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SUMMARY

The fungal meningitis pathogen Cryptococcus neo-
formans is a central driver of mortality in HIV/AIDS.
We report a genome-scale chemical genetic data
map for this pathogen that quantifies the impact of
439 small-molecule challenges on 1,448 gene knock-
outs. We identified chemical phenotypes for 83% of
mutants screened and at least one genetic response
for each compound.C. neoformans chemical-genetic
responses are largely distinct from orthologous pub-
lished profiles of Saccharomyces cerevisiae, demon-
strating the importance of pathogen-centered
studies. We used the chemical-genetic matrix to pre-
dict novel pathogenicity genes, infer compound
mode of action, and to develop an algorithm, O2M,
that predicts antifungal synergies. These predictions
were experimentally validated, thereby identifying
virulence genes, a molecule that triggers G2/M arrest
and inhibits the Cdc25 phosphatase, and many com-
pounds that synergize with the antifungal drug flu-
conazole. Our work establishes a chemical-genetic
foundation for approaching an infection responsible
for greater than one-third of AIDS-related deaths.

INTRODUCTION

Invasive fungal infections are notoriously difficult to diagnose

and treat, resulting in high mortality rates, even with state-of-

the art treatments. The three most common pathogenic agents

are Cryptococcus neoformans, Candida albicans, and Asper-

gillus fumigatus (Mandell et al., 2010). These organisms are

opportunistic fungi that prey on individuals with varying degrees

of immune deficiency. Susceptible patient populations include

premature infants, diabetics, individuals with liver disease,

chemotherapy patients, organ transplant recipients, and those
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infectedwith HIV (Mandell et al., 2010). Compounding the clinical

challenge is the slow pace of antifungal drug development: only

a single new class of drugs (the echinocandins) has been

approved for use in the United States in the last 30 years (Butts

and Krysan, 2012; Mandell et al., 2010; Roemer et al., 2011).

Fungal infections are estimated to cause 50% of deaths

related to AIDS and have been termed a ‘‘neglected epidemic’’

(Armstrong-James et al., 2014). The fungus chiefly responsible

for deaths in this population isC. neoformans (Armstrong-James

et al., 2014).C. neoformans is an encapsulated basidiomycetous

haploid yeast distantly related to Saccharomyces cerevisiae and

Schizosaccharomyces pombe. A 2009 CDC study estimated

that �1 million infections and �600,000 deaths annually are

caused by C. neoformans, exceeding the estimated worldwide

death toll from breast cancer (Lozano et al., 2012; Park et al.,

2009). C. neoformans is widespread in the environment and

exposure occurs through inhalation of desiccated yeast or

spores (Heitman et al., 2011). In immunocompromised patients,

C. neoformans replicates and disseminates, causing meningo-

encephalitis that is lethal without treatment (Heitman et al.,

2011). Induction therapy involves flucytosine and intravenous in-

fusions of amphtotericin B (Loyse et al., 2013). Both drugs are

highly toxic, difficult to administer, and neither is readily available

in the areas with the highest rates of disease. The current recom-

mendation for Cryptococcosis treatment is at least a year of ther-

apy, which is difficult to accomplish in resource-limited settings

(WHO, 2011). Thus, as is the case with infections caused by

other fungal pathogens, effective treatment of cryptococcal in-

fections is limited by the efficacy, toxicity, and availability of cur-

rent pharmaceuticals.

We implemented chemogenomic profiling to approach the

challenges of therapeutic development in C. neoformans. This

method involves the systematic measurement of the impact of

compounds on the growth of defined null mutants to produce

a chemical-genetic map. Such a map represents a quantitative

description composed of numerical scores indicative of the

growth behavior of each knockout mutant under each chemical

condition. Cluster analysis of the growth scores for large
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numbers of mutants under many chemical conditions can reveal

genes that function in the same pathway and even those whose

products are part of the same protein complex (Collins et al.,

2007; Parsons et al., 2004; Parsons et al., 2006). In addition,

the identity of genes whose mutation produce resistance or

sensitivity is useful for uncovering compound mode of action

(MOA) (Hillenmeyer et al., 2008; Jiang et al., 2008; Nichols

et al., 2011; Parsons et al., 2006; Xu et al., 2007; Xu et al.,

2009). Large-scale studies have been restricted to model organ-

isms for which gene deletion collections have been constructed,

namely S. cerevisiae, S. pombe, and Escherichia coli K12 (Hillen-

meyer et al., 2008; Nichols et al., 2011; Parsons et al., 2006).

However, as none of these are pathogens, the extent to which

the resulting insights translate to pathogenic organisms is un-

known. A variation on chemogenomic profiling, chemically-

induced haploinsufficiency, was first developed using a diploid

heterozygote gene deletion library S. cerevisiae to identify com-

pound MOA. This method, which identifies genes that impact

compound sensitivity based on a two-fold gene dosage change,

is suited for diploid organisms and has been used in the path-

ogen C. albicans (Jiang et al., 2008; Xu et al., 2007; Xu et al.,

2009).

We report here the generation of a large-scale chemogenomic

map for C. neoformans using defined, commonly available

knockout mutants, assessments of data quality, and extensive

experimental verification. Comparisons of the C. neoformans

profile with two large-scale published profiles from

S. cerevisiae revealed that for most types of compounds, the

chemical-genetic interactions are distinct even among ortholo-

gous genes, emphasizing the importance of pathogen-focused

investigation. We used nearest-neighbor analysis to predict

new genes involved in polysaccharide capsule formation and

infectivity, which we validated through experiment. We also uti-

lized genetic responses to predict the G2/M phase of the cell

cycle and the Cdc25 phosphatase as targets of a thiazolidone-

2,4-dione derivative, which we confirmed in vivo and in vitro.

Finally, because of the unmet need for improved antifungal

drug efficacy, we developed a new algorithm, O2M, to predict

new compound synergies based on the profiles of pairs known

to be synergistic. Experimental tests demonstrate that the

method performs vastly better than randomexpectation, thereby

enabling the identification of synergistic compound combina-

tions. Our studies establish a chemical-genetic foundation to

approach the biology and treatments of C. neoformans infec-

tions, which are responsible for more than one-third of HIV/

AIDS deaths worldwide.

RESULTS

A Chemical-Genetic Map of C. neoformans

We assembled 1,448 C. neoformans gene deletion strains (Chun

et al., 2011; Liu et al., 2008) (Table S1 available online), corre-

sponding to a substantial fraction of 6,967 predicted

C. neoformans genes (Janbon et al., 2014), and a collection of

compounds for screening (Table 1). Compounds were selected

based on cost and literature evidence that they could inhibit

the growth of fungi. Where feasible, compounds were chosen

that are known to target specific biological processes. For
C

each small molecule, we determined an approximate minimum

inhibitory concentration (MIC) in agar, then measured growth

of the knockout collection on each small molecule at 50%,

25%, and 12.5%MIC using high density agar plate colony arrays

and a robotic replicator. We then measured the size of each col-

ony using flatbed scanning and colony measurement software

(Dittmar et al., 2010). We performed a minimum of four replicate

colony measurements for each mutant-condition pair. Plate-

based assays are subject to known nonbiological effects, such

as spatial patterns. To mitigate these errors, a series of correc-

tive measures were implemented using approaches described

previously, including manual filtration of noisy data, spatial effect

normalization and machine learning-based batch correction

(Baryshnikova et al., 2010). In addition, the data for each deletion

mutant and compound was centered and normalized. Each

mutant-small molecule combination was assigned a score with

positive scores representing relative resistance and negative

scores representing compound sensitivity (Table S2). A global

summary of the processed data organized by hierarchical clus-

tering is shown in Figure 1A.

The importance and validity of the computational corrections

is shown in Figures 1B and S1. We estimated how reproducible

the chemical-genetic profiles were by calculating the correlation

scores for data obtained for different concentrations of the same

small molecule (purple). This measures the degree of overlap

between the overall chemical-genetic profiles, which are them-

selves each composed of a score for each mutant-small mole-

cule combination. We found significant correlation (p = 2.67 3

10�176) between data obtained for different concentrations of

the same small molecule compared to those between profiles

generated by data set randomization, suggesting significant

reproducibility. Moreover, correlation scores between chemi-

cal-genetic profiles of different concentrations of different com-

pounds (gray) are centered at approximately 0 (Figure 1B). This

difference in correlation scores is apparent even when

comparing experiments performed on the same day, when

spurious batch signal can contribute to false positives (Baryshni-

kova et al., 2010). Our batch-correction algorithms resulted in

same-batch screening data with strong positive correlation

scores for the same compounds but correlation scores close

to zero for different compounds (Figure S1), demonstrating suc-

cessful removal of spurious signal (Baryshnikova et al., 2010).

We compared chemical-genetic profiles between compounds

in the azole family (Figure 1C). Despite the fact that the azoles

tested include those of diverse uses, from agricultural pesticides

to FDA-approved drugs (Table 1), many exhibit a significant pro-

file correlation (p = 2.82 3 10�6), further indicating significant

signal in the data. As a final assessment, we performed hyper-

geometric testing across all compounds to determine whether

the same sensitive gene knockouts (defined by Z < �2.5) are

identified at different concentrations of the same compounds.

Using a Bonferonni-corrected p value cutoff, nearly all com-

pounds display significant overlap of responsive genes at

different concentrations (Figure 1D).

We assigned at least one phenotype (sensitivity or resistance

to a compound) to 1,198 of 1,448 mutants (Figure 1E, Tables S2,

S3, and S4). Of these, 855 exhibit one to ten phenotypes, while

remaining 343 displayed from 11 to 146 phenotypes. Gene
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Table 1. Small Molecules and Targets

Inhibitor (Activator)

Highest

Screening Conc. Process/Enzyme Category Pubchem ID FDA Approval?

1-10 phenanthroline

hydrochloride

monohydrate

2 uM broad/transition metal

complexes

broad spectrum 2723715 no

2-aminobenzothiazole 30 uM cytoskeleton function/

kinesin Kip1

cell structure 8706 no

2-hydroxyethylhydrazine 0.156% lipid synthesis/phospholipid

methylation

lipid biosynthesis 8017 no

3-aminotriazole 6.25 mM histidine synthesis/IMP

dehydratase

metabolism 1639 no

4-hydroxytamoxifen 1.56 uM estrogen receptor (mammals) signaling 449459 yes

5-fluorocytosine 2.5 ug/ml DNA/RNA biosynthesis DNA homeostasis/

protein synthesis

3366 yes

5-methyltryptophan 8 mM tryptophan synthesis metabolism 150990 no

Abietic acid 1 mM lipid synthesis/lipoxygenase lipid biosynthesis 10569 no

Acifluorfen methyl 156.25 ng/ml porphyrin synthesis/

protoporphyrinogen oxidase

metabolism 91642 no

(Aconitine) 200 ug/ml membrane potential/Na+

channels (mammals)

membrane polarization 245005 no

Aflatoxin B1 100 ug/ml DNA damaging agent DNA homeostasis 14403 no

Agelasine D 5 ug/ml membrane potential/Na+/

K+-ATPase (mammals)

membrane polarization 46231918 no

Alamethicin/U-22324 60 uM membrane integrity/forms a

voltage-depended ion channel

membrane polarization 16132042 no

Alexidine dihydrochloride 125 ug/ml antimicrobial/mitochondria mitochondria 102678 yes

Allantoin 100 ug/ml nitrogen-rich compound metabolism 204 topical

Alternariol 2.5 ug/ml cholinesterase inhibitor/sodium

channel activator and DNA

supercoiling/topoisomerase I

broad spectrum 5359485 no

Alumininum sulfate 1.5625 mM unknown unknown 24850 no

(Amantadine

hydrochloride)

1.25 mM neurotransmitter release/

glutamate receptor

signaling 64150 yes

Amiodarone 60 ug/ml membrane potential/Na+/

K+-ATPase (mammals)

membrane polarization 2157 yes

(Ammonium persulfate) 50 mM reactive oxygen species apoptosis/stress response/

damage response

62648 no

Amphotericin B 1 ug/ml lipid biosynthesis/ergosterol membrane integrity 5280965 yes

Andrastin A 4 ug/ml protein modification/

farnesyltransferase

protein trafficking 6712564 no

Anisomycin 50 uM translation/peptidyl transferase gene expression 253602 no

Antimycin 100 ug/ml respiration/cytochrome B metabolism 14957 no

Apicidin 312.5 ng/ml chromatin regulation/HDACs gene expression 6918328 no

Artemisinin 312.5 mM iron metabolism/hematin

detoxification

metabolism 68827 yes

Ascomycin 3.125 uM signaling/calcineurin signaling 6437370 yes

Azide 62.5 uM respiration/cytochrome

C oxidase

metabolism 33558 no

Barium chloride 16 mM metal homeostasis/diverse broad spectrum/unknown 25204 no

Bafilomycin 4 ug/ml autophagy/vacuolar-type

H+-ATPase

protein turnover 6436223 no

Bathocuproine

disulphonic acid (BCS)

3 mM copper acquisition metabolism 16211287 no

(Continued on next page)

1170 Cell 159, 1168–1187, November 20, 2014 ª2014 Elsevier Inc.



Table 1. Continued

Inhibitor (Activator)

Highest

Screening Conc. Process/Enzyme Category Pubchem ID FDA Approval?

Bathophenanthroline

disulfonate (BPS)

300 uM iron acquistion/Fet3-Ftr1 metabolism 65368 no

Benomyl 100 ug/ml cytoskeleton function/tubulin cell structure 28780 no

(Betulinic acid) 64 ug/ml protein degradation/proteasome protein turnover 64971 no

Bifonazole 50 ug/ml lipid biosynthesis/HMG-CoA

and ergosterol biosynthesis

membrane integrity 2378 no

Brefeldin A 40 ug/ml ER-Golgi Transport/ARF GEF secretion 5287620 no

Calcium chloride 16 mM metal homeostasis/diverse broad spectrum 5284359 no

Caffeine 2.5 mM DNA damage checkpoint/ATM DNA homeostasis 2519 no

Calcium ionophore

A23187

2.5 ug/ml membrane integrity/peptide that

acts as ionophore

membrane integrity 40486 no

Calcofluor white 500 ug/ml cell wall synthesis/chitin and

cellulose

cell wall 6108780 no

Camptothecin 500 ug/ml DNA supercoiling/topoisomerase I DNA homeostasis 24360 analog

Castanospermine 2.4 mM protein modification/glycosidation protein modification 54445 derivative

Cadmium chloride 1 mM metal homeostasis/diverse broad spectrum/unknown 24947 no

Cerulenin 312.5 ng/ml fatty acid synthesis/beta-

ketoacyl-acyl carrier protein

synthase

lipid biosynthesis 5282054 no

Cesium chloride 128 mM metal homeostasis/diverse broad spectrum/unknown 24293 no

Chlorpromazine

hydrochloride

1.5625 uM phenothiazine antipsychotic

drug (mammals)/dopamine,

seratonin, and other

neuroreceptors

signaling 6240 yes

Chromium (III) chloride 8 mM metal homeostasis/diverse broad spectrum 16211596 no

Ciclopirox olamine 750 ng/ml iron acquisition and other metabolism 38911 yes

Cisplatin 100 ug/ml DNA synthesis DNA homeostasis 157432 yes

Climbazole 0.03125% lipid biosynthesis/ergosterol

biosynthesis and respiration/

cytochrome P450

broad spectrum 37907 topical

Clotrimazole 500 nM lipid biosynthesis/ergosterol

biosynthesis

membrane integrity 2812 yes

Colistin 1 mg/ml membrane integrity membrane integrity 5311054 yes

Congo red 0.0625% cell wall synthesis/chitin,

cellulose, and glucan

cell wall 11313 no

Coniine 0.15625% neurosignaling (mammals)/

nicotinic receptor

signaling 441072 no

(Crystal violet) 0.0012500% oxidative stress inducer stress response 11057 topical

CuCl2 8 mM copper homeostasis/diverse metabolism 24014 no

Cycloheximide 1.875 ug/ml translation/ribosome gene expression 6197 no

Cyclopiazonic acid 15.625 uM ion transport and cell polarization

(mammals)/Ca2+- ATPase

metabolism 54682463 no

Cyclosporin 75 ug/ml signaling/calcineurin signaling 5284373 yes

Cyproconazole 1.5625 ug/ml lipid biosynthesis/ergosterol

biosynthesis

membrane integrity 86132 no

Cyprodinil 10 ug/ml methionine biosynthesis metabolism 86367 no

Daphnetin 100 uM signaling/PKA, PKC, EGR

receptor, others

signaling 5280569 no

Desipramine

hydrochloride

250 uM neurosignaling (mammals)/

norepinephrine transporter

signaling 65327 yes

(Continued on next page)
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Table 1. Continued

Inhibitor (Activator)

Highest

Screening Conc. Process/Enzyme Category Pubchem ID FDA Approval?

Dyclonine hydrochloride 3.125 uM lipid biosynthesis/ergosterol

biosynthesis

membrane integrity 68304 yes

Emetine dihydrochloride

hydrate

5 mM translation/ribosome gene expression 3068143 yes

Emodin 62.5 uM signaling/CK2, others signaling 3220 yes

Erlotinib 50 ug/ml signaling (mammals)/EGFR

tyrosine kinase

signaling 176870 yes

FeCl3 32 mM iron acquisition, metal

homeostasis

metabolism 24380 no

Fenoxanil 80 ug/ml melanin biosynthesis metabolism 11262655 no

Fenpropimorph 2.5 ug/ml sterol synthesis lipid biosynthesis 93365 no

FK506 312.5 ng/ml signaling/calcineurin signaling 445643 yes

Fluconazole 10 ug/ml lipid biosynthesis/ergosterol

biosynthesis

membrane integrity 3365 yes

Fluspirilene 25 uM antipsychotic drug, mechanism

of action unknown

unknown 3396 yes

Gallium (III) nitrate 25 mM metal homeostasis/diverse broad spectrum 57352728 no

Geldanamycin 2 uM protein folding/Hsp90 protein folding 5288382 trials

(H2O2) 6 mM reactive oxygen species apoptosis/ stress

response/damage

response

784 topical

Haloperidol 125 uM phenothiazine antipsychotic drug

(mammals)/dopamine, seratonin,

and other neuroreceptors

signaling 3559 yes

Harmine hydrochloride 1 mM cell differentiation (mammals)/

PPARgamma

signaling 5359389 yes

Hydroxyurea 12.5 mM DNA replication/replication fork

progression

DNA homeostasis 3657 yes

Hygromycin 37.5 ug/ml translation/ribosome gene expression 35766 no

Imazalil 25 ug/ml lipid biosynthesis/ergosterol

synthesis

membrane integrity 37175 no

Iodoacetate 500 uM protein degradation/cysteine

peptidases

protein turnover 5240 no

Itraconazole 1.5625 ug/ml lipid biosynthesis/ergosterol

synthesis

membrane integrity 55283 yes

K252a 10 ug/ml signaling/variety of kinases signaling 127357 trials

Latrunculin 25 uM cytoskeleton function/actin cell structure 445420 no

Lead (II) nitrate 64 mM metal homeostasis/diverse broad spectrum 24924 no

Leptomycin 1.25 ug/ml nucleocytoplasmic transport/

Crm1

gene expression 6917907 no

LiCl 37.5 mM metal homeostasis/diverse broad spectrum/

unknown

433294 no

Lovastatin 37.5 ug/ml sterol synthesis/HMG CoA

reductase

metabolism 53232 yes

LY 294002 375 uM signaling/PI3K signaling 3973 no

Magnesium chloride 150 mM metal homeostasis/diverse broad spectrum 21225507 no

Malachite green 3.125 ug/ml antimicrobial/unknown antimicrobial 11294 no

Manganese sulfate 128 mM metal homeostasis/diverse metabolism 177577 no

Mastoparan 5 uM signaling/G-proteins signaling 5464497 no

(Menadione) 150 uM vitamin K3/reactive oxygen

species

diverse 4055 yes

(Continued on next page)
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Table 1. Continued

Inhibitor (Activator)

Highest

Screening Conc. Process/Enzyme Category Pubchem ID FDA Approval?

Menthol 1 mM voltage-dependent ion channels

(mammals)/sodium channel

signaling 16666 yes

Methotrexate 2.5 uM folate synthesis/DHFR metabolism 126941 yes

Methyl methanesulfonate

(MMS)

0.0165% DNA replication/replication fork

progression

DNA homeostasis 4156 no

Methylbenzethonium

chloride (MBT)

0.25% antimicrobial antimicrobial 5702238 topical

MG132 12.5 uM protein degradation/proteasome protein turnover 462382 no

Miconazole 6.25 ug/ml lipid biosynthesis/ergosterol

synthesis

membrane integrity 4189 yes

Mitomycin C 12 uM DNA damaging agent DNA homeostasis 5746 yes

Myclobutanil 2 ug/ml lipid biosynthesis/ergosterol

synthesis

membrane integrity 6336 no

Mycophenolic acid 2.5 ug/ml GMP synthesis/IMP

dehydrogenase

metabolism 446541 yes

Myriocin 12.5 ug/ml sphingolipid synthesis metabolism 6438394 analog

NA8 unknown unknown no

(NaCl) 37.5 mM osmotic regulation/HOG pathway stress response 5234 yes

(NaNO2) 150 uM reactive nitrogen species stress response 23668193 no

Neomycin sulfate 2.4 mM protein synthesis/ribosome gene expression 8378 yes

Nicotinamide 25 uM chromatin regulation/sirtuins gene expression 936 yes

Nigericin 100 ug/ml membrane integrity/ion gradient membrane polarization 34230 no

Nikkomycin 5 ug/ml chitin synthesis cell wall 72479 trials

NiSO4 1 mM antifungal/diverse antifungal 5284429 no

Nocodazole 30 uM cytoskeleton function/tubulin cell structure 4122 no

Ophiobolin A 62.5 ng/ml signaling/calmodulin signaling 5281387 no

Parthenolide 150 uM immune and inflammatory

response/NF-kB

signaling 6473881 no

Pentamidine isethionate 500 uM antimicrobial/mitochondrial

function

antimicrobial 8813 yes

pH 8.0, 8.5, 9.0 pH homeostasis diverse no

Phenylarsine oxide 2.5 uM broad/XCXXCX protein

phosphatases

broad spectrum 4778 no

Picoxystrobin 6.25 ug/ml quinone outside inhibitor

class/fungal cytochrome bcI

mitochondria 11285653 no

(Plumbagin) 2.8 uM reactive oxygen species stress response 10205 no

PMSF 10 mM vacuolar proteolysis/

proteinase B

signaling 4784 no

Polyoxin B 200 ug/ml chitin synthesis cell wall 3084093 no

Povidone iodine 2% antimicrobial antimicrobial 410087 topical

Prussian blue 75 mM monocation chelator metabolism 16211064 yes

Quinic acid 2 mM antimicrobial antimicrobial 6508 no

Rapamycin 0.125 uM signaling/TOR kinases signaling 5284616 yes

Rubidium chloride 150 mM potassium metabolism/

competitor

metabolism 62683 no

Rifamycin SV

monosodium salt

200 ug/ml RNA synthesis/RNA

polymerase

gene expression 6324616 yes

S10 unknown unknown no

S8 unknown unknown no

(Continued on next page)
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Table 1. Continued

Inhibitor (Activator)

Highest

Screening Conc. Process/Enzyme Category Pubchem ID FDA Approval?

S-aminoethyl-L-cysteine

(thialysine)

10 uM amino acid metabolism/lysine

analog

metabolism 20048 no

SDS 0.0015625% cell membrane integrity membrane integrity 3423265 no

Selumetinib 150 ug/ml signaling/MAPK (ERK) signaling 10127622 trials

Sertraline 15 ug/ml neurosignaling (mammals)/

seratonin reuptake

neurosignaling 68617 yes

Sodium azide 62.5 uM respiration/cytochrome oxidase mitochondria 33557 no

Sodium borate 10 mM antimicrobial/diverse antimicrobial 21749317 no

Sodium hydrosulfite 6.25 mM antimicrobial, counteracts

some antimicrobials

antimicrobial 24489 no

Sodium iodide 75 mM antimicrobial antimicrobial 5238 yes

Sodium metavanadate 10 mM signaling/protein phosphotyrosine

phosphatases

signaling 4148882 no

(Sodium molybdate) 64 mM respiration/oxygen uptake diverse 61424 no

Sodium selenite 4 mM respiration/oxygen uptake diverse 16210997 yes

Sodium sulfite 100 mM ATP synthesis and accumulation/

unknown

metabolism 24437 no

Sodium tungstate 64 mM metal homeostasis/diverse broad spectrum/unknown 150191 no

Sorafenib 100 uM signaling/VEGF tyrosine kinase signaling 216239 yes

Staurosporine 3 uM signaling/PKC1 signaling 5279 yes

(STF-62247) 400 uM autophagy protein turnover 704473 trials

Sulfometuron methyl 100 ug/ml branch chain amino acid

synthesis/acetolactate synthase

metabolism 52997 no

Suloctidil 400 uM Ca2+ homeostasis in blood

vessels (mammals)/putative

Ca2+ channel blocker

vascular system/

metabolism

5354 formerly

Tamoxifen citrate 10 uM estrogen signaling (mammals)/

estrogen receptor, mixed

agonist/antagonist

signaling 2733525 yes

Taurolidine 0.01% antimicrobial/lipopolysaccharide

detection and signaling

host defense 29566 yes

Tautomycin 250 nM signaling/PP2A signaling 3034761 no

Tellurite 0.1% sulfate assimilation metabolism 115037 no

Terbinafine 75 uM sterol synthesis/squalene

epoxidase

metabolism 1549008 yes

Thiabendazole 200 ug/ml respiration/NADH oxidase mitochondria 5430 yes

Thonzonium bromide 25 uM antimicrobial, pH homeostasis/

V-ATPase

broad spectrum 11102 yes

Tomatine 5 ug/ml glycoalkaloid antifungal of

unknown mechanism/ergosterol

biosynthesis

antifungal/membrane

integrity

28523 no

Trichostatin A 100 uM chromatin regulation/HDACs gene expression 444732 no

Trifluoperazine 200 uM signaling/calmodulin signaling 5566 yes

Trimethoprim 1.6 mg/ml folate synthesis/DHFR metabolism 5578 yes

Tunicamycin 2.5 ug/ml glycosylation/Alg7 secretion 11104835 no

Usnic acid 25 ug/ml antimicrobial antimicrobial 6433557 trials

Valinomycin 20 uM membrane integrity/potassium

exclusion

membrane polarization 5649 no

Verrucarin 5 uM protein biosynthesis/polysome protein turnover 6437060 no

ZnCl2 4 mM metal homeostasis/diverse diverse 5727 no

A list of compounds used in this study, their targets, and the screening concentration.
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deletions with the greatest number of phenotypes are

cnag_07622D (encoding the COP9 signalosome subunit 1) and

cnag_05748D (encoding a Nto1 subunit of the NuA3 histone ace-

tyltransferase). Compounds that elicit the greatest number of

responsive gene deletions (Figure 1F) are the heavy metal salt

sodium tungstate and the trichothecene protein synthesis inhib-

itor verrucarin (Table S5), presumably reflecting the pleiotropic

impact of these molecules on cells.

Gene Ontology Analysis Reveals Processes Associated
with Drug Sensitivity
Drug influx and efflux is thought to be a major general determi-

nant of microbial drug susceptibility (Fernández and Hancock,

2012), but we also sought functions involved in drug sensitivity.

We investigated this question in an unbiased fashion by

analyzing chemogenomic profiles using Gene Ontology (GO), a

gene annotation approach useful for comparative analyses. We

first identified annotated orthologs of C. neoformans genes rep-

resented in the deletion library and associated GO terms with

these orthologs. We then determined whether the sensitive

gene knockouts that respond to each small molecule are en-

riched for association with particular GO terms relative to a ran-

domized control set (Figure 2, Table S6). We observed that pro-

tein transport-related terms are highly enriched, as are

processes related to ubiquitin modification/proteolysis and

vesicle-mediated transport. These terms are associated with

nine and five compounds, respectively, suggesting that intracel-

lular transport and ubiquitin-mediated protein turnover may play

important general roles in drug sensitivity.

Comparison with S. cerevisiae Chemogenomic Profiling
Data Sets
Chemogenomic profiling has been performed extensively in

S. cerevisiae, allowing us to ask whether genetic responses to

compounds were conserved. We performed a three-way com-

parison with two large-scale studies (Hillenmeyer et al., 2008;

Parsons et al., 2006) (Figure 3A). Our data set has 46 compounds

in common with Parsons et al. (2006) and 29 with Hillenmeyer

et al. (2008); the two S. cerevisiae data sets had 15 compounds

in common. First we identified genes whose knockouts exhibited

a significant (Z % �2.5 or R +2.5) score (‘‘responding’’) when

treated with a small molecule used in more than one data set,

then identified which of those genes had orthologs in both

S. cerevisiae and C. neoformans. We then calculated how

many orthologs responded in both data sets. To adjust for a

greater starting number of common genes when comparing

the S. cerevisiae data sets to each other and control for func-

tional biases, we limited this comparison to genes that also

have orthologs in the C. neoformans knockout collection. The

blue labels for compounds in Figures 3B–3D indicate statistically

significant similarities (p % 0.05) in drug responses. Nearly all of

the compounds in common between the two S. cerevisiae

studies display statistically significant overlap in the genes that

produced sensitivity to a given compound, despite the very

different experimental platforms that were used to assess drug

sensitivity/resistance (13/15 cases; Figure 3B). In striking

contrast, few compounds show significantly conserved genetic

responses when comparing either S. cerevisiae data set with
C

theC. neoformans data. For the twoC. neoformans-S. cerevisiae

comparisons, only two of 46 compounds (Figure 3C) and one

of 29 compounds (Figure 3D) show conserved responses,

respectively.

The responses to azole compounds exhibit limited response

conservation between species. Comparing our data set with

Parsons et al., the responses to fluconazole (FLC) and clotrima-

zole, the azoles in both data sets, do not show significant overlap

(Figure 3C). Likewise, between our data set and Hillenmeyer

et al. (2008), no gene orthologs respond to miconazole and clo-

trimazole in both data sets (Figure 3D). In contrast, between the

two S. cerevisiae data sets, the only shared azole, clotrimazole,

shows a significantly similar response (Figure 3B). We compared

published work that examined the transcriptome responses of

S. cerevisiae (Kuo et al., 2010) and C. neoformans (Florio et al.,

2011) to FLC. We found that, while there was significant overlap

in orthologous genes impacted in the two species, (p = 1.6 3

10�3), there were also considerable differences: 67% of the

genes with an altered response in C. neoformans whose ortho-

logs in S. cerevisiae did not exhibit significant change, (Table

S7) (Kuo et al., 2010).

Using Chemical-Genetic Signatures to Identify Capsule
Biosynthesis Mutants
Studies in S. cerevisiae have shown that that the phenotypic sig-

natures of gene deletions for genes that act in the same process

or protein complex tend to be similar (Collins et al., 2007; Cos-

tanzo et al., 2010; Nichols et al., 2011; Parsons et al., 2004; Par-

sons et al., 2006). We reasoned that this property of could be

used in a pathogen to identify candidates for new genes involved

in virulence by simply testing gene deletions that displayed

phenotypic profiles similar to those corresponding to known

virulence factors.

C. neoformans harbors an inducible polysaccharide capsule

that is unusual among fungi (Del Poeta, 2004; Doering, 2009;

Haynes et al., 2011; Kumar et al., 2011; O’Meara and Alspaugh,

2012; O’Meara et al., 2010; Vecchiarelli et al., 2013). The

principal polysaccharide component, glucuronylxylomannan

(GXM), consists of a repeating glycan unit that has a-1,3-linked

mannose backbone with side chains of b-linked glucuronic

acid and xylose (Kozel et al., 2003). Capsule production is critical

for virulence and the ability of C. neoformans to evade detection

and destruction by the host immune system (Vecchiarelli et al.,

2013).

To identify candidates for genes involved in capsule formation

and/or attachment, we organized our data set using hierarchical

clustering of growth phenotypes produced by compound expo-

sure.We focused on two clusters, each containing a gene(s) pre-

viously implicated in capsule biosynthesis: PBX1 and CPL1 (Liu

et al., 2008; Liu et al., 2007b) in one cluster (Figure 4A) and

CAP60 (Chang and Kwon-Chung, 1998) in a second cluster (Fig-

ure 4B). The pbx1D/cpl1D cluster contains nine genes and the

cap60D cluster seven. We quantified capsule accumulation after

induction by computing the ratio of the diameter of the cell and

capsule to the diameter of the cell alone (Figures 4C and 4D).

Wild-type cells exhibit high capsule production, pbx1D mutants

display a partial defect (Liu et al., 2007a) and cpl1D and cap60D

mutants are acapsular (Chang and Kwon-Chung, 1998; Liu et al.,
ell 159, 1168–1187, November 20, 2014 ª2014 Elsevier Inc. 1175
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Figure 2. Determinants of Compound

Sensitivity

We calculated whether molecules elicited a sig-

nificant response from C. neoformans ORFs that

are enriched for association with specific GO

terms. Terms are listed on the y axis and the

number of compounds whose responding gene

knockouts associated with that GO term are listed

on the x axis. See also Table S6.
2008). We found that seven of nine mutants in the pbx1D/cpl1D

cluster exhibit a statistically significant capsule defect, as did

four of the seven mutants in the cap60D cluster. In contrast, pre-

vious work from our laboratory found that approximately 1% of

the original C. neoformans library shows a gross defect in

capsule production (Liu et al., 2008).

Previous work showed that pbx1D mutants produce polysac-

charide capsule whose attachment to the cell wall is sensitive to

sonication, a finding that we confirmed (Figures 4C and 4D). We

refer to the cell’s ability to retain GXM on the cell surface as

‘‘capsule maintenance.’’ Knockout mutants in cnag_01058 do

not exhibit a basal capsule defect but lost nearly 40% of their

capsule diameter following sonication. Cells deleted for the

GCN5 gene, like pbx1D cells, show both decreased capsule

levels and sonication-sensitive capsule. None of the mutants

from the cap60D cluster produces a sonication-sensitive pheno-

type, suggesting that the pbx1D/cpl1D and cap60D clusters

organize mutants that have distinct phenotypes. However,

because several mutants do not produce visible capsule, the
Figure 1. Chemical-Genetic Profiling of C. neoformans

(A) Heat map of full data set following hierarchical clustering. Compounds are arrayed on the x axis and gene k

(B) Probability density function for pairwise correlation scores between the chemical genetic profiles of differe

different concentrations (purple) screened on different days (different batches).Scores between the chemica

same compounds are significantly higher than those between different compounds (Wilcoxon test, p = 2.7 3

(C) Probability density function for pairwise correlation scores between the chemical genetic profiles of differe

(purple). Pairwise comparisons between azoles exhibit higher correlation scores than nonazole compounds

highest pairwise comparisons scores are listed on the right.

(D) Pearson’s correlation score between two different concentrations of the same compounds. Concentration

(y axis). For compounds with the greatest correlation scores between concentrations, Venn diagrams of sign

same compounds at different concentrations and the small-molecule structure are shown. The orange line i

(E)Histogram showing the number of deletion mutants that have given number of phenotypes. A phenotype is

independently for each small-molecule concentration.

(F) Histogram showing the number of small molecules that have a given number of phenotypes. Phenotypes

condition/concentration

See also Figure S1 and Tables S1, S2, S3, S4, and S5.

Cell 159, 1168–1187, No
sonication test is insufficient to defini-

tively measure capsule maintenance.

We therefore analyzed how much

glucoronoxylomannan (GXM), the major

capsular polysaccharide (Doering, 2009),

is secreted into the growth medium by

blotting with a-GXM antibodies (Fig-

ure S2A). We found that two mutants

that produce little (gcn5D) or no (yap1D)

visible capsule still shed GXM into the

medium, suggesting that they cannot

retain capsule on their cell surface.
Indeed, we found that they shed more GXM than pbx1D cells.

Four of nine mutants in the pbx1D/cpl1D cluster exhibit a main-

tenance defect, whereas none of the cap60D cluster mutants do.

We also found that GXM produced by these cells can be taken

up and added to the surface (‘‘donated’’) of an acapsular mutant

using a standard GXM transfer assay (Kozel and Hermerath,

1984; Reese and Doering, 2003). Moreover, apparent capsule-

defective mutants shed GXM (Figures S2B and S2C) and can

donate GXM from conditioned medium (Figure S2C). Mutants

that appear to not secrete GXM (pbx1D, cpl1D, and sgf73D)

can donate it, but only if conditioned medium concentration is

increased 10-fold (Figure S2D). These data are consistent with

a recently published study on the role of Pbx1 in capsule attach-

ment and assembly (Kumar et al., 2014).

Since the capsule is amajor virulence trait ofC. neoformans, we

tested whether knockout mutants that exhibited a capsule defect

displayed a defect in the mammalian host, using a murine inhala-

tion model. We infected mice with a mixture of differentially-

tagged wild-type and mutant cells at a ratio of 1:1. At 10 days
nockouts on the y axis. See also Tables S1 and S2.

nt compounds (gray) and the same compounds at

l-genetic profiles of different concentrations of the

10�176). See also Figure S1.

nt compounds (gray) and azole family compounds

(Wilcoxon test, p = 2.8 3 10�6). Molecules with the

s with similar correlation scores are binned together

ificant genes (Z < �2.5) present in profiles from the

ndicates a hypergeometric p value % 0.05

considered jZj > 2.5 and we identified phenotypes

(jZj > 2.5) were identified for each small-molecule

vember 20, 2014 ª2014 Elsevier Inc. 1177
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Figure 3. Chemical-Genetic Signatures of C. neoformans Genes Differ from Orthologous S. cerevisiae Genes

(A) Flowchart of computation process for comparing data sets.We identifiedC. neoformans andS. cerevisiae orthologous genes that were present in all data sets,

then compared the responses of only those genes in all the data sets. We compared genes whose knockout mutants significantly (jZj > 2.5) responded to

compound that were common in at least two of the data sets.

(B) Comparison between Parsons et al. (2006) and Hillenmeyer et al. (2008), comparing the response (jZj > 2.5) of genes that have orthologs present in the

C. neoformans data set. Compounds whose profiles exhibit significant overlaps (p < 0.05) are labeled in blue.

(C) Comparison between our data set and Parsons et al. (2006) Compounds whose profiles exhibit significant overlaps (p < 0.05) are labeled in blue.

(D) Comparison between our data set and Hillenmeyer et al. (2008) Compounds whose profiles exhibit significant overlaps (p < 0.05) are labeled in blue.
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postinfection (dpi), we sacrificed animals, harvested and homog-

enized lung tissue, then plated on the appropriate selectivemedia

for colony forming units (CFUs). All but one of the pbx1D/cpl1D

cluster members were significantly underrepresented relative to

wild-type; the exception was the cnag_01058D mutant, which is

defective in capsule maintenance but not capsule biosynthesis

(Figures 4C and S2A). yap1D cells, which appear acapsular but

secrete GXM, displayed a major defect in fitness in the host (Fig-

ure 4E). Threeof fourcap60Dclustermutants alsodisplay adefect

in accumulation of CFUs in host lungs (Figure 4E).

Chemogenomics Identifies the Cell Cycle as a Target
of the Antifungal Small Molecule S8
We included a number of drug-like antifungal compounds in our

screen in order to identify their targets (Table 1). Our use of

C. neoformans chemogenomics to assist in the identification of

a target of toremifene is described elsewhere (Butts et al.,

2014). Here we investigate the thiazolidine-2,4-dione derivatives

originally described for their activity against C. albicans biofilms

(Kagan et al., 2014).

Our chemogenomic profiling data of the thiazolidine-2,4-dione

derivative S8 revealed a striking outlier: a knockout mutant in the

gene coding for a C. neoformans ortholog of the conserved cell-

cycle kinase Wee1, is relatively resistant (Figure 5A). We

observed resistance at multiple concentrations of S8 (Table

S2). The related compound NA8, which contains a replacement

of a sulfur atomwith a carbon atom on the thiazolidinedione moi-

ety (Figure 5B), does not elicit the same resistance (Figure S3A).

The wee1D mutant is also resistant to S10 (Figure S3B), which

harbors a C10 alkyl chain instead of C8 but is otherwise identical

to S8 (Figure S3C).

Wee1 regulates the G2/M cell-cycle checkpoint through inhib-

itory phosphorylation of Cdk1, which in turn is required for cells

to traverse the checkpoint. The essential phosphatase Cdc25

activates Cdk1 by removing the inhibitory phosphorylation

added by Wee1 (Morgan, 2007) (Figure 5C). Because the

wee1D is relatively resistant to S8, we hypothesized that S8 tar-

geted a protein that acts through Wee1 to regulate Cdk1. One

such target could be Cdc25.

We reasoned that if theWee1/Cdc25-regulated step of the cell

cycle were an important target of S8 in vivo, wild-type

C. neoformans cells treated with S8 would arrest at G2/M. To

test this prediction, we treated exponential cultures with S8,

S10, or NA8 and examined the impact on the cell cycle. We har-

vested and fixed representative samples every 30 min, then

analyzed DNA content by flow cytometry. Control cultures

treated with DMSO (carrier) (Figure 5D) or the control compound

NA8 (Figure 5E) stayed asynchronous for the entire 3.5 hr of the

time course. Strikingly, S8-treated (Figure 5F) cells accumulated

with 2C DNA content, which indicates G2/M arrest in

C. neoformans, a haploid yeast (Whelan and Kwon-Chung,

1986). At later time points, cells synthesize DNA but do not

complete mitosis and cytokinesis. This is consistent with obser-

vations in S. pombe that partial inhibition of Cdk1 permits re-

replication of DNA (Broek et al., 1991).

Because inhibition of Cdc25 would provide a parsimonious

explanation for the genetic and biological properties of S8, we

tested whether S8 inhibits C. neoformans Cdc25 in vitro. We ex-
C

pressed and purified the catalytic domain of a C. neoformans or-

tholog (CNAG_07942) in E. coli (Figure S3D) and then performed

in vitro phosphatase assays using 3-O-methyl fluorescein phos-

phate (OMFP) as a substrate (Figures 5Gand5H) (Hill et al., 1968).

We observed that S8 inhibits Cdc25 activity (Ki �140 mM, Fig-

ure5E), asdobothS10 (FigureS3E)andNSC663284 (Ki�250mM,

Figure S3F), a commercially available inhibitor of mammalian

Cdc25 (Pu et al., 2002). The control compound NA8 does not

inhibit C. neoformans Cdc25 in vitro (Figure S3G). For S8, the

in vitro inhibition constant is roughly comparable to the liquid

MIC value against C. neoformans, which we measured to be

�60 mM in YNB. S10 has a higher Ki (Ki�310 mM) but similar to

the MIC value (�55 mM) measured in YNB agar compared to S8.

O2M: A Genetic Biomarker Algorithm to Predict
Compound Synergies
Drug resistance is a major clinical challenge in the treatment of

both bacterial and fungal infections (Anderson, 2005; Cantas

et al., 2013). An effective therapeutic strategy is to treat patients

with drugs that act synergistically, enhancing each other’s effec-

tiveness beyond that produced by the sum of each drug’s indi-

vidual impact (Kalan andWright, 2011). This approach is thought

to decrease acquisition drug resistance, increase the available

drug repertoire (Kalan and Wright, 2011) and ameliorate toxic-

ities (Kathiravan et al., 2012; Lehár et al., 2009).

We hypothesized that we could use the chemogenomic infor-

mation from our screens of drugs known to act synergistically,

such as FLC and fenpropimorph (Jansen et al., 2009), to identify

new synergistic interactions (Figure 6A). When we compared the

identity of genes whose knockouts ‘‘responded’’ to each individ-

ual small molecule in a known synergistic pair (jZjR 2.5, Tables

S3 and S4), we found that this ‘‘responsive’’ gene set was signif-

icantly enriched over the expected value (Fisher’s exact test, p%

6 3 10�5) (Figure 6A, top). This observation is consistent with a

previous report that the chemical-genetic response to each

drug in a synergistic pair is enriched for overlapping genes (Jan-

sen et al., 2009).

This overlap in responsive gene sets led us to consider the

possibility that overlapping responsive genes from known syner-

gistic compound pairs could be used as biomarkers to predict

new synergistic combinations. Our method involves first identi-

fying the overlaps in responsive gene sets for all compounds

that had been reported in the literature to synergize with a small

molecule of interest (‘‘compound X’’), selecting those genes

common to all of those sets (Figure 6A, middle, the overlaps of

overlaps). We refer to these genes as ‘‘synergy biomarker

genes.’’ Critically, we next hypothesized that any compound

that contains one or more of these synergy biomarker genes in

its responsive gene set would be synergistic with compound X.

Because our method used the overlaps of response gene over-

laps between compounds known to be synergistic, we refer to it

as the ‘‘overlap-squared method’’ or ‘‘O2M.’’

We then tested O2M using two drugs for which substantial

literature synergy information was available: FLC and geldana-

mycin (GdA). FLC is an approved antifungal drug. GdA is an in-

hibitor of Hsp90, a chaperone protein with many physical and

genetic interactions (Taipale et al., 2010). We performed our

analysis on fenpropimorph and sertraline, which are known to
ell 159, 1168–1187, November 20, 2014 ª2014 Elsevier Inc. 1179
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Figure 4. Chemical-Genetic Profiling Identifies Genes Involved in Capsule Biosynthesis

(A) Cluster containing the chemical signatures of the pbx1D and cpl1D mutants.

(B) Cluster containing the chemical signatures of the cap60D mutants.

(legend continued on next page)
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act synergistically with FLC (Jansen et al., 2009; Zhai et al.,

2012), and cyclosporine and rapamycin, which are known to

act synergistically with GdA (Francis et al., 2006; Kumar et al.,

2005). Using this prior knowledge and our data, we identified

synergy biomarker genes for FLC (CNAG_00573, CNAG_

03664, and CNAG_03917) and GdA (CNAG_01172, CNAG_

03829, and CNAG_01862). We generated a list of compounds

from our chemical-genetics data set that contain one or more

of these genes in their responsive genes set.

We then used a standard ‘‘checkerboard’’ assay to experimen-

tally determine fractional inhibitory concentration index (FICI),

and we adopted the standard that an FICI value below 0.5 is syn-

ergistic (Meletiadis et al., 2010).Wedetermined FICIs for FLCand

GdAwith three sets of compounds: (1) the compounds predicted

fromsynergybiomarker genes, (2) thepredicted synergistic com-

pounds for the other drug (e.g., we tested compounds predicted

to be synergistic with GdA for synergy with FLC), and (3) a

randomly generated subset of the compounds not predicted to

act synergistically with either FLC or GdA. The second and third

groups are as controls for compounds that are generally syner-

gistic and to determine the background frequency of synergistic

interactions within a set of compounds.

Respective experimental FICI values for FLC and GdA are

shown in Figures 6B and 6C (yellow bars: synergy; blue bars ad-

ditive or worse interactions). The labels for compounds we pre-

dicted to be synergistic are colored purple, positive controls

(published synergistic compound pairs) are colored green, and

predicted negative control compounds are colored blue (Fig-

ure 6). We observed that only�10%of the negative control com-

pounds act synergistically with either FLC or GdA. In striking

contrast, we found �80% and �60% of the compounds

selected byO2Mare synergistic with FLC andGdA, respectively.

Thus, for two unrelated compounds, O2M is highly successful at

predicting synergistic interactions and performs vastly better

than the brute force trial-and-error approach (Figures 6D and

6E) (p < 0.0008, Fisher’s exact test).

DISCUSSION

We applied chemogenomic profiling to the major fungal driver of

AIDS-related death, the encapsulated yeast C. neoformans, to

produce a chemical-genetic atlas of this important pathogen.

Beyond identifying new virulence factors and compound mode

of action, we describe a conceptually general approach to iden-

tifying drug synergies that combines prior knowledge and che-

mogenomic profiles.

A Chemical-Genetic Atlas for C. neoformans

Wemaximized the quality of the atlas in several ways. To capture

concentration-dependent impacts of compounds, we obtained

the MIC for each compound and examined the genetic re-
(C) Images of individual cells grown in 10%Sabouraud’s broth to induce capsule.

phenotype. Scale bar, 5 mm.

(D) Quantification of capsule sizes from all mutants in pbx1D/cpl1D (purple labe

strain, the error bars represents the standard deviation, and p values were calcu

(E) Colony counts from colony forming units (cfu) extracted frommouse lungs follo

bars represent the standard deviation and p values were calculated using Stude

C

sponses at multiple concentrations below MIC. In addition, we

performed a large number of control screens and incorporated

batch information for systematic correction. Overall benchmarks

of data quality (Figure 1) together with nearest neighbor and

Gene Ontology analysis (Figure 2) support the existence of sub-

stantial chemical-genetic signal in the data. Even genes with

orthologs in both S. cerevisiae and C. neoformans show consid-

erable differences in responses (Figure 3). While this may not be

surprising given the large phylogenetic distance between these

fungi, it shows that understanding the chemical responses of

pathogens requires pathogen-focused studies, even when

considering conserved genes and processes. For example, we

observed differences in the responses to azole drugs between

S. cerevisiae and C. neoformans (Figure 3). Since azoles are

heavily used clinically, differences in responses between species

are of significant interest.

Insights Gained from Initial Use of the C. neoformans

Chemical-Genetic Atlas
Identification of Mutants that Impact Capsule Formation

and Mammalian Infection

Our studies on capsule biosynthesis genes focused two different

clusters that contained genes that we and others have shown to

be required for capsule formation, the pbx1/cpl1D cluster and

the cap60D cluster. As anticipated frommodel organism studies

(Collins et al., 2007; Costanzo et al., 2010; Nichols et al., 2011;

Parsons et al., 2004; Parsons et al., 2006), these clusters were

indeed enriched for genes whose mutants are defective in

capsule biosynthesis and mammalian pathogenesis. The genes

represented by the two clusters differed functionally in that

genes in the pbx1/cpl1D cluster but not the cap60D cluster are

required for association of capsule polysaccharide with the cell

surface (Figures 4 and S2). A recent study on Pbx1 and its ortho-

log, Pbx2, proposes that the two proteins act redundantly in

capsule assembly (Kumar et al., 2014). pbx1D and pbx2D cells

shed lower amounts of GXM into the culture medium but that

the GXM functions in a capsule transfer assay. Electron micro-

scopy studies indicate that these mutants exhibit defects in the

cell wall. Our data are fully consistent with these data. Other

genes from the pbx1D/cpl1D cluster likely play a role in these

processes. Some, like GCN5 and SGF73, which encode ortho-

logs of the yeast SAGA histone acetylase/deubiquitylase com-

plex, are clearly regulatory, while others could act more directly.

While detailed validation and investigation of these many candi-

dates (including gene deletion reconstruction studies) will be

required to obtain mechanistic insight into capsule biology, their

enrichment suggests value of this Cryptococcal chemogenomic

resource in identifying mutants defective in virulence.

Compound Target Identification

Chemogenomic profiling has proven useful in identifying targets

of uncharacterized compounds (Parsons et al., 2006), including
Representative cells are shown for mutants that exhibit a statistically significant

ls) cluster or cap60D (green labels) cluster. 100 cells were measured for each

lated using Student’s t test.

wing an inhalation infection. Three mice are shown for each datapoint; the error

nt’s t test.
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in the pathogenic fungus C. albicans (Jiang et al., 2008; Xu et al.,

2007; Xu et al., 2009). Chemical-genetic data can be used to

determine the target of compounds within complex mixtures

(Jiang et al., 2008; Xu et al., 2009). Our goal differed: we sought

to identify targets of repurposed compounds, as described else-

where (Butts et al., 2013), or, in the case of S8, a compound iden-

tified as an inhibitor of Candida biofilms (Kagan et al., 2014). The

identification of the Wee1 kinase as a sensitivity determinant for

S8, the cell-cycle arrest produced by S8, and the ability of the

compound to inhibit CnCdc25 in vitro together support the

model that S8 inhibits growth through via the cell cycle at least

in part via inhibition of Cdc25. Whether this explains its impact

on biofilms requires further investigation. As with any compound

target, ultimate proof that Cdc25 is the target of S8 will require

the isolation of resistance alleles of CDC25.

Given the simplicity of the pharmacophore and its Ki for

CnCdc25, it would not be surprising if S8 had additional cellular

targets, as recently described (Feldman et al., 2014). Cdc25 is a

conserved cell-cycle phosphatase and therefore might be

considered a poor drug target a priori but cyclin-dependent ki-

nases are a focus of recent antiparasite therapeutics (Geyer

et al., 2005). It is also notable that the target of azole antifungals,

lanosterol 14-demethylase (Ghannoum and Rice, 1999) is

conserved from yeast to human.

O2M: Predicting Compound Synergies Using Prior

Knowledge and Chemical Profiles

Identifying synergistic drug interactions is of considerable clin-

ical interest, but efficient methods for their identification are

elusive. Systematic examination of combinations of a small set

of compounds using S. cerevisiae suggests that synergies are

relatively rare and often involve so-called ‘‘promiscuous’’ syner-

gizers, compounds that are synergistic with multiple partners

(Cokol et al., 2011). Chemogenomic studies have shown that

drugs known to be synergistic tend to have overlapping ‘‘re-

sponding’’ gene sets (Jansen et al., 2009). We expanded on

this concept to develop a highly parallel method, O2M, for effi-

ciently predicting synergistic drug interactions. Our work utilizes

prior knowledge of drug synergies to identify a discrete set of

predictive biomarker genes for a given compound. We experi-

mentally demonstrated the utility of O2M for two compounds,

FLC and geldanamycin. Our method identified dozens of syner-

gistic interactions and discovered a small number of biomarkers

that could serve as readouts for further screens for synergistic

drugs. The method appears to not simply select promiscuous

synergiziers: five of six drugs previously classified as promiscu-
Figure 5. C. neoformans Cdc25 Is a Target of S8 In Vivo and In Vitro

(A) Chemical-genetic data of the growth scores of each knockout mutant grown

mutant strain that showed the greatest sensitivity to S8 is cnag_04462D.

(B) Structures of S8, NA8, and NSC 663284. The structure of S10 is shown in Fig

(C) G2/M regulation (Morgan, 2007).

(D) DNA content of asynchronousC. neoformans culture split into aliquots for treat

Data for DMSO-treated culture is shown.

(E) DNA content from NA8-treated culture from same starting culture as Figure 5

(F) DNA content from S8-treated culture from same starting culture as Figure 5F

(G) Phosphatase activity of purified C. neoformans Cdc25 catalytic domain (CNA

the error bars represent the standard deviation.

(H) Michaelis-Menten kinetics of S8 inhibition of CnCdc25 from in vitro phosphata

value (0.94).

C

ous synergizers (Cokol et al., 2011) were tested in our studies but

most were not predicted to be synergistic by O2M. One of the

promiscuous compounds was a positive control (fenpropimorph

with FLC) and another (dyclonine) was predicted synergistic with

FLC but was not and was predicted not synergistic with GdA but

was. We anticipate that O2M could be used to identify synergis-

tic compound interactions in published E. coli and C. albicans

chemical-genetics data sets (Jiang et al., 2008; Nichols et al.,

2011; Xu et al., 2007; Xu et al., 2009).

EXPERIMENTAL PROCEDURES

Determination of MICs

We determined MIC on solid growth medium for each compound used in

screening (Table 1).

Colony Array-Based Chemogenomic Profiling

C. neoformans knockouts were inoculated from frozen 384-well plates to

YNB + 2% glucose. Plates were grown 24 hr at 30�C, then used to inoculate

screening plates containing compounds of interest.

Data Analysis

Data were analyzed as previously described (Baryshnikova et al., 2010) with

the a few exceptions.

C. neoformans Ortholog Identification and GO Term Mapping

Mapping from S. cerevisiae Uniprot Proteins to C. neoformans Uniprot

Proteins was done using One-to-one mappings in MetaPhOrs (http://

metaphors.phylomedb.org/). C. neoformans ORFs were compared to a data-

base of S. cerevisiae Uniprot Proteins using blastp (Altschul et al., 1997) with a

E-score cutoff of 10�30. Corresponding yeast GO annotations were mapped

onto the C. neoformans ORFs.

Comparison of Transcriptional Response to FLC

Compared transcriptional responses between S. cerevisiae (Kuo et al., 2010)

and C. neoformans (Florio et al., 2011).

Capsule Induction Assay

Samples were grown overnight at 30�C in 100% Sabouraud’s broth, then

diluted 1:100 into 10% Sabouraud’s broth buffered with 50 mM HEPES pH

7.3 and grown for 3 days at 37�C. India ink was added at 3:1 ratio and samples

imaged on a Zeiss Axiovert microscope.

Capsule Transfer Assay

Performed as in (Reese and Doering, 2003), with minor modifications.

GXM Immunoblot Assay

Conditioned medium was made from donor GXM donor strains as described

above.
on S8 (y axis). The mutant that exhibited the greatest resistance is wee1D. The

ure S3C.

ment with compounds of interest, with samples harvested at appropriate times.

F.

.

G_01572, aa442-662). Average of three independent replicates are shown and

se activity. A noncompetitive model of enzyme inhibition produced the best R2
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not
synergistic

negative
controls

predicted
synergistic

25 6

15 26

E
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myriocin
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tunicamycin

4-OH-tamoxifen
5-MT
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Mouse Infection Assay

Mouse lung infections were performed as previously described (Chun et al.,

2011).

Cdc25 Protein Purification

We identified the C. neoformans ortholog of Cdc25, CNAG_01572, by best

reciprocal BLAST (Altschul et al., 1997) hit with the human Cdc25A,

Cdc25B, and Cdc25C protein isoforms. We then inserted the exonic

sequence of the catalytic domain into a 63-His tag expression vector for

purification.

Cdc25 Phosphatase Assay

Cdc25 phosphatase activity was analyzed in activity buffer (50mMTris pH 8.3,

5% glycerol, 0.8 mM dithiolthreitol, and 1% PVA).

Cdc25 Inhibitor Treatment and FACS Analysis

Wild-type C. neoformans was grown overnight in 13 YNB at 30�C with

rotation. Cultures were diluted to OD600 �0.2 into 150 ml 13 YNB, then

incubated 3 hr at 30�C. Samples were then split and NA8, S8, and S10

added to 60 mM. Equivalent volume of DMSO was added to the control

culture.

Fractional Inhibitory Concentration Index Assay for Synergy

We determined FICI using a standard checkerboard assay (Hsieh et al., 1993),

calculating FICI as described using a 50% growth inhibition cutoff for MICs for

individual compounds (Hsieh et al., 1993; Meletiadis et al., 2010), then using a

standard cutoff of FICI < 0.5 to define synergy.

See Extended Experimental Procedures for additional details.
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Figure 6. O2M Approach for Predicting Compound Synergy

(A) Approach for predicting compound synergistic interaction.

(B) FICI values for fluconazole (FLC). Predicted synergistic compounds are labe

average of two assays but both had to be FICI < 0.5 to be considered synergistic.

predicted to synergize with geldanamycin (GdA) but not FLC or 2) randomly gene

Yellow bars represent an FICI < 0.5 (synergistic) and blue bars and FICI R 0.5 (n

(C) FICI values for GdA. Labels and colors are analogous to those in part B.

(D) Contingency table of synergistic versus nonsynergistic interactions with FLC

(E) Contingency table of synergistic versus nonsynergistic interactions with GdA

C
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