive” partition (u1, ..., un—1, uy) € Y4 if u, >0, and
with the “negative” partition (w1, ..., up—1, —n) € Y— if u,, <0.

Let . and A be adjacent in P, and x € B(A1) such that A — i = wt(x). We think of this
as walking from w to A by the step x. In terms of partitions, if x =i for 1 <i <n — 1then
a cell is added to the ith row. If x = for 1 <i <n — 1 then a cell is removed from the ith
row. If i = n then the above rules hold provided that A, u € Y. If &, u € Y_ then the roles
of n and 7 are reversed.

Let B = B(A1)®L. Letb=b, ...b1 € P(B) with b; € B(A1). In the usual way, b can
be regarded as a path in the set of dominant weights: the ith weight is given by the weight
of b; ...b1. Alternatively b describes a walk in G from the empty partition to the element
of G corresponding to the weight of 5.

Example 5.10. Let n = 4. Consider b = 4441321 € P(B) where B = B(A1)®’. The ele-
ment b corresponds to the walk in G given by

”*D*H*@* O TH O

L + L —

where the + and — markings on a partition indicate membership in Y, and Y_, respec-
tively.

In the following proposition, for weights A, u € P, we write i C A if the corresponding
elements of G are both in Y or both in Y_ and the diagram of the partition associated
with w is contained in that of A.

Proposition 5.11. Suppose b € P(B1® B® B, 1), rh(b) € P(B1® B, ), Ih(b) € P(B®
BL, B) and rh(lh(b)) = Ih(th(b)) € P(B, y). Then « is uniquely determined by A, 8, and
by v. More precisely,

@) Al =yl+2:
(@) if the cells A/8 and g/y are in different rows and different columns, then o =
r—={B/v}
(b) if /B and B/y are in the same row or in the same column, then « = 8.
() fA=lyl-2
(@) if the cells g/A and y /g are in different rows and different columns, then o =
AU{y/B};
(b) if B/x and y /B are in the same row or the same column, then a = 8.
@) If[A|=lyland A #y:
(@ ifA>Bthena=1U{y/B};
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(b) ifxCcBthena=x1—{8/y}.
4 fA=y:
(@) ifrcg:
(i) if B/A isin the first column of A:
(A) if /A is in the nth row, for g € Y let o € Y+ be the corresponding
partition;
(B) otherwise let « = 8;
(ii) else @ C A and « is obtained from A by removing the corner cell in the column
to the left of B/A;
(b) if A D B then « is obtained from A by adjoining a cell to the column to the right of

A/B.

Proof. The rule for the weight « is given by van Leeuwen [23, Rule 4.1.1]: « is the unique
dominant element in the Weyl group orbit of the weight A 4+ y — 8. Using this rule the
proof is straightforward. O

Remark 5.12. The two operations rh o Ih and Ih o rh define a pair of two-step walks in
the graph G from A to y, whose intermediate vertices are 8 and «, respectively. If there is
only one such walk then o = g; this occurs in cases (1)(b) and (2)(b). If there are exactly
two such walks then « is always chosen to be the intermediate vertex not equal to j; this
occurs in cases (1)(a), (2)(a), (3)(a), and (3)(b). In the case that . = y there may be many
such walks; the proper choice of « given g is described in the proposition.

Example 5.13. Let b be as in Example 5.10. Then Ih(b) = 441321, rh(b) = 243121, and
rh(lh(b)) = In(rh(b)) = 43121. Therefore A is the weight (2,1,1, —1) or the partition
(2,1,1,1) e Y_, B is the weight and partition (2,1, 1,0), « is the weight (2,2,1, —1)
and the partition (2,2,1,1) € Y_, and y is the weight (2,1,1, —1) and the partition
(2,1,1,1) e Y_. Since > =y (as elements of P or G) and B C A as partitions, case (4)(b)
applies. The cell A/8 is in the first column; therefore o should be obtained from y by
adjoining a cell at the end of the second column, which agrees with the example.

Example 5.14. In D{" let b = 44321 € (BL1)®5. Then Ih(b) = 4321, rh(b) = 4321,
rh(lh(b)) = Ih(rh(b)) = 321. Therefore . = (1,1, 1, 0), B is the weight (1, 1,1, —1) or the
partition (1,1,1,1) e Y_, y = (1,1,1,0), and « is the weight (1,1, 1, 1) or the partition
(1,1,1,1) e Y. This is case (4aiA).

6. Rigged configurations

In this section it is assumed that g is nonexceptional and simply-laced, that is, g = Af,l)
1)
org=D,".

6.1. Definition

Let B € C for type D,ﬁl) and B e C* for type A,(f). Recall the notation in Section 2.4,
where L = (Lf“) | (a,i) € H) is the multiplicity array of B. The sequence of partitions
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v={v® |ael}isa(L,r)-configuration if

Y imPag= Y iL® A, -1,

(a,i)eH (a,i)eH

where m'® is the number of parts of length i in partition v(®). A (L, 1)-configuration is

i
admissible if pl.(“) >0 forall (a,i) € H, where pi(“) is the vacancy number

.. PN b
pi¥ = minG, HLY = > (@alap) Y_ minG, jym.

izl bel izl

Here (:|-) is the normalized invariant form on P such that («;|«;) is the Cartan matrix.
Let C(L, 1) be the set of admissible (L, 1)-configurations. A rigged configuration (v, J)
consists of a configuration v € C(L, 1) together with a double sequence of partitions J =
{J@D | (a,i) e H} such that the partition J (@) is contained in a m'® x p' rectangle.
The set of rigged configurations is denoted by RC(L, A).

The partition J(@? is called singular if it has a part of size p®. The partition J @7
is called cosingular if it has a part of size zero, or equivalently, its complement in the
rectangle of size ml@ X pf“) has a part of size pi(“).

It is often useful to view a rigged configuration (v, J) as a sequence of partitions v
where the parts of size i in v(@ are labeled by the parts of /(@ The pair (i, x) where i is
a part of V@ and x is a part of J(? is called a string of the ath rigged partition (v, J)@.
The label x is called a rigging or quantum number. The corresponding coquantum number

is pi(a) —X.

Example 6.1. Let g= D", B = B! ® B2® B2 ® B3 and ) = 24;. Then the following
three sequences of partitions are admissible (L, A)-configurations:

P
1 8||||0||!|o
o
1 0
1 0 lo lo
o LJo Llo Lo
Lo Lo
2 0
. O\|||o|\||o

where the corresponding vacancy numbers are written next to each part. Hence, writing the
parts of J (%) next to the parts of size i of partition v@ the following would be a particular
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rigged configuration:

v, J)= 1 0 [TTJo [ITlo
L 10

6.2. Quantum number complementation

Let 9 =6, :RC(L, ») — RC(L, 1) be the involution that preserves configurations and
complements riggings with respect to the vacancy numbers. More precisely, each parti-
tion J @ is replaced by the partition that is complementary to it within the m(® x p{*

rectangle.

6.3. The RC reduction steps § and §

Suppose Lgl) > 0. Let Ih(L) and rh(L) be obtained from L by removing one tensor
factor BL. In particular, if B has B as its left (respectively right) tensor factor, then Ih(L)
(respectively rh(L)) is the multiplicity array for Ih(B) (respectively rh(B)). In [17] a quan-
tum number bijection ¢ : P(B) — RC(L) was defined when B is a tensor power of B. The
key step in the definition of ¢ is an algorithm that defines a map § : RC(L) — RC(Ih(L)).
The same algorithm defines such a map for the current case.

For (v, J) € RC(L, 1), the algorithm produces a smaller rigged configuration 8 (v, J) €
RC(Ih(L), w) for some w € 2~ and an element rk(v, J) € B® such that

w4 wt(rk(v, J)) = A. (6.1)

We recall the algorithm for § explicitly for type Aﬁl) and D,Sl). Although we do not use
them here, the explicit algorithms exists for the other nonexceptional affine types and can
be found in [18].

String selection for type AL, set ¢© =1 and repeat the following process for a =
1,2,...,n or until stopped. Find the smallest index i > ¢@~1 such that J@? is singular.
If no such i exists, set rk(v, J) = a and stop. Otherwise set £(4) =i and continue with
a+1.

String selection for type D,ﬁl). Set ¢® =1 and repeat the following process for a =
1,2, ...,n—2oruntil stopped. Find the smallest index i > ¢©“~b such that J @7 is singu-
lar. If no such i exists, set rk(v, J) = a and stop. Otherwise set £(4) =i and continue with
a + 1. Set all yet undefined £@ to oo.

If the process has not stopped at a = n — 2, find the minimal indices i, j > £®~2 such
that =19 and J /) are singular. If neither i nor j exist, set rk(v, J) =n —1 and stop. If
i exists, but not j, set £~ =, rk(v, J) = n and stop. If j exists, but not i, set £") = j,
rk(v, J) = i and stop. If both i and j exist, set £#~D = ¢ = j and continue with
a=n-—2.
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Now continue for a =n — 2,n — 3,...,1 or until stopped. Find the minimal index
i > 0@t where £¢*=D = max(¢®=D, ¢™) such that J@? is singular (if i = ¢@ then
there need to be two parts of size p® in J@?). If no such i exists, set rk(v, J) =a + 1
and stop. If the process did not stop, set rk(v, J) = 1. Set all yet undefined ¢ and ¢@
to oo.

The new rigged configuration. The rigged configuration (9, J) = 8(v, J) is obtained by
removing a box from the selected strings and making the new strings singular again. Ex-
plicitly (ignoring the statements about @ for type AS")

1, ifi=e@ —1,

-1, ifi=¢W,
m@@=m@)+11,  ifi=i@ _landl<a<n-—2,

—1, fi=f@and1<a<n—2,

0, otherwise.

The partition ) is obtained from J @) by removing a part of size p\“ (v) for i = ¢@
and i = £@, adding a part of size p\“’ (v) fori = ¢@ — 1 and i = £ — 1, and leaving it
unchanged otherwise.

Example 6.2. For the rigged configuration (v, J) of Example 6.1, we have

S, J) = |O 0
v : 0 [TJo [TJo

with rk(v, J) = 2.
The next proposition was proved in [15,18].
Proposition 6.3. The map 6 :RC(L, ») — U,uer- RCAN(L), ) is injective.

Note that for simply-laced type, knowing A and . uniquely determines rk(v, J) by (6.1).
We may define the inverse of 8. To this end, let

AT ={uneP'|B(w occursin B! x B(1)}.

Denote by R%(L, 1) the subset of RC(L, 1) x B given by ((v, J), b) such that A +wt(b) €
P™. By abuse of notation define

571:RC(L.») — | J RC(Ih7(L). B)
Bert

by the following algorithm, where Ih=1(L) is obtained from L by replacing L&l) by
L +1.



590 A. Schilling, M. Shimozono / Journal of Algebra 295 (2006) 562-610

String selection for type Aﬁ,l). In this case wt(b) = ¢, for some 1 <r <n + 1, where ¢,
is the rth canonical unit vector in Z"*1. Set s = oo and repeat the following process for
a=r—1,r—2,...,1 Find the largest index i < s*+b such that /(" is singular and set
5@ =i if no such i exists set s = 0. Set all undefined s to infinity.

String selection for type D,(Ll). In this case wt(b) = ¢, or wt(b) = —¢, for 1 <r < n,
where ¢, is the rth canonical unit vector in Z". In the first case proceed exactly as for
type A,Sl). Throughout the whole algorithm, if an index i does not exist, set i = 0.

If wit(b) = —e,,, find the largest index i such that J ) is singular and set s = . Find
the largest index i < s such that J*~27 is singular and set s*~2 = i. Then proceed as
in type A,ﬁl).

If wt(b) = —e,_1, find the largest indices i and j such that =19 and J7 are
singular and set s~ =i and s™ = j. Then find the largest index i < min{s®~D s}
such that J =2 s singular and set s"—2 = ;. After this proceed as in type A,

Finally, if wt(b) = —¢, for 1 <r <n — 2, set 5~ = oo and proceed for a = r,
r+1,...,n— 2 as follows. Find the largest index i < 5“1 such that /(% is singular
and set 5@ = . Then find the largest indices i <5”~2 and j <5"~2 such that J*~1.0)
and J ) are singular and set s~ = and s = j. After this proceed as for the case
wt(b) = —€,_1.

Set all yet undefined s© and 5 to co.

The new rigged configuration. The rigged configuration (¥, J) = §1(v, J) is obtained
by adding a box to the selected strings and making the new strings singular again.

Define § : RC(L) — RC(Ih(L)) by Oin(z) 08 06, . Alternatively, § is defined by a coquan-
tum number version of the map 8. Instead of selecting singular strings it selects cosingular
strings and keeps coquantum numbers constant for unselected strings. It also produces an
element rk(v, J) € BL. If (v, J) e RC(L, ») and §(v, J) € RC(Ih(L), ) then

1+ wit(rk(v, J)) = A.
6.4. Splitting on RCs

Lets > 2. Suppose B contains a distinguished tensor factor B”-*, which is the case when
we consider the maps Is and rs. Let L be the multiplicity array of B and Is(L) that which
is obtained from L by replacing B"* by B"! and B"*~1.

Proposition 6.4. Let L be such that L§’) > 1 for a particular (r, s) € H with s > 2 and let
Is(L) be defined with respect to (r, s). Then C(L, 1) C C(Is(L), A). Under this inclusion
map, the vacancy number pi(“) for v increases by 8, x (i <s) where x(P)=11if P is
true and x (P) = 0 otherwise. Hence there are well-defined injective maps j, j : RC(L) —
RC(Is(L)) given by:

D jow, =W, J);
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(2) j(v, J)= (v, J') where J' is obtained from J by adding 1 to the rigging of each string
in (v, /) of length strictly less than s.

In particular, j preserves quantum numbers, j preserves coquantum numbers, and
J=0sy0joby. (6.2)
Proof. Immediate from the definitions. O

6.5. Box-splitting for RCs

Suppose r > 2 and B € C4 has a distinguished tensor factor B”1. Let L be the multi-
plicity array for B and Ib(L) that for the crystal obtained from B by replacing B by B1:1
and B7 11,

Proposition 6.5. Let L be such that LY) > 1 for some r > 2. Let Ib(L) be defined with
respect to r. Then there are injections i, :RC(L, 1) — RC(Ib(L), ) defined by adding
singular (respectively cosingular) strings of length 1 to (v, J)@ for 1 < a < r. Moreover,
the vacancy numbers stay the same.

7. Fermionic formula M

In this section we state the fermionic formula M associated with rigged configura-
tions for simply-laced algebras as introduced in [7] and virtual fermionic formulas for
nonsimply-laced algebras (see [16,17]).

7.1. Fermionic formula M

Let () = (1 —¢q)(1 —g%) --- (1 —¢™) and let us define the g-binomial coefficient for
m,p e Z>0 as

m

|:m + p] _ (@Dm+p
rs

The fermionic formula for types Afll) and D,(,l) is given by [7]:

mga)+p.(a)
My s (q) = Z g« 1_[ [ ! i| (7.1)
i

veC(L,A) (a,i)eH "

with ml@, p}“) and C(L, A) as in Section 6.1 and
1 L b
ce(v) = 2 Z Z (oglaep) min(y, k)mga)ml(( ),
a,bel jk=1

Fermionic formula (7.1) can be restated solely in terms of rigged configurations. To this
end recall that the g-binomial coefficient [} 7] is the generating function of partitions in
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a box of width p and height m. Hence

M= Y,  q“"7, (7.2)
(v,J)ERC(L,A)

where cc(v, J) = cc(v) + 3 hen |J@d],
7.2. Virtual fermionic formula

Fermionic formulae for nonsimply-laced algebras were defined in [6, Section 4]. For

Agi” it was defined in [16]. Here we recall virtual rigged configurations in analogy to
virtual crystals as defined in [17].

Definition 7.1. Let X and Y be as in Section 3.1, and A, B and L as in Section 6.1

for type X. Let ¥ : B — V be the corresponding virtual Y-crystal and Z the multiplic-
@t

ity alrray corrAesponding to V. For X ¢ {Aéi), Ay}, RCY(L, 1) is the set of elements
(v, J) € RC(L, ¥ (1)) such that:

(1) foralli € Z.g,m” =m® and j@) = j®-i) if g and b are in the same o -orbitin I";
(2) foralli € Z-g,aecIX,and b e(a) C IY, we have r?z;b) =0if j ¢ y,Z and the parts

of J®1) are multiples of y,.
For X = A the following changes must be made:
(A2) n%E.") may be positive for any j > 1.
For X = Agfr one makes the exception (A2) and the additional condition that:

(A2D) the parts of J ) must have the same parity as i.

Theorem 7.2 [17, Theorem 4.2]. There is a bijection ¥ :RC(L, 4) — RC"(L, 2) sending
(v, J) — (D, J) given as follows. Forall a € IX, b e 1(a) C I',and i € Z-o,

A® _ @

Yal [

Jorvai) =, i),

except when X = Aéi) or X = Agfr and a = n, in which case
~(n) _ ()
m; o =m; ",

i gy,

The cocharge changes by cc(v, J)= yocc(v, J).
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Defining the virtual fermionic formula as

W@ = Y gD
(9,J)eRCY (L)

we obtain as a corollary:

Corollary 7.3 (M =VM). My ;(q) =VM_ 1(q).

8. Bijection
8.1. Quantum number bijection

The following result defines the bijection from paths to rigged configurations. It is valid
for both B € C and B € CA.

Proposition 8.1. There exists a unique family of bijections ¢ : P(B, A) — RC(L, 1) such
that the empty path maps to the empty rigged configuration, and:

(1) Suppose B = B'® B'. Let In(B) = B’ with multiplicity array Ih(L). Then the diagram

P(B, M) RC(L, 1)

Ihl lé 8.1)

U pah). ) —= (J RCAN@). w)

HELT HELT

commutes.
(2) Suppose B = B"* @ B’ with s > 2 (and r = 1 for C). Let Is(B) = B"! @ B*"1 ® B’
with multiplicity array Is(L). Then the diagram

P(B, ) . RC(L, 1)

.si lj 8.2)

P(Is(B), x) —= RC(Is(L), 1)
é

commutes.
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(3) For CA, suppose B = B"1® B’ withr > 2. Let Ib(B) = Bl @ B"~11® B and Ib(L)
its multiplicity array. Then the following diagram commutes:

P(B, ) . RC(L, )

Ibi J/f (8.3)

P(Ib(B), ) — RC(Ib(L), 1).
é

For type A,(ll) the existence of ¢ was proven in [15]. The proof in case (1) for other
nonexceptional types is essentially done in [18]. It remains to prove case (2) for type D,(ql).

Lemma 8.2. Let B = B* ® B’ with s > 2. For type_D,(,l), the map ¢: P(Is(B), 1) —
RC(Is(L), A) restricts to a bijection ¢ :IsS(P(B, 1)) — j(RC(L, 1)).

Proof. Letb=x® by ®b € BL®@ B*1 ® B  and Is(by) = y ® bz € B ® B*~2. Then
b € Im(Is) if and only if x < y. (Note that this implies in particular that » and 7 cannot
appear in the same one-row crystal element.)

By Proposition 6.4, (v, J) € RC(Is(L), 1) is in the image of j if and only if (v, J)®
has no singular strings of length smaller than s.

Let us first show that if b € Im(ls) then ¢ (b) € Im(jj). Hence assume that b = x ® b, @ b’
with x < y with y as defined above. By induction (v', J') = ¢(y ® b3 ® b’) has no singular
strings in the first rigged partition of length smaller than s — 1. Denote the lengths of
the strings selected by § associated with the letter y by Zy‘) and Egk). Then in particular
Z&l) > s — 1. “Unsplitting” yields on the path side b, ® b’ and on the rigged configuration
side (v/, J’) with a change in the vacancy numbers by —8, 1x (i <s —1). Since x < y it
follows that ¢© > E(y") and 20 > E;k), where ¢% and 2% are the lengths of the strings
selected by & associated with x. This shows in particular that chl) > s, and from the change
in vacancy numbers from ¢ (b, ® b') to ¢(x ® br ® b') it follows that there are no singular
strings in the first rigged partition of ¢ (x ® b, ® b’) of length smaller than s.

Conversely, assume that (v, J) € RC(Is(L), 1) is in the image if j. We need to show
that then b = ¢~ (v, J) has the property that x < y in the above notation. Call the strings
selected by & in (v, J) ¢ and Z©. By assumption (v, /)@ has no singular string of length
smaller than s. Hence Eﬁl) > 5. By the definition of j, we have that the first rigged partition
of (v, J') = j o8(v, J) has no singular strings of length smaller than s — 1. Hence s — 1 <
£§1) <Y, where e;") and E;k) are the lengths of the strings selected by § on (v, J'). The
algorithm of & implies that £ < ¢ and 2" < &%, so that x < y as desired. O

8.2. Coquantum number bijection

Let ¢ = 6 o ¢; it can be characterized as follows.
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Proposition 8.3. There exists a unique family of bijections b P(B,2) - RC(L, ») with
the same properties as in Proposition 8.1 except that 5, j and i are replaced by &, j and i
in (8.1), (8.2) and (8.3), respectively.

8.3. Commutations of the basic steps

We record the commutations among the basic steps of the path—-RC bijection. Here r = 1
for C.

Theorem 8.4.

1) [8,41=0.

(2 [Z’SJ 0and[j,5]=
3 Lj,Jj1=0.

4 li,8]= 0 and [1 8]
(5) [i, jl=0and [i, J]—

The proof of part (1) for type A(l) is given in [15, Appendix A]. The proof of part (1)

for type D,(,l) is quite technical and follows similar arguments as [15, Appendix A] (see
also [19, Appendix C]). Details are available upon request. Parts (2) and (3) follow easily
from the definitions. Parts (4) and (5) only apply for C4 and follow from [15].

For type DY, there is an analogue of Proposition 5.11 for the commutation of § and §.
Let (v, J) € RC(L, 1), 8(v, J) € RC(rh(L), a), §(v, J) € RC(Ih(L), B) and §(8(v, J)) =
§(8(v, J)) € RC(Ih(rh(L)), y). Then « is uniquely determined by %, 8, and y.

Proposition 8.5. For A, «, 8, and y as above the statements of Proposition 5.11 hold.

The proof is an easy consequence of the commutation [, 5] = 0 and is available upon
request.

8.4. The bijection and the various operations
Theorem 8.6. Under the family of bijections ¢ the following operations correspond:

(1) Is with ;.

(2) Ihwith §.

(3) rswith j.

(4) rhwith .

(5) * with 6.

(6) R with the identity.
(7) Ibwith i and rb with 7.

Example 8.7. To illustrate point (4) of the above theorem, take

b=[3le[2[3]e[1]2|e[1]
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of type Dfll). Then

() =[3]®[2[2]®[1]1]

and

_ 0
o-1° Bt 0y
0
0

B0h) =3Gw) = 10 [y 1w

Proof. Everything is proved for C4 in [15], including part (7), which only applies in that
case. We assume that B € C for type D,ﬁl). Parts (1) and (2) hold by Proposition 8.1. We
prove parts (3)—(5) simultaneously by induction. The induction is based first on the quantity
> s; for the crystal ), B, and then by decreasing induction on the number of tensor
factors.

Consider part (3). Suppose first that B = B* for some s > 2. Then P(B) has only one
element 1°. It is easy to show that ¢(1%) is the empty RC and that (3) holds. Suppose next
that B = B ® B’ ® B*. Consider the diagram

rs

P(B) P(rs(B))
RC(L) ———— RC(rs(L))

h gi J/g Ih (8.4)

RC(h(L)) —— RC(rs(In(L)))

P(Ih(B)) P(rs(Ih(B))).

rs

Here L, rs(L), Ih(L), rs(Ih(L)) are the multiplicity arrays corresponding to B, rs(B),
Ih(B), rs(Ih(B)), respectively. We shall view such a diagram as a cube in which the small
square is in the background. The left and right faces commute by Proposition 8.1. The
front and back faces commute by Proposition 5.9(2) and Theorem 8.4(2), respectively. The
bottom face commutes by induction. It follows that the top face “commutes up to §,” that
is, 50 jod =380 ors. But all maps in the top face preserve the highest weight. By
Proposition 6.3 it follows that the top face commutes.
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The remaining case is B = BY @ B’ ® B® for s, s’ > 2. Consider the diagram below,
where rs(Is(L)) is obtained from Is(L) by splitting a B*" into B*~* and B*.

P(B) © P(rs(B))

RC(L) — '~ RC(rs(L))

. i| | .

RC(Is(L)) —— RC(rs(Is(L))

P(Is(B)) P(rs(Is(B))).

(8.5)

s

The left and right faces commute by Proposition 8.1. The front and back faces commute
by Proposition 5.9(4) and Theorem 8.4(3), respectively. The bottom face commutes by
induction. Since j is injective, it follows that the top face commutes. This finishes the
proof of part (3).

We now prove part (4). The proof is trivial for the base case B = B'. Suppose next that
B=B'® B’ ® BL.

rh

P(B)

8

S

RC(Ih(L))

7

P(h(B))

RC(L) ———— RC(Ih(L))

|

—— RC(rh(lh(L)))
5

P(rh(B))
_

5 Ih (8.6)

T

P (rh(lh(B))).

rh

The left and right faces commute by Proposition 8.1. The front and back faces commute
by Proposition 5.9(1) and Theorem 8.4(1), respectively. The bottom face commutes by
induction. Thus the top face commutes up to 8. By Proposition 6.3 it suffices to show
that both ways around the top face, result in elements with the same highest weight. This
follows from Propositions 5.11 and 8.5.
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The remaining case is B = B ® B’ ® BL. Consider the diagram

rh

P(rh(B))

RC(L) ——= RC(rh(L))

P(B)

5 i

7

|

RC(Is(L)) —— RC(rh(Is(L)))
)

b Is (8.7)

T

P(s(B))

rh

P(th(Is(B))).

The left and right faces commute by Proposition 8.1. The front and back faces commute
by Proposition 5.9(3) and Theorem 8.4(2), respectively. The bottom face commutes by
induction. Since j is injective it follows that the top face commutes. This proves part (4).

For part (5) the proof of the base case B = B* is trivial. Suppose next that B = B! ®
B’ ® BL. Consider the diagram

P(B)

S~
S

7

RC(L) — > RC(L)

RC(rh(L)) — RC(rh(L))

P(B*)

~5
I .h

(8.8)

N

P(th(B))

P(th(B)*).

The right face commutes by Proposition 8.1. The left commutes by part (4) which was
just proved above. The back face commutes by the definition of §. The commutation of
the front face is given by Proposition 5.9(5). The bottom face commutes by induction. It
follows that the top face commutes up to 8. Again it suffices to show that both ways around
the top face produce elements of the same highest weight. But this holds since ¢, 8, and
preserve the highest weight. Here we are using the fact that for A € P, ViZ V.
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Next let B = B’ ® B with s > 2.

P(B) P(B")
RC(L) ——= RC(L)

rs ,i l}' Is (8.9)
RC(Is(L)) — RC(Is(L))

~ N

P(rs(B)) P(rs(B)*).

The right face commutes by Proposition 8.1. The left face commutes by part (3) which was
proved above. The back face commutes by the definition of j. The commutation of the
front face is given by the definition of Is in (5.3). The bottom face commutes by induction.
Since j is injective, the top face commutes.

For B = B* ® B" with s > 2 the proof is similar to the previous case.

This concludes the proof of part (5).

For the proof of part (6), let B = By ® Br—1 ® - - - ® B1. We may assume that R = R; is
the R-matrix being applied at tensor positions j and j 4+ 1 (from the right). By induction we
may assume that j =k — 1, that is, R acts at the leftmost two tensor positions. By part (5)
and Proposition 2.16 we may assume that j = 1. Again by induction we may assume that

k=2.Let B= B'® B* (of type D,ﬁl)). By Lemma 4.5 B is multiplicity-free as a U, (D,)-
crystal. Since R preserves weights it follows that R(v};%,) = v)’,. A direct computation

shows that ¢ (v5;%) = d(vy). O
8.5. X = M for types Af,l) and D,§1>

In this subsection we will show that Xz, = My, for B € cA for type Af,l) and

B e C for type D,(,l). By Proposition 8.1 there is a bijection between the sets P(B, A) and
RC(L, 1). Hence it remains to show that the statistics is preserved.

Theorem 8.8. Let B € C4 be a crystal of type Af,l) or B € C acrystal of type D,ﬁl) and 1 a
dominant integral weight. The coquantum number bijection ¢ preserves the statistics, that
is Dp(b) =cc(¢p(b)) forall b e P(B, A).

Proof. For type A" the theorem follows from [15, Theorem 9.1]. Hence assume that
B € C of type D,(ll). By Theorem 8.6(3) and Egs. (5.3) and (6.2) the maps rs and j corre-
spond under ¢. By Theorem 4.3 we have D(rs(b)) = D(b). Similarly, it follows immedi-
ately from the definition of j in Proposition 6.4 that cc(j (v, J)) = cc(v, J). The maps R
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and the identity also correspond under ¢ by Theorem 8.6(6), and neither of them changes
the statistics.

There exists a sequence Sp of maps rs and R which transforms a path b € P(B, 1)
into a path of single boxes. By Theorem 8.6 there exists a corresponding sequence Src of
maps j and the identity. Since neither of these maps changes the statistics it follows that

D(Sp(b)) = cc(Src(#(b))) impliesthat  D(b) = cc(p(b)).
The theorem for the case B = (BL1)®N has already been proven in [18]. O

Corollary 8.9. For B € C4 of type A,(zl) or B € C of type D,(,l), L the corresponding multi-
plicity array and A a dominant integral, we have

XBa(g) =M (q).

Proof. This follows from Theorem 8.8, (7.2) and (2.5). O

9. Type AY dual bijection

For this section we assume type A,ﬁl). We define and study the properties of a dual ana-
logue 5V of the § map that corresponds to removing a tensor factor B1Y from the left. This
is used to prove a duality symmetry (Theorem 9.4) for the path—-RC bijection in type Aﬁll) :
This, in turn, is useful for establishing the virtual bijections in Section 10.

Let CAY c C4 be the category of tensor products of crystals of the form B and B1*V.

One goal of this section is to give a simpler way to compute ¢ for B € CAY. Since
CAv c CA, Proposition 8.1 gives the definition of ¢. By (2.6) BL*Y is isomorphic to B™*.
The definition of ¢ involves left-splitting B”*, which produces columns B™1, each of
which have to be “box split” into boxes B! and removed by Ih.

We introduce a dual analogue 5% of §, which removes an entire column B™1 in a single
step whose computation is entirely similar to a single & (rather than n of them).

Using 8", we can compute ¢ for B € CAY using essentially single row techniques.

9.1. Dual left hat

Suppose that B = BV @ B’. In this particular case we write 1hV(B) = B’. By
Lemma 5.6 there is a map lhY: P(B) — P(IhV(B)) given by removing the left tensor
factor. Let InV (L) be the multiplicity array of Ih¥(B).

The following algorithm is the same as § except that it starts from large indices instead
of small. The map 8" :RC(L) — RC(IhV (L)) is defined as follows. Let (v, J) € RC(L).
Initialize ¢#*+D =0 and ¢© = co. For i from n down to 1, assuming that £¢*D has
already been defined, let £ be the smallest integer such that (v, J)® has a singular string
of length @ and ¢© > ¢@+D If no such singular string exists, let £/) = oo for 1 < j <.
Let rk¥ (v, J) = (i + 1)V € BV where i is the maximum index i such that £ = co.
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Example9.1. For B = B @ (B1)®2 ® (B2)®3 @ (B3)®2 of type A" and A = Ay + Ap +
2 A3 + A4 + Ag the rigged configuration

o .
v, J)= 0 0 HO (11 o
0 0

o L

is in RC(L, 1) with L the multiplicity array corresponding to B. The same configuration
now written with the vacancy number next to each part is

|1

0
1 0 HO 11 [
1 5 0
. U
Then
0
8V, J)= 0 0 [/
: X Lo
0

and rk¥ (v, J) =2V.

Given w € 1™, there is also an inverse of the dual algorithm 8" associated with the
weight (A — w)" similar to the inverse of § as defined in Section 6.3.

Proposition 9.2. §V:RC(L) — RC(Ihv (L)) is a well-defined injective map such that the
diagram commutes:

P(B) — = RC(L)

Ih l J/sv (9.2)

P(hY(B)) — RC(IhY(L)).

Moreover, if ¢(b1 ® b) = (v, J) then ¢(b) =68 (v, J) and by = k¥ (v, J).

Proof. The map IhY removes B = B™1. This may be achieved by n applications of
Ih o Ib, which splits a box from a column and then removes it. Let A be the corresponding
n-fold composition of maps § o i. It must be shown that A(v, J) =8 (v, J).
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LetaV =by. The letters 1 <a; <ap < --- <a, <n+1in by (where by is viewed as
an element of B™1) satisfy

- i forl1<i<a,
T li+1, fora<i<n.

It is clear from Proposition 6.5 and the algorithm for § of Section 6.3 that the composition
8 o1 corresponding to the letter a; for a <i < n in by removes a box from one string of
length s in the ith rigged partition and leaves all other strings unchanged. It also follows
from the algorithms and change of vacancy numbers that s > 5@+ and that s is the
length of the smallest singular string in (v, /)@ with this property. For 1 <i < a the
composition § o i leaves the rigged configuration unchanged with s = co. It follows by
induction that s = 2@, where ¢ as in the definition of 5§V, and hence that A(v, J) =
sV, J). O

9.2. Dual left split

We restate left splitting for a special case. Suppose B = B*Y ® B’ for s > 2. Define
IsV:BSY — Is¥(B) := BV ® B*~1V to be the composite map

BV B™S Is Bn,l ® Bn,s—l *NI) Blv ® Bs—l\/.

By Example 2.7 we may write b € B*¥ as a word of length s in the dual alphabet. Com-
puting Is¥ using Example 2.6, it is seen that Is(b) = by ® b1 Where b, is the leftmost dual
letter in b and b1 is the remaining word of length s — 1 in the dual alphabet.

Let Is (L) be the multiplicity array for IsY(B). Let us denote by jV the map on RCs
which corresponds to Is¥ under the path-RC bijection ¢. It is the map j with respect
to B™* and is therefore inclusion (with some changes in vacancy numbers). With these
definitions the following diagram commutes by Proposition 8.1 for Aﬁ,l):

P(B,A) 4¢> RC(L, )

IsV i l 7V 9.2)

P(Is¥(B),») — RC(IsY (L), A).
¢

9.3. The bijection ¢ for CAY
The results of this section to this point may be summarized as follows.
Proposition 9.3. There is a unique bijection ¢ : P(B) — RC(L) satisfying the following

properties. It sends the empty path to the empty rigged configuration, and if the leftmost
tensor factor in B is:
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(1) B!:(8.1) holds.

(2) Bf fors >2:(8.2) holds.
(3) BV:(9.1) holds.

(4) B’ for s > 2:(9.2) holds.

9.4. Duality on paths and the bijection

Let B e CAV. Let L and LV be the multiplicity arrays for B and B", respectively. Ex-
plicitly, Ll.v(“) = Lf””_“) for 1 < a < n. Given a classical highest weight A, let AV =

—wpX be the highest weight of the contragredient dual module to the A,-module high-
est weight A. There is a bijection v:RC(L, 1) — RC(LY, 1Y) given by (v, J) — (v', J')
where v/ = yt+l=a) and /@ js obtained from J *+1-¢:) by complementation within
the m" 1= (v) x p{" 179 (1) rectangle.

Theorem 9.4 [16]. Let B € C4, BY its contragredient dual, and L and LV their respective
multiplicity arrays. The diagram commutes:

P(B) . RC(L)

P(BY) — RC(L").
¢

10. Virtual bijection

In this section we will prove X = M for the category C for the nonsimply-laced alge-

bras. For the simply-laced types A,ﬁl) and D,(,l) this was proved in Corollary 8.9. For the
nonsimply-laced affine families it suffices to prove the following theorem.

Theorem 10.1. For B € C, let ¥ : B — V be the virtual crystal embedding, L and L the
multiplicity arrays for B and V, respectively. Then the simply-laced bijection ¢; : P(V) —
RC(L) restricts to a bijection ¢?: PY(B) — RCY(L).
As an immediate corollary we obtain:
Corollary 10.2. For » € P™, B € C and L the corresponding multiplicity array we have
X.(q) =VXp(q) =VML 1(q) = ML 1(q).

Proof. The left and right equalities were proven in Theorem 3.8 and Corollary 7.3, respec-
tively. The middle equality follows from Theorems 8.8 and 10.1. O

The remainder of this section is occupied with the proof of Theorem 10.1.
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10.1. Virtual Ih
Suppose B = By = B}( ® By € C with virtual crystal embeddings ¥ : By — V and
w': B}, — V'. By abuse of notation we write [h(V) = V’. The map Ih: V — V" is defined
by:
(1) if ¥ = Ag,); then Th: B} ® B} @ V' — V" is defined by Ih = Ih o In”, which drops
the two leftmost factorsin V; . . R
) ify =D, and X = B\" then Th: B2 ® V' — V" is defined by Ih = Ih o Ih o Is. This
accomplishes the same thing as deleting the tensor factor B2;
@) ify =D, and X = A%, thenTh: BL ® V' — V" is defined by Ih = Ih,

Note that in each case the total effect of the map Th: V! @ V’ — V" is to drop the tensor
factor V1. Therefore the following diagram commutes trivially:

1 / vev 51 o
By ® By ~VeV

s

By ————= V.

10.2. Virtual Is

Lets > 2. Recall the virtual rs map rs Vs — > \A/S—f ® V1 defined in the proof of Propo-
sition 4.6. Define the virtual Is map Is: Vs > Vigyst by

Is=%o0f30*. (10.1)
Proposition 10.3. The map Is: V¥ — V1 ® V5~ is described explicitly as follows.

(1) IfY = A5 | thens: B}¥ ® By — B ® B ® B~ ® B! is the composition

st ®BY B}]}\/ ®Bv 1v ®BY _) Bs ®B ® Bs—l\/
Isy®1®1 B}l, ® B;—l ® BYV ® Bs 1v Blv ® By ® Bs 1v ® B;—l.

) 1fy =D, and X = B{" then Is: B? — B2 ® BX~? is the map that splits off the
first two symbols, that is, uv > u ® v where uv € B2, u € B2, and v € B2
3) IfY =D, and X = A, then define s =Isy : B} — B} ® By .

Proof. Itisenough to check these on classical highest weight vectors. This is easy because
the various crystals are multiplicity-free as classical crystals. O
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Remark 10.4. Let B = By = B* ® B’ and let W : B — V and ¥': B’ — V" be the virtual
crystal, realizations. By abuse of notation we write Is(V) = vi ® Vs~1 @ V’. We also use
the notation Is for the map Is@ 1, : V* @ V' — V1@ V¥~1 @ V. It also satisfies (10.1).

10.3. Virtual § and j

Given the virtual crystal embedding ¥ : By — \7 let L and L be the multiplicity ar-
rays for By and V, respectively. The maps §and j are defined to be the maps on rigged
configurations which correspond under ¢ to the maps Ih and Is. More precisely, since ¢ is
a bijection for type Y there are unique maps § and ; defined by the commutation of the
diagrams

. b . o o; A
P(V) — RC(L) P(V) — RC(L)
ml ls and EJ/ lj (10.2)
P(Ih(V)) — RC(Ih(L)) P(s(V)) — RC(s(L))
Pt 18(L)

where m(i)_and E(Iz)gre the multiplicity arrays for IN(V) and Is(V), respectively.

For » € PT(X) let rk:RC(L, ¥ (1)) — V1 be the map which gives the tensor product
of the ranks of the sequence of rigged configurations that occur during the computation
of 4.

Lemma 10.5. § maps RCY(L) into RC"(lh(L)) and rk maps RCY(L) into Im(¥ : B}( —
V.

Proof. The proof proceeds by cases.

X = C,(,l) and Y = qu)_l. According to Definition 7.1 the elements (¥, J) e RCY(L)
have the following properties:

1) m A(a) n';l(ZH a) and J@ — j(ana,i);
2) AE”) =0if i is odd;
(3) the parts of J ) are even.

From (10.2) and Proposition 9.2 it is clear that § = § o 8. It must be shown that §(D, J)
also possesses the three properties (1)—(3). Let £V(@ the lengths of the strings selected
by 5V and £@ be the lengths of the strings selected by the subsequent application of 5. Let
kY (D, J) = (2n + 1 — r)Y for some 1 < r < 2n. If r < n, it is clear from the definitions
that £@ = ¢V(@1=a) for 1 < a < r, so that points (1)—(3) still hold. Here rk(d, J) = (2n +
1—r)V®r=W(@r). For r =n + 1, we must have ¢V®+D < ¢V since otherwise by
the symmetry (1) V=D = ¢v0 = ¢gv+D) - oo which contradicts the assumption that
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r =n+ 1. However, this implies that £ = ¢¥@=9 for 1 <a <n and £ = ¢¥™ — 1.
Since the vacancy numbers are all even (1)—(3) remain valid. One has k@, /) =n" ®
(n+1) = ¥ (7). Finally let r > n+1 and let // < n be minimal such that ¢Y@1—"") = v,
By symmetry (1) we have £¥(@ = ¢¥® for all ' < a < 2n — r'. By the algorithms for §
and § and properties (1)-(3) for (9, J) it follows that £@ = ¢ @1~ for 1 < a < r’ and
2n—r <a<r, and £@ = ¢V @0 _ 1 for /' < a < 2n — r'. Again this implies that
properties (1)—(3) hold for (9, J). Then tk(®, N =@n+1—r)V @ r=¥@2n+1—r).

= A2 and ¥ = A . The elements in RC'(L) are characterized by points (1)

and (3). Everything goes through as for the case X = cP except that, since 9™ may
contain odd parts, it is possible that £¥ = 1. In this case ¢V =1forall 1<a <2n—1
by point (1). Then £ = oo for all 1 < a < 2n — 1, so that §(9, J) again satisfies (1)
and (3). Then rk(», /) =1¥ ® 1 = ¥ (9).

X = D;(ﬁ:l and Y = A%ﬁ_l. The elements in RCV(L) are characterized by point (1). The
proof goes through as before except that J ) could have an odd part. This could only
change the computation of 5 0 8" if such an odd part were selected. Recall that p(") is even
for all i. Therefore the odd part cannot be selected by &Y. It can only be selected by § if
rk¥ (9, J) = (n +1)" and the odd part has size p"’ — 1 for some i > ¢¥+1. By point (1)
and the fact that (9, /)@ is unchanged by ¥ for 1 <a <n — 1, we have £@ = ¢v@1-a)
forl<a<n-1and 2™ is the odd (now singular) part. Thus after applying § o 8
point (1) still holds. rk(®, /) = (n + 1)V ® (n + 1) = ¥ (0). Note that £"+D = oo since 5V
caused the strings in the (n 4+ 1)th rigged partition that were longer than £¥*+1  to become
nonsingular.

X= Agi” and Y = Ag},Ll. The elements in RC(L) are characterized by (1) and:

(3) the parts of 7 have the same parity as i.

Let rk¥ (9, f) =(2n+1—r)Y for some 1 <r < 2n. If r < n, we have as for the case
X = that ¢@ = ¢V@=a) for 1 < a < r, 50 that (1), and (3) still hold and rk(d, J) =
Cn+1-r)VQr=v(r).

If » =n + 1, note that £V e 27 since all vacancy numbers pl.(") are even, so that
by (3") only the riggings for i even can possibly be singular. As in case C,Sl) we must have
¢VOt+D < v By symmetry (1) we have £@ = ¢V@1= for 1 < a < n. The application
of 5§V changes the vacancy numbers in the nth rigged partition corresponding to the strings
of length i for ¢¥®*+D < i < ¢V py —1, which makes these vacancy numbers odd. In
particular, the rigging of the new string of length £V — 1 is odd. In addition, ¢¥®+D <
£ < ¢V® and by (3') £" must be odd. By the change in vacancy number after the
application of &, the new rigging of the string of length £ — 1 must be even. Hence (1)
and (3') hold for 8(9, J) and rk(d, /) = (n + 1)V ® (n + 1) = ¥ (0).

If r > n+ 1, let ¥ < n be defined as for the case C'Y. As before £V@ = ¢v® for
r' <a < 2n—r'.If ¥ < n everything goes through as in case cPIfr =n (which means
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that £V +D < ¢¥™) by the same arguments as for r = n + 1, we have £@ = ¢V(@1-a)
fora #n, €Y+ <M < V™ and (3') holds for the new riggings. Hence properties (1)
and (3') hold for (v, J) and rk(, J) = 2n+1—-r)" Q@r=¥@2n+1—r).

X = B,(ll) and Y = Dfﬁil. The elements in RCY (L) are characterized by
@) m™ =m"* and JD = JHLD for all i > 0;
(2) v@ and J@" have only even parts for 1 < a < n.

By Section 10.1 and (10.2) we have § =8 0 § o j. Let £ and £@ (respectively s@
and 5@) be the length of the selected strings for the right (respectively left) 5. Then it
follows from the definition of ;, § and point (2) that s = ¢@ — 1 for 1 < a < n. Further-
more, from point (1) we obtain that £ = ¢+D > 0 — s+1D "and again by point (2)
that 5@ = ¢@ — 1 for 1 < a < n. This implies that points (1) and (2) hold for 5(9, J).
Moreover, let x = rk(?, J) and y = rk(8(9, J)). Note that x, y # n + 1,n + 1 because of
point (1). Also x = y except possibly x =n and y = 7z. Then kD, J) = xx = ¥ (x) if
x =y orrk(d, J) =nii = w(0) if x £ y.

X = Aé?& andY = D;(11+)1- The elements in RCY (L) are characterized by point (1). It is

obvious from its definition that § = § preserves this property. Let x = rk(, J). As before
x #n+1,n+ 1 because of point (1). Then rk(d, J)=x =¥ (x). O

Thus we may define the virtual rank map rk” : RCY(L) — B}( by rk’(9, J) = x where
W (x) = rk(d, J) for all (9, J) € RCY(L). Then we have:

Proposition 10.6. The map (3, k") :RCY(L, ) — [, ;- RC*(I(L), 1) x BY is injec-
tive.

For the proof of Theorem 10.1 we also need the inverse to Lemma 10.5 which in-
volves the inverse of §. Let A € P}, L = (L1, Lo, ...) a multiplicity array and Ih=%(L) =
(L1 + 1,Ly, L3, ...). Denote by RC"(L, %) the subset of RC(L, ) x B! given by
((v, J), b) such that A +wt(b) € P* and if b =0 then also A, > 0. Let b = ¥ (b). By
abuse of notation we define

sHRC (L.~ Rc(lrFl(\L),uI(ﬂ)).
Bert

Ify = Aéf,)_l, let 5 = b1 @ by. Then 3‘1((1), J),b) = SV_l(S—l((U’ J), by), by), with 51

as defined in Section 6.3 and 5"~ as defined in Section 9.1. If ¥ = Dﬁl and X = BY,
b 5= 575 i W

let b = xy.AThen hy l((VA, J),b)=14 (3_1((\;, J),y),x). Finally for Y = D7/, and X =

Agl)_l, let b =x. Then §1((v, J),b) =51((v, J), x).
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Lemma 10.7. Given A, L, Ih=2(L), b and b as above the map §— maps RC"(L, 1) into
Uger+ RC(NH(L), B).

Proof. The proof is very similar to the proof of Lemma 10.5. O
Lemma 10.8. j maps RC¥(L) into RC¥(Is(L)).

Proof. Let Y = Ag};l. By (10.2) and Section 10.2 we have j = j o jV. Both j and jV
are inclusions that do not change the rigged configuration (only certain vacancy numbers).
Hence if (v, f) € RCY(L) has the characterization as stated in the previous lemma, then so
does j (D, J).

Let Y = D). If X =AY |, we have j = j. For X = B{", let B = B* ® B’ for
s > 2 and embeddings ¥ : B — V and ¥’ B’ — V' with V = B2 ® V' It can be shown
(using * and properties of rs) that if x, y € Bll, andu € Blz,‘_2 are such that xyu € Blz,‘* then
for any b’ € V’ one has Is(xyu ® b') = xy ® u ® b'. One may show that the corresponding
operation on RCs is inclusion. This may be seen by observing that Is o Is: B%S QV —
B ® B} ® B2 2@ V', which sends xyu ® b to x ® y @ u ® b', can also be computed by a
composition of Is maps and R-matrices, whose corresponding maps on RCs are inclusions.
This proves that j (D, J) e RCV(Is(L)). O

10.4. Proof of Theorem 10.1

It must be shown that the bijection ¢; : P(V) — RC(L) maps P*(B) (1) into and (2)
onto RCY(L), thereby defining a bijection J)Z :PY(B) — RCY(L) by restriction. Let B =
BSQB Withw:B—> V'@V’

The case s = 1. For (1) consider a typical element of PV(B, 1), given by ¥ (b) with b €
P (B, }). Write b = x ® b’ with x € BY and b’ € P(B’, ). Then ¥ (b') € PV(IN(B), p).
Let (b, J) = ¢; (¥ (b)) € RC(L). It must be shown that (9, J) € RCV(L, 1). By (10.2) and
induction one has 8(9, /) € RCY(Ih(L), ) and rk(d, /) = ¥ (x). By Lemma 10.7 we can
conclude that (9, J) € RCY(L, A).

For (2) let (D, J) € RCY(L). Let b=xQb ¢ P(V) (with £ € V1 and &' € V')
be such that ¢>L(b) (0, J). It must be shown that 5 € P"(B). By (10.2) we have
¢|h(L)(Ih(b)) =58(; (b)) =8, J) e RCU(IN(L)). By induction &' = Th(h) e P'(Ih(B));
write b’ = w (b') for some b’ € B’. By Lemma 10.5and (10.2), £ = ¥ (x) forx =rk"(D, J)
Let b=x ® b’ € B. By definition () =¥ (x) ¥ (b)) =x ® b = b. Therefore b ¢
PV (B) as desired.

The case s > 2. For A(l), a typiAcaI element of PY(B) has the fqrm ¥ (b) for b € P(B).
Let ¢; (¥ (b)) = (V,J) € RC(L). It must be shown that (¥, /) € RC”(L). Note that
J@,J) = j@; W) = ¢;,(s(¥ (b)) € RCU(Is(L)) by (10.2) and induction. But
j®, )=, J)and (b, J) € RC(L). It follows that (D, J) € RCY(L).
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For (2), let (9, J) € RCU(L). Let b e P(V) be such that ¢; (b) = (», J). It must
be shown that b € P¥(B). By (10.2) and induction, j(¥, J) = j(¢; (b)) = ¢;,(Is(b)) €
RCY(Is(L)). Therefore Is(h) € PV(Is(B)). We conclude that 5 € PU(B) by (10.1), Propo-
sitions 4.6(3) and 3.9.

This concludes the proof of Theorem 10.1.
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