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Abstract

Nitrite is consumed in the diet, through vegetables and drinking water. It is also added to meat products as a preservative.
The potential risks of this practice are balanced against the unique protective effect against toxin-forming bacteria such as
Clostridium botulinum. The chemistry of nitrite, and compounds derived from it, in food systems and bacterial cells are
complex. It is known that the bactericidal species is not nitrite itself, but a compound or compounds derived from it during
food preparation. Of a range of nitrosyl compounds tested, the anion of Roussin’s black salt [Fe4S3;(NO)7]~ was the most
inhibitory to C. sporogenes. This compound is active against both anaerobic and aerobic food-spoilage bacteria, while some
other compounds are selective, indicating multiple sites of action. There are numerous possible targets for inhibition in the
bacterial cells, including respiratory chains, iron—sulfur proteins and other metalloproteins, membranes and the genetic
apparatus. © 1999 Elsevier Science B.V. All rights reserved.
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1. The nitrite controversy

Nitrate and nitrite have been used for centuries in
curing and preserving meats and fish, and in the
manufacture of certain cheeses [1]. For commercial
purposes, salt mixtures were found to be more effec-
tive in curing processes if they contained saltpetre
(potassium nitrate) [2]. During preparation, nitrate
is reduced to nitrite which is the major active ingre-
dient in these salt mixtures. Nitrate is reduced to
nitrite by bacteria under anaerobic conditions, using
the molybdopterin-containing nitrate reductase. Di-
etary nitrate may be reduced to nitrite by bacteria
present in the mouth and sometimes in the stomach
[3]. Doran [4] as cited in Binkerd and Kolari [1], was
issued a U.S. patent in 1917 for replacement of ni-
trate with nitrite in curing brines.

When added to foods such as cured meats, nitrite
has at least three functions [5]. Firstly, it contributes
to the flavour; this may be due to the inhibition of
development of rancid off-flavours [6]. Secondly, it
reacts with myoglobin to give mononitrosylhaemo-
chrome [7], which gives the characteristic pink colour
of cured meat. Thirdly, it inhibits the growth of food
spoilage bacteria, and most importantly, Clostridium
botulinum. C. botulinum thrives under anaerobic con-

ditions, and produces a neurotoxin which is one of
the most lethal natural products known. Nitrite, to-
gether with cooking and the addition of salt, is a
protection against food poisoning by this microor-
ganism [2,8].

Nitrate and nitrite occur in the diet from numer-
ous different sources [3,9,10]. Vegetables are a major
source of nitrates, for example about 1000 mg/kg for
leaf vegetables such as lettuce, and 200 mg/kg in root
vegetables such as potatoes [11]. The average levels
of nitrite (as NaNQ;) in cured meat products are in
the range 10-40 mg/kg [12], with values in the U.S.
being in the lower part of the range [13].

Although the preservatives which are permitted in
foods are considered to be without potential adverse
effects there have been concerns about the safety of
nitrites. Nitrite, in high concentrations, is undoubt-
edly toxic to humans. Acute effects have been ob-
served from accidental ingestion, for example in con-
taminated drinking water [14], sausages [15] and
medicines [16]. The principal toxic effect is oxidation
of oxyhemoglobin to ferrihemoglobin, leading to
methemoglobinaemia. This can be fatal, particularly
in newborn infants in which the methemoglobin-re-
ducing capacity is low, leading to so-called ‘blue
baby syndrome’ [17]. In Britain this condition is ex-
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tremely rare. Other adverse effects of nitrite have
been reported, including the inhibition of intestinal
absorption in rats [18]. In 1985 the European Union
set a limit of 50 mg/litre of drinking water.

Since the 1970s there has been concern about a
possible link between nitrite and cancer. There is
no conclusive evidence that nitrite is directly carcino-
genic [19], but in high doses it has been implicated as
a co-carcinogen [20]. It has been shown to induce
mutations in some bacterial strains of Salmonella ty-
phimurium used for detection of base-pair substitu-
tions [21]. Some epidemiological studies have sug-
gested a link between dietary nitrates and nitrites,
and the incidence of cancer (cited in [22]). There is
an unusually high incidence of oesophageal cancer in
Henan province, China, and this has been associated
with a diet of vegetables pickled in water containing
high levels of nitrate and nitrite [23]. Recent studies
have failed to show a correlation between dietary
nitrite and gastric cancer [22,24].

The complex chemistry of nitrite, nitric oxide and
related compounds makes it difficult to establish the
level of associated risk [25]. It is known, for example,
that N-nitroso compounds (nitrosamines) may be
formed from nitrites [26]. Compounds such as N-ni-
trosodimethylamine have been shown to be carcino-
genic in a wide range of animal species [23]. N-nitro-
so compounds have been detected in cured meats
after cooking [27]. For example, concentrations of
apparent total N-nitroso compounds of 2.9 ug/kg
were measured in fried smoked bacon; of this,
known volatile and non-volatile N-nitroso com-
pounds accounted for only 10-20% [28]. There is
also the possibility of formation of N-nitroso com-
pounds by reaction with various compounds from
peptides and other amino compounds in the acid
conditions of the stomach. Nitrite continues to be
used in meat products primarily due to its unique
property of protecting against growth of the heat-
resistant spores of C. botulinum, and subsequent tox-
in formation [29]

Much of the controversy about the possible toxic-
ity and carcinogenicity of low levels of nitrite pre-
dates the discovery that nitric oxide and nitrite are
normal human metabolites, being derived by nitric
oxide synthases from arginine [30]. Nitric oxide is
not a xenobiotic, but has many physiological func-
tions, including, significantly, the inflammatory im-

mune response to bacterial infection [31]. The
amount of nitrite produced in this way is comparable
to that ingested in the diet [3]. The human body has
defences against the toxic effects of nitrite and nitric
oxide which some bacteria, including C. botulinum,
do not possess.

In view of the possible risk of toxicity and carcino-
genesis, the amount of nitrite added to foods is pro-
gressively being restricted. Nitrite, rather than ni-
trate, tends to be added to cured meat products,
and in the lowest concentrations consistent with
food safety. The mechanism by which it inhibits bac-
terial growth is of considerable interest, and has been
studied for more than 50 years [32], but is still not
understood at the molecular level. The interactions
of nitrite with various substrates, such as amino
acids, peptides, metalloporphyrins and iron-sulfur
clusters, are known [23]. It seems probable that if
the mechanisms by which nitrite interferes with cell
growth were understood, in terms of both the cellular
target of nitrite action and the chemical events which
lead to growth inhibition, other compounds which
mimic the nitrite mechanism could be rationally de-
signed or selected. Such compounds might be impor-
tant as new food preservatives, antibiotics, or general
bacteriostatic agents.

2. Chemistry of nitrite, nitric oxide and related
nitrosyl compounds

Nitrite, when added to food systems and bacterial
cells, undergoes complex chemical interconversions
and metabolism. Some of the compounds formed
are stable but kinetically reactive. Few of the meta-
bolic products of nitrite, other than N, gas, can be
considered inert. If nitrite is converted to forms that
are undetectable by the analytical methods used,
these may still act as a reservoir of NO-related spe-
cies which can be reconverted to active forms. This
has made it difficult to discover the fate of nitrite and
other NO-related species, and to determine the rea-
sons for their bacteriostatic action.

Many methods have been used to measure the
compounds formed in meat from nitrite, but most
have limitations; either they will only detect some
chemical species, or they cannot distinguish different
species. The Griess reaction, which produces a col-
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oured azo compound, is a test for nitrite and related
N(III) species, but under aerobic conditions NO can
be converted to NO, . Chromatographic methods are
slow, and can lead to interconversion of species.
Electrodes for detection of NO are sensitive to oxi-
dising and reducing compounds present in biological
materials, though more recent systems appear to
overcome this difficulty. EPR spectroscopy can de-
tect nitrosyl species such as nitrosyl iron complexes,
only if they are paramagnetic, i.e., having an odd
number of electrons. ’N-nuclear magnetic resonance
is selective for different species but relatively insensi-
tive, and does not detect >N bound to macromole-
cules. It is not surprising that it has been difficult to
account quantitatively for the nitrogen added as ni-
trite to food systems.

The chemistry of nitric oxide and its redox-related
species NO™ (the nitrosonium cation) and NO™ (the
nitroxyl anion) [33] is central to an understanding of
the biology of NO. Nitric oxide is an oxidant
(E=+1.18 V for NO/N,O), and a reducing agent
(E=+0.35 V for NO,/NO). NO contains N(II), the
nitroxyl ion N(I) and the nitrosonium ion N(III),
and each of them has a distinctive chemistry unique
to itself. In biochemical systems, nitric oxide in so-
lution has a half-life of a few seconds. Reaction with
oxygen in aqueous solution is much slower than the
loss of NO over this time period. It should be noted
that, in oxygenated aqueous solution, autoxidation,
which occurs through an unknown ‘intermediate’
and then to nitrite [34,35], is slow, compared with
other reactions under physiological conditions. NO
tends to react rapidly with other atoms or molecules
that also contain unpaired electrons. Also important
are the reactions with thiols to form S-nitrosothiols,
which occurs in the presence of oxidants [36], and
with metal ions to form nitrosyl complexes [37].

A variety of compounds that are formed under
neutral physiological conditions can be conveniently
viewed as NO™ carriers [38,39]. Important examples
of such compounds are metal nitrosyl complexes,
S-nitrosothiols (RS-NO), N-nitroso compounds
(for example, RNH-NO), and dinitrogen trioxide
(N203).

2.1. Iron—sulfur-nitrosyl (Fe—-S—-NO) complexes

Roussin’s salts are the best-known complexes of

iron—sulfur-nitrosyl complexes, and could be consid-
ered as the first generation of metal nitrosyl com-
plexes, being described by Roussin as early as 1858.
Because of its inhibitory effect on bacteria at micro-
molar concentrations, Roussin’s black salt was used
to sterilise the water supply of Paris during the 19th
century. Roussin’s salts are now known to contain
the anions [FesS3(NO);]- (Roussin’s black salt,
RBS) and [Fe,S»(NO)4J*~ (Roussin’s red salt). RBS
is unusual in being soluble in organic solvents such
as diethyl ether, and so should be able to penetrate
cell membranes easily. [Fe-S-NO] complexes are nu-
merous and chemically reactive. Their formation and
interconversions have been reviewed by Butler et al.
[39]. Fig. 1 shows the structure of Roussin’s salts,
and some other bacteriostatic compounds which
have been investigated.

2.2. EPR-detectable nitrosyl species

EPR spectroscopy has been used to study nitrosyl
complexes of transition metals, to which the NO
radical confers an unpaired electron. Nitric oxide
itself, in frozen solutions, gives rise to a signal with
g=1.95, with a broad tail to higher field [40]. This is
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Fig. 1. Structures of some iron-sulfur clusters and nitrosyl com-
plexes: (a) [Fe4S3(NO);]~ (RBS); (b) Roussin’s red salt; (c) di-
nitrosyl iron-thiolate complex (DNIC); (d) sodium nitroprus-
side (SNP); (e) FesS4(NO)4.
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only detectable at low temperatures (<20 K) and
requires high concentrations of NO. Some complexes
of non-heme iron with nitric oxide are more readily
detectable, and can be used to observe molecular
targets for NO in biological systems [41]. The dini-
trosyl iron complexes of the type [Fe(SR)>,(NO),]™
(DNIC) (Fig. 1a), which are low-spin ferrous—nitro-
syl species (S=1/2), give narrow EPR signals with g-
factors between 2.012 and 2.04 [42,43]. These signals
are prominent due to their narrow width, and can be
detected at ambient temperature. These paramag-
netic iron—nitrosyl complexes have been observed in
extracts of rat liver, following the administration of
carcinogens [44]. In this case the nitrosyl groups were
presumably derived by the action of macrophages on
cancer cells. Dietary nitrite can also generate such
compounds; extracts from organs of experimental
animals on a diet supplemented with nitrite and fer-
rous sulfate, gave an anisotropic signal at g=2.03
[45]. Another EPR signal, at g, =1999 and
g1 =1.927, with resolved '“N hyperfine splitting, is
observed from nitroprusside during its reduction by
thiols [46]. The nitrosyl groups exist in these com-
plexes as nitrosonium cations, NO™. There are also
high-spin ferrous—nitrosyl species (S = 3/2) character-
ised by g-values around 4.0 and 2.0; the archetypal
complex of this type is the nitrosyl complex of
Fe(II)-EDTA.

Nitrosylation by nitrite of synthetic iron—sulfur
model complexes based on natural iron—sulfur pro-
teins has also been shown under mild conditions
[47]. The ready formation of paramagnetic mononu-
clear complexes [Fe(SR),(NO),]” from a range
of diamagnetic precursors was observed. This sug-
gests that nitrosylation of natural iron—sulfur clusters
also proceeds via paramagnetic mononuclear com-
plexes.

3. NO as a bacterial metabolite

The reduction of nitrate to nitrite has already been
mentioned. Bacteria present in foodstuffs can carry
out various further transformations. Many species of
bacteria can catalyse some or all of the reactions of
denitrification [48], in which nitric oxide is now rec-
ognised as an important intermediate [49,50]. Some
of the relevant enzymes are:

Assimilatory and dissimilatory nitrate
reductases:

Dissimilatory nitrite reductases:
Nitric oxide reductases:

Nitrous oxide reductases:
Assimilatory (and some dissimilatory)
nitrite reductases:

NO; +2¢~  —NOj

NO;+¢~  —NO
2 NO+2¢~ —-N,0
N,O+2e™ - N,
NO; +6¢~ —NH]

The ability of bacteria to catalyse these reactions
specifically is used in analysis, for example of nitrate
which is reduced to nitrite (e.g., [22]). It is also ex-
ploited in the biological removal of nitrate from
waste water [51].

Under aerobic conditions, NO may be produced
by oxidation of ammonia and amino acids. A nitric
oxide synthase which catalyses the formation of NO
from arginine, like the eukaryotic enzyme, has been
isolated from a Nocardia species [52]. Thus, for some
bacteria, nitric oxide and nitrosyl species may be
considered as normal metabolites. Different bacteria
can express various of these enzymes, depending on
the nitrogen sources present. NO can be released into
the environment by some bacteria, to be consumed
by others [53]. Clostridium and Listeria, to which NO
is toxic, have in general low concentrations of the
enzymes involved in nitrite metabolism, e.g., nitrite
reductase [54].

4. Clostridium and Listeria

These micro-organisms belong to groups of bacte-
ria that can be major health hazards through con-
tamination of food [55]. C. sporogenes is a non-toxic
analogue of C. botulinum (which causes botulism)
and C. perfringens. Whereas the principal hazard
from clostridia is the toxins that are produced in
the food, Listeria monocytogenes causes an infection,
listeriosis.

4.1. Clostridia

Clostridia are strictly anaerobic (except for a few
aerotolerant species), proteolytic catalase-negative
rod-shaped organisms, which produce heat-resistant
spores [56]. The primary source of clostridia is soil.
Some are free-living nitrogen-fixing organisms, such
as C. pasteurianum; others, such as C. acetobutyli-
cum, are used to produce commercial chemicals
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such as butyric acid, butanol, acetone and enzymes.
Other clostridia cause serious infections such as tet-
anus and gas gangrene.

Proteolytic clostridia are major causative agents of
the spoilage of canned foods at neutral and slightly
acidic pH, as they can form heat-resistant spores.
The major species involved are toxin-producing
strains of C. botulinum, and C. perfringens. Studies
on C. botulinum can require stringent containment
facilities, and so C. sporogenes is has been extensively
studied as a model organisms. It has a similar me-
tabolism to C. botulinum, but does not form toxins.

The clostridial toxins are water soluble, heat sen-
sitive and acid stable proteins of 50000 to 250000
kDa. They affect the nervous system by preventing
the secretion of neurotransmitter vesicles [57]. The
early symptoms and signs of botulism are anxiety
or agitation, drowsiness or blurred vision, and nau-
sea or vomiting. Substernal burning or pain, abdomi-
nal distension and decreased bowel activity may oc-
cur. Death is usually the result of respiratory
paralysis.

Clostridial endospores are more resistant than veg-
etative cells to heat, radiation or germicides, and
cannot be easily destroyed. Spores survive heating
at 60°C for several seconds, which kills vegetative
cells of C. sporogenes. Germination of the dormant
spore requires heat or specific activating substances.
Germination of spores and subsequent vegetative cell
growth require iron, high concentrations of glucose,
cysteine and other essential amino acids.

C. sporogenes has a complex fermentative metab-
olism [58]. It is capable of growth in media without
carbohydrates by using the Stickland reaction. This
reaction involves the oxidation of some amino acids
such as alanine, valine, leucine and isoleucine,
coupled to the reduction of others, such as glycine
and proline. The addition of glucose to such a me-
dium causes significant enhancement of growth. Ma-
jor end products of glucose metabolism are acetate,
propionate, butyrate and isobutyrate, hydrogen and
carbon dioxide [58].

4.2. Listeria
L. monocytogenes is a catalase-positive bacillus

which can grow in milk products such as soft
cheeses, and in meat and fish [59,60]. There are hae-

molytic (pathogenic) and non-haemolytic (non-toxic)
strains. They are able to grow aerobically or anaer-
obically, over a range of temperatures between
—4°C and 50°C, and survive for long periods of
time. This may lead to the contraction of listeriosis
from products stored in domestic refrigerators. L.
monocytogenes grows at pH values between 4.7 and
9.2. pH, temperature and concentration of preserva-
tives are the most important factors in the inhibition
of L. monocytogenes growth in food.

Although L. monocytogenes is able to ferment car-
bohydrates yielding lactic acid it does not produce
gas. Like C. sporogenes, it does not reduce nitrate.

5. The nature of the bacteriostatic species

Many types of cured meats are subjected to a heat-
ing process which destroys vegetative cells. The heat-
ing of nitrite in bacteriological medium can result in
the production of many different compounds. Some
of these are more toxic to bacteria than nitrite itself.
Perigo et al. [61] showed that nitrite when heated in a
bacteriological medium was more inhibitory towards
growth of C. sporogenes than nitrite added asepti-
cally to the medium after autoclaving. This effect
was found to occur in the temperature range 95-
125°C at pH values about 6.0; the unidentified in-
hibitory substance(s) became known as the Perigo
factor(s). A later study by Perigo and Roberts [62]
showed an enhanced inhibitory effect of nitrite
heated in laboratory media against 30 strains of clos-
tridia. It was reported that a reducing agent such as
thioglycollate, ascorbate or cysteine, as well as a pro-
tein hydrolysate, were necessary components of the
laboratory medium in order to produce the effect.

The situation in meats was found to be more com-
plex than in liquid media. Johnston et al. [63] com-
pared the effect of heating nitrite in medium and in
meat systems, and showed that heating at 110°C for
20 min enhanced the inhibition of C. botulinum in a
medium containing nitrite at a concentration of 20
mg/kg but not in a meat system containing nitrite at
150 mg/kg or greater. The addition of meat to a
nitrite-containing bacteriological medium was found
to neutralise the inhibitory factor. Ashworth and
Spencer [64] demonstrated an increased inhibition
by nitrite when heated in minced pork; the inhibitor
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produced did not show a pH-dependence, as was the
case with unheated nitrite. The magnitude of the in-
crease in inhibition on heating was small compared
with the effect seen in a medium system. Tompkin et
al. [65] showed that supplementation of perishable
canned cured pork with iron, as a result of incorpo-
rating an iron salt or beef heart and beef liver,
caused a decrease in the antibotulinal properties of
nitrite. Thus there are uncertainties about the impor-
tance of Perigo factors in preservations of canned
meats. Nevertheless, these factors are of great inter-
est due to their high toxicity to clostridia, compared
with nitrite.

Hansen and Levin [66] used the incorporation of
["*Cluracil into ribonucleic acid by Bacillus cereus as
a system to test the antimicrobial properties of a
number of compounds derived from nitrite. They
showed that nitrosothiols of thioglycollate and B-
mercaptoethanol, and a heat-induced inhibitor
from nitrite-containing medium (i.e., a Perigo factor)
were effective inhibitors of uracil incorporation dur-
ing spore outgrowth, and other stages in the life
cycle of Bacillus cereus, probably as a result of the
inactivation of several sensitive metabolic steps or
systems.

6. Bacteriostatic compounds derived from nitrite
6.1. Nitrous acid

In early experiments, Tarr [67] showed that the
preservative action of nitrite in fish was greatly in-
creased by acidification, suggesting that nitrous acid
(HONO) was the active form. In bacteriological me-
dia the inhibitory action of nitrite on several species
of bacteria was shown to increase with decreasing
pH, particularly at pH 6.0 and below. This effect
was confirmed in other bacteria, including vegetative
cells of C. sporogenes [61] and spores of C. botulinum
[68]. Nitrite, which could be produced in the saliva,
was found to be bactericidal to the gastric pathogen
Helicobacter pylori at acid pH [69]. The effect of
acidification is presumably because nitrous acid is a
much more active species than the anion, but present
in very low concentrations at neutral pH (the pK, of
nitrous acid is 3.4). Nitrous acid and N-nitroso com-

pounds can diazotise and deaminate amino groups
in, for example, nucleotides.

6.2. Peroxynitrite

Under aerobic conditions the toxic effects of nitric
oxide on bacterial cells are influenced by the presence
of oxygen, and of oxidising species derived from it
such as peroxide [70] and superoxide. Thus in aerobic
conditions the effect of NO itself may be diminished
[71] while the more reactive species, peroxynitrite, is
believed to become involved [72-74]. This can be
formed from the reaction of nitric oxide with super-
oxide, or nitroxyl ion with oxygen [38].

Table 1 shows the effects of various compounds on
the growth of C. sporogenes and L. monocytogenes.

6.3. Fe—S—-NO complexes

Other likely candidates for compounds derived
from nitrite in medium systems during the cooking
process, are those related to the Roussin’s salts and
iron nitrosothiols [2,5]. Studies were directed at the
types of compound that are formed in growth media
and in meat systems, by heating nitrite with various
components of the growth media, and testing their
effects on bacterial growth. Some very effective in-
hibitors were found using heated mixtures of nitrite,
cysteine and ferrous ions [54,75]. Butler et al. [76]
showed by quantitative FTIR that RBS was formed
in good yield. This suggested that iron—sulfur—nitro-
syl complexes may be responsible for the inhibition
of cell growth. These and similar results indicated
that bacteriostatic compound(s) are derived from ni-
trite.

Moran et al. [77] demonstrated that RBS inhibited
vegetative cells of C. perfringens at very low concen-
trations, approximately 0.5 uM. Higher concentra-
tions (50 uM) were found to be needed to inhibit
the germination of spores of C. sporogenes. However,
this is remarkably more effective than nitrite itself,
which is only inhibitory at concentrations of the or-
der of 10 mM (Table 1).

6.4. Nitrosothiols and N-nitroso compounds

The effects of the nitrosylcysteinylferrate anion
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Table 1

Minimum inhibitory concentrations for nitrite and related species for growth of C. sporogenes and L. monocytogenes

Complex K; (umol dm™3)

L. monocytogenes C. sporogenes
Nitrite 5000
Nitric oxide? 40
NH4[FesS;(NO);] (RBS) 3 1.3
[Fe>(SCH,CH,0H),(NO)4] (Roussin’s red salt ester) 45b 5.0
F64S4(NO)4 10
Na,[Fe(CN)sNO] (SNP) Non-toxic 28
[Mo(acac),(NO);] 600 Non-toxic
[Ru(acac),(NO)CI] 500 Non-toxic
[Ru(bipy)2(NO)CI](PFs), 300 400
[Ru(phen),(NO)CI](PF), 200 700
Trioxodinitrate (Na;N,O3) 200
SIN-1 1000

The concentrations are those required for 50% inhibition of growth in liquid culture under anaerobic conditions. Data are as pre-

sented [80].
2Added as NO in solution.
bUnpublished observations.

were tested on the growth of Salmonella, Streptococ-
cus faecium and C. sporogenes, and found to be very
effective inhibitors [78]. On the other hand the N-ni-
troso compounds, which are carcinogenic in animals,
were not found to have anticlostridial activity [79].

An approach to understanding the mode of action
of nitrogenous compounds has been to test the ef-
fects on bacterial growth and enzymic activities of
compounds, for which the chemistry is well under-
stood. Cui et al. [80] showed that sodium nitroprus-
side (nitrosylpentacyanoferrate(II), [Fe(CN)sNOJ;)
is highly toxic to C. sporogenes. Nitroprusside con-
tains NO in the formal oxidation state NO™, and is a
good nitrosating agent. Related transition-metal ni-
trosyl complexes were less bactericidal, and there was
a relationship between the toxic action of the com-
plexes and their nitrosating ability.

SIN-1  (3-Morpholinosydnonimine-N-ethylcarba-
mide) is used as a slow releaser of nitric oxide. It
was found to have a similar type of toxicity to nitric
oxide in aqueous solution, and both were consider-
ably more toxic than nitrite itself. It seems likely that
many of these species are short-lived in growth me-
dia, and are converted to longer-lasting forms which
continue to inhibit cell growth. Examples of such
compounds are nitrosothiols, which show long-term
inhibitory effects [78].

7. Molecular mechanisms of nitrite inhibition of
anaerobic bacteria

Banwart [81] has defined four basic sites of bacter-
iostatic action of preservatives: enzymes and other
proteins; the genetic system; cell walls or mem-
branes; and the binding of essential nutrients.

7.1. Iron—sulfur proteins and energy metabolism

The inhibition of respiration has long been consid-
ered a possible mechanism of the bacteriostatic ac-
tion of nitrite, at least for aerobic organisms (re-
viewed by Davidson and Juneja [82]). This has
been used to explain the cytotoxic action of nitric
oxide produced by macrophages, which has been
shown to inhibit mitochondrial cytochrome ¢ oxidase
[40,83], and bacterial terminal oxidases [84].

Tompkin et al. [65] suggested that nitric oxide,
formed via nitrous acid from nitrite, reacts with the
iron—sulfur proteins of bacteria. Iron—sulfur proteins
are important in energy metabolism of both aerobic
and anaerobic bacteria and thus are likely targets for
the bacteriostatic action of nitrite, nitric oxide and
related compounds. Synthetic model compounds
based on the [2Fe-2S] and [4Fe-4S] clusters in nat-
ural iron—sulfur proteins, have been shown to under-
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go nitrosylation under mild conditions, producing
EPR-detectable iron—sulfur nitrosyl species [47].

Woods et al. [85,86] studied the effect of nitrite on
the metabolism, particularly the glucose metabolism,
of cells of C. botulinum. They found that when nitrite
was added to a suspension of cells of C. sporogenes
incubated in medium containing glucose, there was a
large and rapid decrease in the intracellular concen-
tration of ATP and an excretion of pyruvate from
the cells. The increase in pyruvate implied that the
inhibitory action of nitrite was on the phosphoro-
clastic system, which is an important source of
ATP in the clostridia. The phosphoroclastic system
converts pyruvate to CO,, hydrogen and acetyl phos-
phate which is further converted to acetate by acetate
kinase+ADP. The system comprises three iron—sulfur
proteins: pyruvate:ferredoxin reductase, ferredoxin
and hydrogenase. Wood et al. postulated that for
C. sporogenes an important mechanism of nitrite in-
hibition is by formation of nitric oxide complexes
with the non-haem iron of pyruvate-ferredoxin oxi-
doreductase (PFR).

The effects of nitrite and nitrosyl complexes on
pyruvate:ferredoxin reductase were examined by
Carpenter et al. [87], who reported that nitrite caused
the production of EPR-detectable Fe-S-NO com-
plexes in C. botulinum [88]. McMindes and Siedler
[89] observed an inhibition of pyruvate:ferredoxin
reductase by nitrite, which was attributed to the ac-
tion on sulfhydryl groups. Payne et al. [54,90] studied
the action of various bactericidal nitrosyl complexes
on the iron-sulfur proteins of clostridia, and the ac-
tivity of ferredoxin, pyruvate:ferredoxin reductase
and hydrogenase. They found no correlation between
the bactericidal action of the complexes, and the in-
hibition of the isolated proteins. For example, RBS
had little effect on the iron—sulfur clusters in ferre-
doxin, and yet cells grown in the presence of RBS
had low levels of iron-sulfur proteins. It was sug-
gested that the Fe-S-NO complexes might inhibit
the synthesis of iron—sulfur clusters, a process which
is poorly understood.

Nitric oxide has been proposed to inactivate other
iron—sulfur proteins. Iron—sulfur clusters in proteins
in which the iron atoms are fully coordinated by
sulfur, as in ferredoxins, are not very sensitive to
NO [91]. However aconitase, an enzyme of the citric
acid cycle, which is involved in the interconversion of

citrate and isocitrate, contains a [4Fe-4S] cluster
which is particularly vulnerable to attack by NO
[92,93]. This is because one iron atom of the cluster
is not ligated by cysteine, but binds water or citrate
instead. Another iron—sulfur protein which is sensi-
tive to nitric oxide is ferrochelatase, the enzyme
which inserts iron into haem [94,95].

7.2. Other proteins

Riha and Solberg [96] proposed that nitrite inhi-
bition of C. perfringens may be due to reaction of
nitrite, as nitrous acid, with SH-containing constitu-
ents of the bacterial cells. Reaction of nitrous acid
with thiols can produce nitrosothiols, which can pre-
vent the action of enzymes such as glyceraldehyde-3-
phosphate dehydrogenase [97]. Protein-bound nitro-
sothiols and compounds such as nitrosocysteine can
also serve to store NO and release it again for further
reactions [98,99], or transfer NO™ to receptor groups
of high nucleophilicity.

Other amino acids in proteins can show the effects
of exposure to NO-derived species. Nitrotyrosine has
been used as a marker for the presence of peroxyni-
trite in mammalian systems [100]. Deamination of
lysine by nitrite has been suggested as a marker for
exposure of proteins in food systems to nitrite [101].

7.3. DNA and gene expression

Nitrite does not appear to be reactive with the
bases of DNA at neutral pH, but NO and nitroso-
thiols have been implicated in strand breakage in the
presence of superoxide and hydrogen peroxide, re-
spectively [102,103]. Such reactions might have a
bearing on the bacteriostatic effects on organisms
such as Listeria and E. coli under aerobic conditions.
Ribonucleotide reductase, which is essential for the
formation of DNA, is another target for nitric oxide
and related species [104,105]. Kroncke et al. [106]
have shown that NO can attack zinc finger-type
DNA-binding proteins and could affect gene regula-
tion.

7.4. Cell walls and membranes

The cell wall of C. sporogenes contains DL-diami-
nopimelate and galactose. Viewed under the electron
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microscope, it is typical of Gram-positive bacteria
[107], with an inner, amorphous, electron-dense layer
and an ordered outer layer composed of cylindrical
subunits, commonly referred to as the S layer. S-
Layer proteins range from 40 to 200 kDa [108,109].
From Clostridium difficile two proteins, of 32 kDa
and 45 kDa, were isolated [110].

Some bacteriostatic agents interfere with cell wall
production, by inhibiting synthesis of monomer units
or their polymerisation. Others act without entering
the cells. A reaction on the cell wall or membranes
may alter the permeability of the cell, impairing the
passage of nutrients into the cell, or allowing leakage
of cellular constituents. Damage of the cell wall
alone does not usually kill the microbial cell, but
the increased permeability may allow entry of toxic
species.

O’Leary and Solberg [111] found that cells of C.
perfringens inhibited by 14 mM nitrite were dark
grey or brown in colour, had an altered consistency
and were harder to disperse in buffer. They postu-
lated that this pigmentation was associated with cell
walls and membranes and it was suggested that dam-
age could be a primary event. Likewise, Payne et al.
[90] found that cells of C. sporogenes were darker in
colour and clumped together when they were grown
in the presence of mixtures of ferrous sulfate, cys-
teine and nitrite. Buchman and Hansen [112], who
examined the mechanism by which nitrite and S-ni-
trosothiols inhibit outgrowing spores of Bacillus cer-
eus T, presented evidence that nitrite-induced bacter-
iostasis in an aerobe is associated with inactivation
of membrane sulfhydryl groups and that these sulf-
hydryl groups are critical for cell viability. Most im-
portantly, the results correlated sulfhydryl modifica-
tion with the actual inhibitory event. Possible targets
include essential proteins involved in the uptake of
nutrients.

When SNP was added to cultures of C. sporogenes
and L. monocytogenes, paramagnetic reduced species
were observed, which decayed over a few minutes
[113]. This is indicative of the reaction of nitroprus-
side with thiols, a reaction which ultimately leads to
the release of NO [114,115]. A rapid initial reaction
was taking place, which was correlated with the dis-
appearance of thiol groups from the cell membrane.

However, it was found that whereas C. sporogenes
was damaged by this treatment, L. monocytogenes
was insensitive (Table 1). By contrast L. monocyto-
genes was very sensitive to RBS, when grown both
aerobically and anaerobically, which indicates that
the mechanism of inhibition is different for the two
compounds.

There is also evidence for cell lysis in the presence
of some nitrosyl complexes. C. sporogenes cells
grown in the presence of RBS or SNP, when exam-
ined by electron microscopy, showed blistering of the
cell surface at low concentrations of the inhibitors,
and lysis at higher concentrations [113,116]. By con-
trast, no evidence of lysis was observed with bacter-
icidal concentrations of nitrite, nitric oxide or SIN-1.
Thus cell lysis may be a secondary effect of a primary
lesion, or there are several bactericidal mechanisms.

8. Concluding remarks

The use of nitrite as a food preservative represents
a problem of balancing risks. It is difficult to assess
these risks until the mechanisms of action are better
understood. Despite over 50 years of research, the
actions of this compound are not clear. Much further
work is needed to understand the speciation of nitrite
and nitrosyl species in food systems, and their effects
on metabolism of bacteria and humans. This is a
subject which deserves re-investigation using modern
techniques of analysis. Molecular biology also has
much to offer. The exact form of any genetic damage
caused by nitrite may be examined. Mutants that are
more or less sensitive to nitrite could be isolated and
characterised. In this way it should be possible to
identify the sites of action of nitrite, and cellular
mechanisms for resistance.
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