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NOTE

On the Size of Set Systems on [n] Not
Containing Weak (r, 2)-Systems

Vojte� ch Ro� dl*

Department of Mathematics and Computer Science, Emory University,
Atlanta, Georgia 30322

and

Lubos� Thoma-

DIMACS, Rutgers University, P.O. Box 1179, Piscataway, New Jersey 08855-1179

Let r�3 be an integer. A weak (r, 2)-system is a family of r sets such that all
pairwise intersections among the members have the same cardinality. We show that
for n large enough, there exists a family F of subsets of [n] such that F does not
contain a weak (r, 2)-system and |F|�2(1�3) } n1�5 log4�5(r&1). This improves an earlier
result of Erdo� s and Szemere� di (1978, J. Combin. Theory Ser. A 24, 308�313; cf.
Erdo� s, On some of my favorite theorems, in ``Combinatorics, Paul Erdo� s Is
Eighty,'' Vol. 2, Bolyai Society Math. Studies, pp. 97�133, Ja� nos Bolyai Math. Soc.,
Budapest, 1990). � 1997 Academic Press

1. INTRODUCTION AND RESULTS

In this note we are going to show a lower bound on the maximal size
of a set system of subsets of an n-element set without a weak (r, 2)-system.

Definition 1.1. Let r�3 be an integer. A set system H=[A1 , ..., Ar]
such that the cardinality of the intersection Ai & Aj is the same for all ( r

2)
pairs i, j, 1�i<j�r, is called a weak (r, 2)-system. By a weak 2-system
we understand a weak (r, 2)-system for some r�3.

Throughout the paper we use log x=log2 x and [n]=[1, ..., n], where n
is a positive integer. We do not optimize the constants used in our statements.
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The existence of weak 2-systems in set systems has been studied since
long time ago, cf. [ER 60], [ER 69], [ES 78], [FR 87], [AFK 95].

The best lower bound was proved by P. Erdo� s and E. Szemere� di in
[ES 78]. They showed:

Theorem 1.2. There exists a family F of subsets of a given set S so that
F does not contain a weak 2-system, where

|S|=n and |F|�nlog n�4 log log n.

This lower bound is also mentioned in [E 90].
The best known upper bound was proved in the following stronger form

by P. Frankl and V. Ro� dl [FR 87].

Theorem 1.3. Given r�3, there exist constants &=&(r)>0, ===(r)>0,
so that for every n and l with |n�4&l |�&n, and for every family F of sub-
sets of [n] with |F|>(2&=)n, there exist F1 , ..., Fr # F with |Fi & Fj |=l,
1�i<j�r.

In Section 2 we are going to prove the following Theorem 1.4.

Theorem 1.4. Let r�3 be an integer. For n large enough, there exists
a family F of subsets of [n], such that F does not contain a weak (r, 2)-
system and

|F |�2(1�3) } n1�5 } log4�5(r&1).

This bound improves the bound given in [ES 78], as for r=3, Theo-
rem 1.4 implies that there is a set system F on [n] such that F does not
contain a weak 2-system and |F |�2(1�3) n1�5

, for n large enough.
Unfortunately, there is still a large gap between the lower and upper

bounds.

2. PROOF OF THE LOWER BOUND

In this section, we are going to prove Theorem 1.4. First, we need a
definition and some lemmas.

Definition 2.1. Let m(n, m, l ) be the maximal cardinality of a family F

of m-element subsets of [n] such that

|F & F $|�l,

for any pair F, F $ # F.
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The following bound is well known.

Lemma 2.2. For any n�m>l�0

m(n, m, l )�\ n
m+< :

m

i=l+1 \
m
i +\

n&m
m&i+ (1)

holds.

Proof. Consider a graph H with the vertex set consisting of all
m-element subsets of the set [n] and in which two subsets are adjacent
when they intersect in more than l elements. Clearly, the degree of each
vertex of H equals

2= :
m&1

i=l+1
\m

i +\
n&m
m&i + .

Therefore, the graph H can be properly colored by 2+1 colors; the largest
of the color classes establishes the lemma. K

For a special choice of parameters m and l, we obtain the following
lemma.

Lemma 2.3. Set m=wn3�5 } log2�5(r&1)x and l=W6n1�5 } log4�5(r&1)X.
Then for n sufficiently large the following holds:

m(n, m, l )�e5n1�5 } log4�5(r&1). (2)

Proof. We suppose n is large enough and such that the following
inequalities hold:

n&2m+l+1�
1
3

n, (3)

l !�4 } \ l
e+

l

, (4)

n&2m
e

�
n
3

, (5)

2 \1+
m
n +

m

�em2�n, (6)
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and

ln 2�
2 log2�5(r&1)

n2�5 . (7)

We start with the following claim.

Claim A. For i=l, ..., m&1, the following holds:

\m
i +\

n&m
m&i+

\ m
i+1+\

n&m
m&i&1+

>2. (8)

Proof of Claim A. Using (3) we bound

\m
i +\

n&m
m&i+

\ m
i+1+\

n&m
m&i&1+

=
(i+1)(n&2m+i+1)

(m&i)2 >
l } 1

3 } n
m2 >2. K

Note that to show the last inequality, we needed ln>6m2.
Combining Lemma 2.2 and Claim A, we immediately get

m(n, m, l )�
\ n

m+
\m

l +\
n&m
m&l+

, (9)

for our choice of m and l.
In order to show inequality (2) we will further estimate the right hand

side of (9) as follows: (In the estimates below, we use inequalities (4)�(7).)

m(n, m, l )�
\ n

m+
\m

l +\
n&m
m&l+

=
(m&l )!2

m!2 }
n! l!(n&2m+l )!

(n&m)!2

�
l!

m2l }
n(n&1) } } } } } (n&m+1)

(n&m)(n&m&1) } } } } } (n&2m+1)

_(n&2m+l )(n&2m+l&1) } } } } } (n&2m+1)
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�4 } \ l
em2+

l

} (n&2m) l }
n

n&m
}

n&1
n&m&1

} } } } }
n&(m&1)

n&m&(m&1)

�4 } \ nl
3m2+

l

} \1+
m

n&m+
m

�4 } \ nl
3m2+

l

} \1+
m
n +

m

�2 } \ nl
3m2+

l

} em2�n=2e(m2�n)+l ln(nl�3m2)

�en1�5 } log4�5(r&1)+6n1�5 } log4�5(r&1) } ln 2

�e5n1�5 } log4�5(r&1).

This finishes the proof of the lemma. K

Proof of Theorem 1.4. Let G be a system of subsets of [n] establishing

m(n, wn3�5 } log2�5(r&1)x , W6n1�5 } log4�5(r&1)X)�e5n1�5 } log4�5(r&1).

Set k=Wn1�5�3 log1�5(r&1)X .
Consider a rooted (r&1)-ary tree T of height k (i.e., with k edges on

every branch and with ((r&1)k+1&1)�(r&2) vertices). A branch in a
rooted tree is defined as a path from the root to a leaf.

Let |T | denote the number of vertices of T. Since for n large enough

|G|>e5n1�5 } log4�5(r&1)>(r&1)k+1>|T |, (10)

we can associate a set *(v) # G to each vertex v of T in such a way that for
v1{v2 , *(v1){*(v2) holds.

Let B be the set of all branches of T. Set

F={ .
v # V(B)

*(v) : B # B= . (11)

We will prove that F is a set system establishing the validity of
Theorem 1.4. This follows from the following facts.

Fact A. |F |�2(1�3) } n1�5 } log4�5(r&1).

Fact B. F does not contain a weak (r, 2)-system.
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Proof of Fact A. Let B1 , B2 , B1{B2 , be two branches of T. We will
show that

.
v # V(B1)

*(v)& .
u # V(B2)

*(u){< (12)

and, thus, any two sets assigned to different branches of T are distinct.
Since |*(v)|=m for each vertex v of T, and

} .
v # V(B1)

*(v) & .
u # V(B2)

*(u) }�(k+1)2 } l,

we infer that for n large enough

} .
v # V(B1)

*(v)& .
u # V(B2)

*(u) }
= } .

v # V(B1)

*(v)&\ .
v # V(B1)

*(v) & .
u # V(B2)

*(u)+ }
�m&(k+1)2l

�n3�5 } log2�5(r&1)&1

&\ n1�5

3 log 1�5(r&1)
+2+

2

\6n1�5log4�5(r&1)+1+ (13)

>0. (14)

Hence, statement (12) holds.
For the size of the family F we then get

|F |=(r&1)k�(r&1)n1�5�3 log1�5(r&1)=2(1�3) n1�5 } log4�5(r&1). K

Proof of Fact B. We are going to show that F does not contain a weak
(r, 2)-system. First recall that the elements of F correspond to the
branches of the (r&1)-ary tree T and consider any r distinct sets A1 , ..., Ar

of F. By a simple pigeon-hole type argument this, however, implies that
there are three sets F1 , F2 , and F3 (among A1 , ..., Ar) such that if
B1 , B2 , B3 are branches corresponding to F1 , F2 , F3

|V(B1) & V(B2)|{|V(B1) & V(B3)|

holds. Without loss of generality, assume that

|V(B1) & V(B3)|=j>i=|V(B1) & V(B2)|.
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Then we can bound

|F1 & F3 |�jm&\ j
2+ } l

while

|F1 & F2 |�im+[2i(k&i+1)+(k&i+1)2] l=im+[(k+1)2&i 2] l

(since every F # F is a union of k+1 sets from G). In order to verify that
F does not contain a weak (r, 2)-system, it is enough to show that

|F1 & F2 |�im+[(k+1)2&i 2] l<jm&\ j
2+ l�|F1 & F3 | .

This will follow from

m>(k+1)2 l�
(k+1)2&i 2+\ j

2+
j&i

} l. (15)

While the first inequality follows from (13)�(14), we now prove the second.
First, we will rewrite it in an equivalent form:

( j&i&1)(k+1)2�\ j
2+&i 2. (16)

If j=i+1, then ( j
2)&i 2=(i(i+1)�2)&i 2= 1

2 i(1&i)�0 and, hence, (16)
holds. If j>i+1, then ( j&i&1)(k+1)2>k2>( j

2)&i 2 and the inequality
(16) holds as well. K

Remark 2.4. Our bound is very likely not the best possible. Possible
improvements could be obtained by improving Lemma 2.2 (for the appro-
priate choice of parameters) or by modifying our construction.
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