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Abstract

We extend the relation between random matrices and free probability theory from the level of expecta-
tions to the level of fluctuations. We show how the concept of “second order freeness”, which was introduced
in Part I, allows one to understand global fluctuations of Haar distributed unitary random matrices. In par-
ticular, independence between the unitary ensemble and another ensemble goes in the large N limit over
into asymptotic second order freeness. Two important consequences of our general theory are: (i) we ob-
tain a natural generalization of a theorem of Diaconis and Shahshahani to the case of several independent
unitary matrices; (ii) we can show that global fluctuations in unitarily invariant multi-matrix models are not
universal.
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1. Introduction

In Part I of this series [11] we introduced the concept of second order freeness as the math-
ematical concept for dealing with the large N limit of fluctuations of N × N -random matrices.
Whereas Voiculescu’s freeness (of first order) (see [13,18] and [19]) provides the crucial notion
behind the leading order of expectations of traces, our second order freeness is intended to de-
scribe in a similar way the structure of leading orders of global fluctuations, i.e., of variances
of traces. In Part I we showed how fluctuations of Gaussian and Wishart random matrices can
be understood from this perspective. Here we give the corresponding treatment for fluctuations
of unitary random matrices. Global fluctuations of unitary random matrices have received much
attention in the last decade, see, e.g, the survey article of Diaconis [5].

Our main concern will be to understand the relation between unitary random matrices and
some other ensemble of random matrices which is independent from the unitary ensemble. This
includes in particular the case that the second ensemble consists of constant (i.e., non-random)
matrices. A basic result of Voiculescu tells us that on the level of expectations, independence
between the ensembles goes over into asymptotic freeness. We will show that this result remains
true on the level of fluctuations: independence between the ensembles implies that we have as-
ymptotic second order freeness between their fluctuations.

Theorem 1. Let {A1, . . . ,As}N be a sequence of N × N -random matrices which has a sec-
ond order limit distribution and let {B1, . . . ,Bt }N be a sequence of U(N)-invariant N × N -
random matrices which has a second order limit distribution. Furthermore assume that the
matrices {A1, . . . ,As}N and the matrices {B1, . . . ,Bt }N are independent. Then the sequences
{A1, . . . ,As}N and {B1, . . . ,Bt }N are asymptotically free of second order.

Two important consequences of our investigations are the following.
We get a generalization to the case of several independent unitary random matrices of a classi-

cal result of Diaconis and Shahshahani [6]. Their one-dimensional case states that, for a unitary
random matrix U , the family of traces Tr(Un) converge towards a Gaussian family where the
covariance between Tr(Um) and Tr(U∗n) is given by n · δmn. In the case of several independent
unitary random matrices, one has to consider traces in reduced words of these random matrices,
and again these converge to a Gaussian family, where the covariance between two such reduced
words is now given by the number of cyclic rotations which match one word with the other.
This result was also independently derived by Rădulescu [15] in the course of his investigations
around Connes’s embedding problem.

Theorem 2. Let {U(1)}N, . . . , {U(r)}N be independent sequences of Haar distributed unitary

N × N -random matrices. Then, the collection {Tr(Uk(1)
i(1) · · ·Uk(n)

i(n) )} of non-normalized traces
in cyclically reduced words in these random matrices converges to a Gaussian family of cen-
tered random variables whose covariance is given by the number of matchings between the two
reduced words:

lim
N→∞ k2

(
Tr

(
U

k(1)
i(1) · · ·Uk(m)

i(m)

)
,Tr

(
U

l(n)
j (n) · · ·Ul(1)

j (1)

))

= δmn · #
{
r ∈ {1, . . . , n} | i(s) = j (s + r), k(s) = −l(s + r) ∀s = 1, . . . , n

}
.
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We can show that we do not have universality of fluctuations in multi-matrix models. For uni-
tarily invariant one-matrix models it was shown by Johansson [7] (compare also [1]) that many
random matrix ensembles have the same fluctuations as the ensemble of Gaussian random ma-
trices. A main motivation for our investigations was the expectation that many unitarily invariant
models of multi-matrix random ensembles should have the same fluctuations as the ensemble
of independent Gaussian random matrices. However, our theory of second order freeness shows
that this is not the case.

The paper is organized as follows. In Section 2, we recall all the necessary definitions and
results around permutations, unitary random matrices, and second order freeness. We will recall
all the relevant notions from Part I, so that our presentation will be self-contained. However,
for getting more background information on the concept of second order freeness one should
consult [11]. In addition, a diagrammatic investigation of the fluctuations of Wishart matrices is
given in [8].

In Section 3, we derive our main result about the asymptotic second order freeness between
unitary random matrices and another independent random matrix ensemble. This yields as corol-
lary that independent unitary random matrices are asymptotically free of second order, implying
the above mentioned generalization of the result of Diaconis and Shahshahani [6]. Section 4
shows how our results imply the failure of universality of global fluctuations in multi-matrix
models.

2. Preliminaries

2.1. The lattice of partitions

For natural numbers m,n ∈ N with m < n, we denote by [m,n] the interval of natural numbers
between m and n, i.e.,

[m,n] := {m,m + 1,m + 2, . . . , n − 1, n}

and [m] = [1,m]. For a matrix A = (aij )
N
i,j=1, we denote by Tr the unnormalized and by tr the

normalized trace,

Tr(A) :=
N∑

i=1

aii , tr(A) := 1

N
Tr(A).

We say that A = {A1, . . . ,Ak} is a partition of the set [1, n] if the subsets Ai are disjoint, non-
empty, and their union is equal to [1, n]. We call A1, . . . ,Ak the blocks of the partition A. For a
permutation π ∈ Sn we say that a partition A is π -invariant if π leaves invariant each block Ai .
Let 1n denote that partition of [n] with one block and P(n) denote the partitions of [n]. Given
positive integers m and n let 1m,n be the partition of [m + n] with the two blocks: [m] and
[m + 1,m + n].

If A = {A1, . . . ,Ak} and B = {B1, . . . ,Bl} are partitions of the same set, we say that A � B

if for every block Ai there exists some block Bj such that Ai ⊆ Bj . For a pair of partitions A,B

we denote by A ∨ B the smallest partition C such that A � C and B � C.
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If we are considering classical random variables on a probability space, then we denote by E
the expectation with respect to the corresponding probability measure and by kr the correspond-
ing classical cumulants (as multi-linear functionals in r arguments); in particular,

k1(a) = E(a) and k2(a1, a2) = E(a1a2) − E(a1)E(a2).

If a1, . . . , an are random variables and C = {C1, . . . ,Ck} is in P(n) we let

EC(a1, . . . , an) =
k∏

i=1

E

( ∏
j∈Ci

aj

)
.

On the lattice P(n) moments to cumulants are related by the Möbius function: Möb. In particular
the nth cumulant kn is given by

kn(a1, . . . , ar ) =
∑

C∈P(n)

Möb(C,1r )EC(a1, . . . , an),

where Möb(C,1n) = (−1)k−1(k − 1)! and where k is the number of blocks of C. We shall
need the following formula for the second cumulant of the product of random variables, see for
example [9, 3.2],

k2(a1 · · ·am,b1 · · ·bn) =
∑

τ∈P(m+n)
τ∨1m,n=1m+n

kτ (a1, . . . , am, b1, . . . , bn). (1)

The sum is over all partitions of [m + n] which have at least one block which connects the two
blocks of 1m,n.

2.2. Permutations

We will denote the set of permutations on n elements by Sn. We will quite often use the
cycle notation for such permutations, i.e., π = (i1, i2, . . . , ir ) is a cycle which sends ik to ik+1
(k = 1, . . . , r), where ir+1 = i1.

2.2.1. Length function
For a permutation π ∈ Sn we denote by #(π) the number of cycles of π and by |π | the minimal

number of transpositions needed to write π as a product of transpositions. Note that one has

|π | + #(π) = n for all π ∈ Sn.

2.2.2. Non-crossing permutations
Let us denote by γn ∈ Sn the cycle

γn = (1,2, . . . , n).

For all π ∈ Sn one has that

n − 1 � |π | + ∣∣γnπ
−1

∣∣.
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If we have equality then we call π non-crossing, see [2] for the basic properties of non-crossing
permutations. Note that this is equivalent to

#(π) + #
(
γnπ

−1) = n + 1.

If π is non-crossing, then so are γnπ
−1 and π−1γn; the latter is called the (Kreweras) complement

of π .
We will denote the set of non-crossing permutations in Sn by NC(n). Note that such a non-

crossing permutation can be identified with a non-crossing partition, by forgetting the order on
the cycles. There is exactly one cyclic order on the blocks of a non-crossing partition which
makes it into a non-crossing permutation.

2.2.3. Annular non-crossing permutations
Fix m,n ∈ N and denote by γm,n the product of the two cycles

γm,n = (1,2, . . . ,m)(m + 1,m + 2, . . . ,m + n).

More generally, we shall denote by γm1,...,mk
the product of the corresponding k cycles.

We call a π ∈ Sm+n connected if the pair π and γm,n generates a transitive subgroup in Sm+n.
A connected permutation π ∈ Sm+n always satisfies

m + n � |π | + ∣∣γm,nπ
−1

∣∣. (2)

If π is connected and if we have equality in that equation then we call π annular non-crossing.
Note that with π also γm,nπ

−1 is annular non-crossing. Again, we call the latter the complement
of π . Of course, all the above notations depend on the pair (m,n); if we want to emphasize this
dependency we will also speak about (m,n)-connected permutations and (m,n)-annular non-
crossing permutations.

We will denote the set of (m,n)-annular non-crossing permutations by SNC(m,n). Again one
can go over to annular non-crossing partitions by forgetting the cyclic orders on cycles; however,
in the annular case, the relation between non-crossing permutation and non-crossing partition is
not one-to-one. Since we will not use the language of annular partitions in the present paper, this
is of no relevance here.

Annular non-crossing permutations and partitions were introduced in [10]; there, many dif-
ferent characterizations—in particular, the one (2) above in terms of the length function—were
given.

2.3. A triangle inequality

Let {A1, . . . ,Ak} be a partition of [n]. If, for 1 � i � k, πi is a permutation of the set Ai

we denote by π1 × · · · × πk ∈ Sn the concatenation of these permutations. We say that π =
π1 × · · · × πk is a cycle decomposition if additionally every factor πi is a cycle.

Notation 2.1. (1) For A ∈ P(n) we put |A| := n − #(A).
(2) For any π ∈ Sn and any π -invariant A ∈P(n) we put

∣∣(A,π)
∣∣ := 2|A| − |π |.
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Lemma 2.2.

(1) For all A,B ∈P(n) we have

|A ∨ B| � |A| + |B|.

(2) If π and σ are in Sn and A,B ∈P(n) are π and σ invariant respectively, then

∣∣(A ∨ B,πσ)
∣∣ �

∣∣(A,π)
∣∣ + ∣∣(B,σ )

∣∣.
Proof. (1) Each block of B with k points can glue together at most k blocks of A, thereby
reducing the number of blocks of A by at most k − 1. Thus B can reduce by at most n − #(B)

the number of blocks of A. Hence the difference between #(A) and #(A ∨ B) cannot exceed
n − #(B) and hence

#(A) − #(A ∨ B) � n − #(B).

This is equivalent to our assertion.
(2) We prove this, for fixed π and σ by induction on |A| + |B|. The smallest possible value

of |A| + |B| occurs when |A| = |π | and |B| = |σ |. But then we have (since A ∨ B � πσ )

2|A ∨ B| − |πσ | � |A ∨ B| � |A| + |B| (by (1))

which is exactly our assertion for this case. For the induction step note that we have just shown
that

2|A ∨ B| − |πσ | � 2|A| − |π | + 2|B| − |σ |

when |A| = |π | and |B| = |σ |. Now one only has to observe that if one increases |A| (or |B|) by
1 then |A ∨ B| can also increase by at most 1. �
2.4. Haar distributed unitary random matrices and the Weingarten function

In the following we will be interested in the asymptotics of special matrix integrals over the
group U(N) of unitary N ×N -matrices. We always equip the compact group U(N) with its Haar
probability measure and accordingly distributed random matrices we shall call Haar distributed
unitary random matrices. Thus the expectation E over this ensemble is given by integrating with
respect to the Haar measure.

The expectation of products of entries of Haar distributed unitary random matrices can be
described in terms of a special function on the permutation group. Since such considerations go
back to Weingarten [20], Collins [3] calls this function the Weingarten function and denotes it
by Wg. We will follow his notation. In the following we just recall the relevant information about
this Weingarten function, for more details we refer to [3,4,21].

We use the following definition of the Weingarten function. For π ∈ Sn and N � n we put

Wg(N,π) = E(U11 · · ·UnnU1π(1) · · ·Unπ(n)),
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where U = (Uij )
N
i,j=1 is an N × N Haar distributed unitary random matrix. Sometimes we will

suppress the dependence on N and just write Wg(π). This Wg(N,π) depends on π only through
its conjugacy class. General matrix integrals over the unitary groups can be calculated as follows:

E(Ui′1j ′
1
· · ·Ui′nj ′

n
Ui1j1 · · ·Uinjn)

=
∑

α,β∈Sn

δi1i
′
α(1)

· · · δini′
α(n)

δj1j
′
β(1)

· · · δjnj ′
β(n)

Wg
(
βα−1). (3)

The Weingarten function is a quite complicated object, and its full understanding is at the basis
of questions around Itzykson–Zuber integrals. For our purposes, only the behaviour of leading
orders in N of Wg(N,π) is important. One knows (see, e.g., [3,4]) that the leading order in 1/N

is given by |π | + n and increases in steps of 2.
Let us use the following notation for the first two orders (π ∈ S(n)):

Wg(N,π) = μ(π)N−(|π |+n) + φ(π)N−(|π |+n+2) + O
(
N−(|π |+n+4)

)
.

One knows that μ is multiplicative with respect to the cycle decomposition, i.e.,

μ(π1 × π2) = μ(π1) · μ(π2).

The important part of the second order information is contained in the leading order of Wg(π1 ×
π2) − Wg(π1)Wg(π2), which is given by μ2(π1,π2)N

−(|π1|+|π2|+m+n+2) for π1 ∈ Sm and π2 ∈
Sn and where

μ2(π1,π2) := φ(π1 × π2) − μ(π1)φ(π2) − φ(π1)μ(π2).

Note that we have

μ2(π1,π2) = μ2(π2,π1).

Collins [3] has general counting formulas for the calculation of μ and μ2 (and also higher order
analogues); however, a conceptual explanation of μ2 seems still to be missing. μ is the Möbius
function of the lattice of non-crossing partitions (thus determined by Catalan numbers), and this
fact is quite well understood by the relation between μ and asymptotic freeness of unitary random
matrices. In a similar way, one should get a conceptual understanding of μ2 by the relation with
second order freeness. In the present paper we will not pursue further this direction, but we will
come back to it in forthcoming investigations. Here we will not rely on the concrete values of μ

or μ2, but will only use the basic properties mentioned above.

2.5. Second order freeness

In [11], we introduced the concept of second order freeness which is intended to capture the
structure of the fluctuation functionals for random matrices arising in the limit N → ∞, in the
same way as the usual freeness captures the structure of the expectation of the trace in the limit.
We recall the relevant notations and definitions.
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Definition 2.3. A second order non-commutative probability space (A, ϕ1, ϕ2) consists of a uni-
tal algebra A, a tracial linear functional

ϕ1 :A → C with ϕ1(1) = 1

and a bilinear functional

ϕ2 :A×A → C,

which is tracial in both arguments and which satisfies

ϕ2(a,1) = 0 = ϕ2(1, b) for all a, b ∈A.

Notation 2.4. Let unital subalgebras A1, . . . ,Ar ⊂ A be given.
(1) We say that a tuple (a1, . . . , an) (n � 1) of elements from A is cyclically alternating if, for

each k, we have an i(k) ∈ {1, . . . , r} such that ak ∈ Ai(k) and, if n � 2, we have i(k) �= i(k + 1)

for all k = 1, . . . , n. We count indices in a cyclic way modulo n, i.e., for k = n the above means
i(n) �= i(1). Note that for n = 1, we do not impose any condition on neighbours.

(2) We say that a tuple (a1, . . . , an) of elements from A is centered if we have

ϕ1(ak) = 0 for all k = 1, . . . , n.

Definition 2.5. Let (A, ϕ1, ϕ2) be a second order non-commutative probability space. We say
that unital subalgebras A1, . . . ,Ar ⊂ A are free with respect to (ϕ1, ϕ2) or free of second order,
if they are free (in the usual sense [19]) with respect to ϕ1 and if the following condition for ϕ2
is satisfied. Whenever we have, for n,m � 1, tuples (a1, . . . , an) and (bm, . . . , b1) from A such
that both are centered and cyclically alternating then we have:

(1) If n �= m, then

ϕ2(a1 · · ·an, bm · · ·b1) = 0.

(2) If n = m = 1 and a ∈ Ai , b ∈ Aj , with i �= j , then

ϕ2(a, b) = 0.

(3) If n = m � 2, then

ϕ2(a1 · · ·an, bn · · ·b1) =
n−1∑
k=0

ϕ1(a1b1+k) · ϕ1(a2b2+k) · · ·ϕ1(anbn+k).

For a visualization of this formula, one should think of two concentric circles with the a’s on one
of them and the b’s on the other. However, whereas on one circle we have a clockwise orientation
of the points, on the other circle the orientation is counter-clockwise. Thus, in order to match up
these points modulo a rotation of the circles, we have to pair the indices as in the sum above.
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Recall that in the combinatorial description of freeness [12], the extension of ϕ1 to a multi-
plicative function on non-crossing partitions plays a fundamental role. In the same way, second
order freeness will rely on a suitable extension of ϕ2.

Notation 2.6. Let (A, ϕ1, ϕ2) be a second order non-commutative probability space. Then we
extend the definition of ϕ1 and ϕ2 as follows:

ϕ1 :
∞⋃

n=1

(
Sn ×An) → C

(π, a1, . . . , an) �→ ϕ1(π)[a1, . . . , an]

is, for a cycle π = (i1, i2, . . . , ir ), given by

ϕ1(π)[a1, . . . , an] := ϕ1(ai1ai2ai3 · · ·air )

and extended to general π ∈ Sn by multiplicativity

ϕ1(π1 × π2)[a1, . . . , an] = ϕ1(π1)[a1, . . . , an] · ϕ1(π2)[a1, . . . , an].

In a similar way,

ϕ2 :
∞⋃

m,n=1

(
Sm × Sn ×Am ×An) → C

(π1,π2, a1, . . . , am, b1, . . . , bm) �→ ϕ2(π1,π2)[a1, . . . , am;b1, . . . , bn]

is defined, for two cycles π1 = (i1, i2, . . . , ip) and π2 = (j1, j2, . . . , jr ), by

ϕ2(π1,π2)[a1, . . . , am;b1, . . . , bn] := ϕ2(ai1ai2 · · ·aip , bj1bj2 · · ·bjr )

and extended to the general situation by the derivation property

ϕ2(π1 × π2,π3)[a1, . . . , am;b1, . . . , bn]
= ϕ2(π1,π3)[a1, . . . , am;b1, . . . , bn] · ϕ1(π2)[a1, . . . , am, b1, . . . , bn]

+ ϕ2(π2,π3)[a1, . . . , am;b1, . . . , bn] · ϕ1(π1)[a1, . . . , am, b1, . . . , bn] (4)

and

ϕ2(π1,π2 × π3)[a1, . . . , am;b1, . . . , bn]
= ϕ2(π1,π2)[a1, . . . , am;b1, . . . , bn] · ϕ1(π3)[a1, . . . , am, b1, . . . , bn]

+ ϕ2(π1,π3)[a1, . . . , am;b1, . . . , bn] · ϕ1(π2)[a1, . . . , am, b1, . . . , bn]. (5)
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Remark 2.7. Let (Ai)i∈I be a family of unital subalgebras of the second order probability space
(A,ϕ1, ϕ2) which are free of second order. Suppose that for each i we have (Bi,j )j∈Ki

a fam-
ily of unital subalgebras of Ai which are free of second order. By [19, Proposition 2.5.5(iii)]
(Bi,j )j∈⋃

i Ki
are free of first order. We leave as an exercise for the reader to show that the proof

of [19] can be adapted to show that (Bi,j )j∈⋃
i Ki

are free of second order.

3. Asymptotic second order freeness for unitary random matrices

Notation 3.1. Suppose ε : [2l] → {−1,1} is such that
∑2l

i=1 εi = 0. We write ε−1(1) =
{p1,p2, . . . , pl} and ε−1(−1)={q1, q2, . . . , ql}, with p1 < p2 < · · · < pl and q1 < q2 < · · · < ql .
Let S

(ε)
2l be the permutations π in S2l such that π takes {p1, . . . , pl} onto {q1, . . . , ql} and vice

versa. Given a π in S
(ε)
2l we may extract a pair of permutations απ and βπ in Sl from the equations

π(pαπ (k)) = qk and π(qk) = pβπ (k) (6)

and conversely: (α,β) �→ πα,β . Thus we have a bijection of sets between S
(ε)
2l and Sl × Sl .

Given π ∈ S
(ε)
2l we let π̃ ∈ Sl be defined by

π2(pk) = pπ̃(k).

Note that π̃α,β = βα−1.
Also we have

#(π) = #(π̃),

and thus

|π | = |π̃ | + l.

Lemma 3.2. Fix l ∈ N and γ ∈ S2l . Let, for N ∈ N, U be a Haar distributed unitary
N × N -random matrix. Let ε : [2l] → {−1,1} such that

∑2l
i=1 εi = 0. Then we have for all

1 � r1, . . . , r2l , s1, . . . , s2l � N that

E
(
Uε1

r1,sγ (1)
· · ·Uε2l

r2l ,sγ (2l)

) =
∑

π∈S
(ε)
2l

2l∏
k=1

δrk,sγ (π(k))
Wg(N, π̃). (7)

Proof. Let ik, i
′
k, jk, j

′
k (1 � k � l) be such that

E
(
Uε1

r1,sγ (1)
· · ·Uε2l

r2l ,sγ (2l)

) = E
(
Ui′1,j ′

1
· · ·Ui′l ,j ′

l
U−1

j1,i1
· · ·U−1

jl ,il

)
,

i.e., let ε−1(1) = {p1, . . . , pl} with p1 < · · · < pl and ε−1(−1) = {q1, . . . , ql} with q1 < · · · < ql

and i′k = rpk
, j ′

k = sγ (pk), ik = sγ (qk), and jk = rqk
.

Now suppose that α and β in Sl and π ∈ S
(ε)
2l is as in Eq. (6) above.

Thus we have

ik = sγ (qk) = sγ (π(pα(k))), and i′α(k) = rpα(k)
,
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and

j ′
β(k) = sγ (pβ(k)) = sγ (π(qk)), and jk = rqk

which shows that

ik = i′α(k) ⇐⇒ rpα(k)
= sγ (π(pα(k)))

and

jk = j ′
β(k) ⇐⇒ rqk

= sγ (π(qk)).

Thus

l∏
k=1

δik,i
′
α(k)

δjk,j
′
β(k)

=
2l∏

k=1

δrk,sγ (π(k))
.

Hence

E
(
Uε1

r1,sγ (1)
· · ·Uε2l

r2l ,sγ (2l)

) = E
(
Ui′1,j ′

1
· · ·Ui′l ,j ′

l
U−1

j1,i1
· · ·U−1

jl ,il

)

=
∑

α,β∈Sn

δi1i
′
α(1)

· · · δini′
α(n)

δj1j
′
β(1)

· · · δjnj ′
β(n)

Wg
(
βα−1)

=
∑

π∈S
(ε)
2l

2l∏
k=1

δrk,sγ (π(k))
Wg(π̃). �

We can now address the question how to calculate expectations of products of traces of our
matrices. The following result is exact for each N ; later on we will look on its asymptotic version.

Note that the notation Trπ (D1, . . . ,Dn) for π ∈ Sn is defined in the usual multiplicative way,
as was done in Notation 2.6 for ϕ1.

We shall need the following standard lemma. For D1, . . . ,Dp ∈ MN(A) let the entries of Di

be (D
(i)
r,s ).

Lemma 3.3. Let π ∈ Sn and D1, . . . ,Dn ∈ MN(A). Then

Trπ (D1,D2, . . . ,Dn) =
∑

j1,j2,...,jn

D
(1)
j1,jπ(1)

D
(2)
j2,jπ(2)

· · ·D(n)
jn,jπ(n)

.

Given m1, . . . ,mk , let γm1,...,mk
be the permutation of [m1 + · · · + mk] with k cycles where

the ith cycle is (m1 + · · · + mi−1 + 1, . . . ,m1 + · · · + mi).

Proposition 3.4. Fix m1, . . . ,mk ∈ N such that m1 + · · · + mk = 2l is even. Let, for fixed N ∈ N,
U be a Haar distributed unitary N ×N -random matrix and D1, . . . ,D2l be N ×N -random ma-
trices which are independent from U . Let ε : [2l] → {−1,1} with

∑2l
i=1 εi = 0. Put γ = γm1,...,mk

.
Then
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E
(

Tr
(
D1U

ε1 · · ·Dm1U
εm1

)
× Tr

(
Dm1+1U

εm1+1 · · ·Dm1+m2U
εm1+m2

) × · · ·
× Tr

(
Dm1+···+mk−1+1U

εm1+···+mk−1+1 · · ·Dm1+···+mk
Uεm1+···+mk

))
=

∑
π∈S

(ε)
2l

Wg(N, π̃) · E
(
Trγπ−1(D1, . . . ,D2l )

)
. (8)

Proof. Summations over r’s and s’s in the following formulas are from 1 to N .

E
(
Tr

(
D1U

ε1 · · ·Dm1U
εm1

)
Tr

(
Dm1+1U

εm1+1 · · ·Dm1+m2U
εm1+m2

) × · · ·
× Tr

(
Dm1+···+mk−1+1U

εm1+···+mk−1+1 · · ·Dm1+···+mk
Uεm1+···+mk

))
=

∑
r1,...,r2l
s1,...,s2l

E
(
Uε1

s1,rγ (1)
· · ·Uε2l

s2l ,rγ (2l)

) · E
(
D(1)

r1,s1
· · ·D(2l)

r2l ,s2l

)

=
∑

r1,...,r2l
s1,...,s2l

∑
π∈S

(ε)
2l

2l∏
k=1

δsk,rγ (π(k))
Wg(π̃) · E

(
D(1)

r1,s1
· · ·D(2l)

r2l ,s2l

)

=
∑

π∈S
(ε)
2l

Wg(π̃)
∑

r1,...,r2l

s1,...,s2l

2l∏
k=1

δsk,rγ (π(k))
· E

(
D(1)

r1,s1
· · ·D(2l)

r2l ,s2l

)

=
∑

π∈S
(ε)
2l

Wg(π̃)
∑

r1,...,r2l

E
(
D(1)

r1,rγ (π(1))
· · ·D(2l)

r2l ,rγ (π(2l))

)

=
∑

π∈S
(ε)
2l

Wg(π̃)E
(
Trγπ (D1, . . . ,D2l )

)

=
∑

π∈S
(ε)
2l

Wg(π̃)E
(

Trγπ−1(D1, . . . ,D2l )
)
.

In the last equality we used that Wg(π̃) depends only on the conjugacy class of π . �
Motivated by the result of Voiculescu [16,17] that Haar distributed unitary random matrices

and constant matrices are asymptotically free, we want to investigate now the corresponding
question for second order freeness. It will turn out that one can replace the constant matrices by
another ensemble of random matrices, as long as those are independent from the unitary random
matrices. Of course, we have to assume that the second ensemble has some asymptotic limit
distribution. This is formalized in the following definition. Note that we make a quite strong re-
quirement on the vanishing of the higher order cumulants. This is however in accordance with
the observation that in many cases the unnormalized traces converge to Gaussian random vari-
ables. Of course, if we have a non-probabilistic ensemble of constant matrices, then the only
requirement is the convergence of k1; all other cumulants are automatically zero.
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Definition 3.5. (1) Let {A1, . . . ,As}N be a sequence of N × N -random matrices. We say that
they have a second order limit distribution if there exists a second order non-commutative
probability space (A, ϕ1, ϕ2) and a1, . . . , as ∈ A such that for all polynomials p1,p2, . . . in s

non-commuting indeterminates we have

lim
N→∞ k1

(
tr
(
p1(A1, . . . ,As)

)) = ϕ1
(
p1(a1, . . . , as)

)
, (9)

lim
N→∞ k2

(
Tr

(
p1(A1, . . . ,As)

)
,Tr

(
p2(A1, . . . ,As)

))

= ϕ2
(
p1(a1, . . . , as),p2(a1, . . . , as)

)
, (10)

and, for r � 3,

lim
N→∞ kr

(
Tr

(
p1(A1, . . . ,As)

)
, . . . ,Tr

(
pr(A1, . . . ,As)

)) = 0. (11)

(2) We say that two sequences of N ×N -random matrices, {A1, . . . ,As}N and {B1, . . . ,Bt }N ,
are asymptotically free of second order if the sequence {A1, . . . ,As,B1, . . . ,Bt }N has a second
order limit distribution, given by (A, ϕ1, ϕ2) and a1, . . . , as, b1, . . . , bt ∈ A, and if the unital
algebras

A1 := alg(1, a1, . . . , as) and A2 := alg(1, b1, . . . , bt )

are free with respect to (ϕ1, ϕ2).

Notation 3.6. Fix m,n ∈ N and let ε : [1,m + n] → {−1,+1}. We defined Sε
m+n in Notation 3.1,

for the case where
∑m+n

k=1 ε(k) = 0, as those permutations in Sm+n for which ε alternates cycli-
cally between −1 and +1 on all cycles. Note that this definition also makes sense in the case
where the sum of the ε’s is not equal to zero, then we just have Sε

m+n = ∅. Let ε1 and ε2 be the
restrictions of ε to [1,m] and to [m + 1,m + n], respectively. Then we put

S
(ε)
NC(m,n) := Sε

m+n ∩ SNC(m,n)

and

NC(ε1)(m) := S(ε1)
m ∩ NC(m), NC(ε2)(n) := S(ε2)

n ∩ NC(n).

Theorem 3.7. Let {U}N be a sequence of Haar distributed unitary N × N -random matrices
and {A1, . . . ,As}N a sequence of N × N -random matrices which has a second order limit
distribution, given by (A, ϕ1, ϕ2) and a1, . . . , as ∈ A. Furthermore, assume that {U}N and
{A1, . . . ,As}N are independent. Fix now m,n ∈ N and consider polynomials p1, . . . , pm+n in
s non-commuting indeterminates. If we put (for i = 1, . . . ,m + n)

Di := pi(A1, . . . ,As) and di := pi(a1, . . . , as),

then we have for all ε(1), . . . , ε(m + n) ∈ {−1,+1} that
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lim
N→∞ k2

(
Tr

(
D1U

ε1 · · ·DmUεm
)
,Tr

(
Dm+1U

εm+1 · · ·Dm+nU
εm+n

))

=
∑

π∈S
(ε)
NC(m,n)

μ(π̃) · ϕ1
(
γm,nπ

−1)[d1, . . . , dm+n]

+
∑

π1∈NC(ε1)(m)

π2∈NC(ε2)(n)

(
μ2(π̃1, π̃2) · ϕ1

(
γmπ−1

1 × γnπ
−1
2

)[d1, . . . , dm+n]

+ μ(π̃1 × π̃2) · ϕ2
(
γmπ−1

1 , γnπ
−1
2

)[d1, . . . , dm+n]
)
. (12)

Note that in the case where the sum of the ε’s is different from zero this just states that the
limit of k2 vanishes.

Proof. For notational convenience, we will sometimes write m + n = 2l in the following, and
also use γ := γm,n.

We have

k2
(
Tr

(
D1U

ε1 · · ·DmUεm
)
,Tr

(
Dm+1U

εm+1 · · ·D2lU
ε2l

))
= E

(
Tr

(
D1U

ε1 · · ·DmUεm
)

Tr
(
Dm+1U

εm+1 · · ·D2lU
ε2l

))
− E

(
Tr

(
D1U

ε1 · · ·DmUεm
)) · E

(
Tr

(
Dm+1U

εm+1 · · ·D2lU
ε2l

))
=

∑
π∈S

(ε)
2l

Wg(π̃) · E
(
Trγπ−1(D1, . . . ,D2l )

)

−
∑

π1∈S
(ε1)
m

π2∈S
(ε2)
n

Wg(π̃1)Wg(π̃2) · E
(
Tr

γmπ−1
1

(D1, . . . ,Dm)
) · E

(
Tr

γnπ−1
2

(Dm+1, . . . ,D2l )
)

=
∑

π∈S
(ε)
2l

π connected

Wg(π̃) · E
(
Trγπ−1(D1, . . . ,D2l )

)

+
∑

π1∈S
(ε1)
m

π2∈S
(ε2)
n

(
Wg(π̃1 × π̃2) · E

(
Tr

γmπ−1
1 ×γnπ−1

2
(D1, . . . ,D2l )

)

− Wg(π̃1)Wg(π̃2)E
(
Tr

γmπ−1
1

(D1, . . . ,Dm)
) · E

(
Tr

γnπ−1
2

(Dm+1, . . . ,D2l )
))

.

Note that if either m or n is odd then the last two terms are zero, which is consistent with
Eq. (12), as in this case NC(ε1)(m) and NC(ε2)(n) are empty. So for the remainder of the proof
we shall assume that m and n are even.

The leading order in the first summand for a connected π is given by

μ(π̃)N−(|π̃ |+(m+n)/2) · N#(γ π−1) · E
(
trγπ−1(D1, . . . ,Dm+n)

)
= Nm+n−|π |−|γπ−1| · μ(π̃) · E

(
trγπ−1(D1, . . . ,Dm+n)

)
.
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Recall that, for a connected π , we always have

m + n − |π | − ∣∣γπ−1
∣∣ � 0,

and equality is exactly achieved in the case where π is annular non-crossing. Thus, in the limit
N → ∞ the first sum gives the contribution

∑
π∈S

(ε)
NC(m,n)

μ(π̃) · ϕ1
(
γπ−1)[d1, . . . , dm+n].

We can rewrite the second sum as

∑
π1∈S

(ε1)
m

π2∈S
(ε2)
n

{
Wg(π̃1 × π̃2) − Wg(π̃1)Wg(π̃2)

}
E
(
Tr

γmπ−1
1 ×γnπ−1

2
(D1, . . . ,Dm+n)

)

+ Wg(π̃1)Wg(π̃2)
{
E
(
Tr

γmπ−1
1 ×γnπ−1

2
(D1, . . . ,Dm+n)

)
− E

(
Tr

γmπ−1
1

(D1, . . . ,Dm)
) · E

(
Tr

γnπ−1
2

(Dm+1, . . . ,Dm+n)
)}

. (13)

For a disconnected π1 × π2 the leading orders in N of all relevant terms are given as follows:
Wg(π̃1 × π̃2) and Wg(π̃1)Wg(π̃2) both have leading order (note that μ is multiplicative)

μ(π̃1)μ(π̃2)N
−(m+n)+#(π1)+#(π2);

E(Tr
γmπ−1

1
(D1, . . . ,Dm))·E(Tr

γnπ−1
2

(Dm+1, . . . ,Dm+n)) and E(Tr
γmπ−1

1 ×γnπ−1
2

(D1, . . . ,Dm+n))

are both asymptotic to

ϕ1
(
γmπ−1

1 × γnπ
−1
2

)[d1, . . . , dm+n]N#(γmπ−1
1 )+#(γnπ−1

2 );
Wg(π̃1 × π̃2) − Wg(π̃1)Wg(π̃2) has leading order

μ2(π̃1, π̃2) · N−(m+n)+#(π1)+#(π2)−2.

Now

−(m + n) + #(π1) + #(π2) − 2 + #
(
γmπ−1

1

) + #
(
γnπ

−1
2

)
= −(

m + 1 − #(π1) − #
(
γmπ−1

1

)) − (
n + 1 − #(π2) − #

(
γnπ

−1
2

))
� 0

with equality only if both π1 ∈ NC(ε1)(m) and π2 ∈ NC(ε2)(n).
Thus

lim
N

{
Wg(π̃1 × π̃2) − Wg(π̃1)Wg(π̃2)

}
E
(
Trγm,n(π1×π2)

−1(D1, . . . ,Dm+n)
)

=

⎧⎪⎪⎨
⎪⎪⎩

μ2(π̃1, π̃2)ϕ1(γmπ−1
1 × γnπ

−1
2 )[d1, . . . , dm+n]

⎧⎨
⎩

π1 ∈ NC(ε1)(m)

and
π2 ∈ NC(ε2)(n),
0 otherwise.
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To deal with the second term of the second sum (13) we will use the following notation. Let the
cycles of γmπ−1

1 be c1 · · · cr and the cycles of γnπ
−1
2 be cr+1 · · · cr+s . Let ai = Trci

(D1, . . . ,Dm)

for 1 � i � r and bj = Trcr+j
(Dm+1, . . . ,Dm+n) for 1 � j � s. Then

k2
(
Tr

γmπ−1
1

(D1, . . . ,Dm),Tr
γnπ−1

2
(Dm+1, . . . ,Dm+n)

)
= k2(a1 · · ·ar, b1 · · ·bs).

So let us find for which π1 ∈ S
(ε1)
m , π2 ∈ S

(ε2)
n , and τ ∈P(r + s) we have a non-zero limit of

Wg(π̃1)Wg(π̃2)kτ (a1, . . . , ar , b1, . . . , bs). (14)

As noted above the order of Wg(π̃1)Wg(π̃2) is N−(m+n)+#(π1)+#(π2). By Eq. (1) and the de-
finition of a second order limit distribution, kτ (a1, . . . , ar , b1, . . . , bs) is O(Nc) where c is the
number of singletons of τ . Thus the order of (14) is

−(m + n) + #(π1) + #(π2) + c

= −(
m + 1 − #(π1) − #

(
γmπ−1

1

)) − (
n + 1 − #(π2) − #

(
γnπ

−1
2

)) + c + 2 − (r + s).

Hence (14) will vanish unless three conditions are satisfied: we must have that π1 and π2 are
non-crossing and c = r + s − 2, i.e., τ has one pair and the rest of its blocks are singletons.

Thus

lim
N

∑
π1∈S

(ε1)
m ,π2∈S

(ε2)
n

Wg(π̃1)Wg(π̃2)k2
(

Tr
γmπ−1

1
(D1, . . . ,Dm),Tr

γnπ−1
2

(Dm+1, . . . ,D2l )
)

=
∑

π1∈NC(ε1)(m)

π2∈NC(ε2)(n)

μ(π̃1)μ(π̃2) lim
N

Nr+s−2
∑

τ∈P(r+s)

kτ (a1, . . . , ar , b1, . . . , bs),

where the τ ’s in the sum have one pair and the remainder are singletons and τ ∨ 1r,s = 1r+s .
So the remainder of the proof is to show that

lim
N

Nr+s−2
∑

τ∈P(r+s)

kτ (a1, . . . , ar , b1, . . . , bs)

= ϕ2
(
γmπ−1

1 , γnπ
−1
2

)[d1, . . . , dm+n],

where the sum runs over τ ’s as above.
Let τ ∈ P(r + s) be as above with pair (i, j) where 1 � i � r and 1 � j � s and all other

blocks singletons. Then

kτ (a1, . . . , ar , b1, . . . , bs)

= k1(a1) · · · k̂1(ai) · · ·k1(ar )k1(b1) · · · k̂1(bj ) · · ·k1(bs)k2(ai, bj ),
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where the hatted elements are deleted. So after multiplying by Nr+s−2 and taking a limit we get
(after omitting the arguments d1, . . . , dm+n which are the same for each factor)

ϕ1(c1) · · · ϕ̂1(ci) · · ·ϕ1(cr )ϕ1(cr+1) · · · ̂ϕ1(cr+j ) · · ·ϕ1(cr+s)ϕ2(ci, cr+j ).

Now summing over all τ , which is equivalent to summing over all i and j , we get via the deriva-
tion property of ϕ2 (see Eqs. (4) and (5))

ϕ2
(
γmπ−1

1 , γnπ
−1
2

)[d1, . . . , dm+n]

as required. �
Remark 3.8. When all the D’s are equal to 1, Eq. (12) implies the following well-known result
of Diaconis and Shahshahani [6]: for integers r and s

lim
N

k2
(
Tr

(
Ur

)
,Tr

(
Us

)) =
{

0 r �= −s,

|r| r = −s.
(15)

Indeed let m = |r| and for 1 � i � m, let εi = sgn(r), where sgn(r) denotes the sign of r ; let
n = |s| and for m+ 1 � i � m+n, let εi = sgn(s). Then ε1 +· · ·+ εm+n = r + s. So if r + s �= 0
then Eq. (12) says that

lim
n

k2
(
Tr

(
Ur

)
,Tr

(
Us

)) = 0.

Suppose that r + s = 0. The second term on the right-hand side of (12) is zero since both
NC(ε1)(m) and NC(ε2)(n) are empty. For the first term in (12), note that the only elements of
S

(ε)
NC(m,n) which connect in this alternating way are pairings, where each block must contain

one U and one U∗. This forces m and n to be equal. In that case, we have the freedom of pairing
the first U with any of the n U∗’s. After this choice is made, the rest is determined. Thus there
are n possibilities for such pairings. Since μ(π̃) is always 1 for a pairing we get the claimed
formula.

Let ε : [2l] → {−1,1} be such that
∑2l

i=1 εi = 0. For π ∈ S
(ε)
2l let π̃ ∈ Sl be as in 3.1. A π -

invariant partition A of [2l] gives Ã, a π̃ -invariant partition of [l] as follows. For each block V of
A let Ṽ = {k | pk ∈ V }, where we have used the notation of 3.1. Also each π̃ -invariant partition
of [l] comes from a unique π -invariant partition of [2l].

Let Möb be the Möbius function on the partially ordered set of partitions of [l] ordered by
inclusion. Let π ∈ Sl and A be a π -invariant partition of [l]. In [3, §2.3] Collins denotes the
relative cumulant by CΠπ,A(π,N), which we will denote by Cπ,A. In our notation

Cπ,A =
∑

C∈[π,A]
C={V1,...,Vk}

Möb(C,A)Wg(π |V1) · · ·Wg(π |Vk
),

where π |Vi
denotes the restriction of π to the invariant subset Vi and where necessary we

have identified π with the partition given by its cycles. Conversely given A = {V1, . . . , Vk}
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a π -invariant partition of [l] we write WgA(π) for Wg(π |V1) · · ·Wg(π |Vk
). Then by Möbius

inversion we have

WgA(π) =
∑

C∈[π,A]
Cπ,C.

Remark 3.9. When π ∈ S
(ε)
2l and A ∈P(2l) is π -invariant the equation above can also be written

WgA(π̃) =
∑

C∈[π,A]
C

π̃,C̃
. (16)

In [3, Corollary 2.9] Collins showed that the order of C
π̃,C̃

is at most N−2l−#(π)+2#(C).

In the following we address the estimates for higher order cumulants, kr for r � 3.
If D1, . . . ,D2l are random matrices and π ∈ S2l is a permutation with cycle structure π =

π1 × · · · × πr with πi = (πi,1, . . . , πi,l(i)) we denote

kπ(D1, . . . ,D2l ) = kr

(
Tr(Dπ1,1 · · ·Dπ1,l(1)

),Tr(Dπ2,1 · · ·Dπ2,l(2)
), . . .

)
.

When A = {A1, . . . ,Ak} is a π -invariant partition of [2l] we can write π = π1 × · · · × πk

where πi = π |Ai
is a permutation of the set Ai . We denote the multiplicative extension of kπ by

kπ,A(D1, . . . ,D2l ) = kπ1(D1, . . . ,D2l ) · · ·kπk
(D1, . . . ,D2l ).

Möbius inversion gives us that

E
(
Trπ (D1, . . . ,D2l )

) =
∑

A∈P(2l)
A π-inv.

kπ,A(D1, . . . ,D2l ),

where the sums run over all π -invariant partitions A in P(2l).

Theorem 3.10. Let {U}N be a sequence of Haar distributed unitary N × N -random matrices
and {A1, . . . ,As}N a sequence of N × N -random matrices which has a second order limit
distribution, given by (A, ϕ1, ϕ2) and a1, . . . , as ∈ A. Furthermore, assume that {U}N and
{A1, . . . ,As}N are independent.

Suppose r > 1 and m1, . . . ,mr are positive integers such that m1 + · · · + mr = 2l and
ε1, . . . , ε2l ∈ {−1,+1} are such that

∑2l
i=1 εi = 0. Consider polynomials p1, . . . , p2l in s non-

commuting indeterminates. For i = 1, . . . ,2l we set

Di := pi(A1, . . . ,As)

and for 1 � i � r let

Xi = Tr
(
Dm1+···+mi−1+1U

ε(m1+···+mi−1+1) · · ·Dm1+···+mi
Uε(m1+···+mi)

)
.
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Then

kr (X1, . . . ,Xr) =
∑

π∈S
(ε)
n

∑
A,B

A∨B=1[1,2l]

C
π̃,Ã

· kγπ−1,B(D1, . . . ,D2l ), (17)

where the second sum runs over pairs (A,B) of partitions of [1,2l] such that A is π -invariant
and B is γπ−1-invariant and furthermore A ∨ B = 1[1,2l].

Secondly, we have for r � 3 that

lim
N→∞ kr (X1, . . . ,Xr) = 0. (18)

If we have m1, . . . ,mr for which m1 + · · · + mr is odd or ε1, . . . , ε2l for which
∑2l

i=1 εi �= 0 then
kr (X1, . . . ,Xr) = 0.

Proof. In order to simplify the writing we shall write �D for (D1, . . . ,D2l). Let Ii be the interval
[m1 + · · · + mi−1 + 1,m1 + · · · + mi] and for any subset V ⊂ [r], IV = ⋃

j∈V Ij .

If C = {V1, . . . , Vk} is a partition of [r] we let S
(ε)
Vi

the set of permutations of IVi
that take

ε−1(1) ∩ IVi
onto ε−1(−1) ∩ IVi

. If these two sets have different cardinalities then S
(ε)
Vi

is empty.
Let 1C be the partition {IV1, . . . , IVk

} of [2l]. Let γi be the cyclic permutation of Ii given by
(m1 + · · · + mi−1 + 1, . . . ,m1 + · · · + mi).

With this notation

EC(X1, . . . ,Xr) = EV1(X1, . . . ,Xr) · · ·EVk
(X1, . . . ,Xr)

=
∑

π1∈S
(ε)
V1

∑
πk∈S

(ε)
Vk

Wg(π̃1) · · ·Wg(π̃k)E
(
Tr

γ1π
−1
1

( �D)
) · · ·E

(
Tr

γkπ
−1
k

( �D)
)

=
∑

π∈S
(ε)
2l

1C π-inv.

Wg1C
(π̃)EC

(
Trγπ−1( �D)

)

=
∑

π∈S
(ε)
2l

1C π-inv.

∑
A∈[π,1C ]

C
π̃,Ã

∑
B∈P(2l)

B γπ−1-inv.

kγπ−1,B( �D).

Thus

kr (X1, . . . ,Xr)

=
∑

C∈P(r)

Möb(C,1r )EC(X1, . . .Xr)

=
∑

C∈P(r)

Möb(C,1r )
∑

π∈S
(ε)
2l

∑
A∈[π,1C ]

C
π̃,Ã

∑
B∈P(2l)

B γπ−1-inv.

kγπ−1,B( �D)
1C π-inv.
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=
∑

π∈S
(ε)
2l

∑
C∈P(r)

1C π-inv.

∑
A∈[π,1C ]

∑
B∈P(2l)

B γπ−1-inv.

Möb(C,1r )Cπ̃,Ã
kγπ−1,B( �D)

=
∑

π∈S
(ε)
2l

∑
A∈P(2l)
A π-inv.

∑
B∈P(2l)

B γπ−1-inv.

∑
C∈P(r)
A,B�1C

Möb(C,1r )Cπ̃,Ã
kγπ−1,B( �D)

=
∑

π∈S
(ε)
2l

∑
A,B∈P(2l)
A∨B=12l

C
π̃,Ã

,kγπ−1,B( �D),

where the sum is over all A and B which are π and γπ−1-invariant, respectively. The last equality
followed from the identity

∑
C∈P(r)
A,B�1C

Möb(C,1r ) =
{

1 A ∨ B = 12l ,

0 otherwise.

This proves (17).
We know that the order of C

π̃,Ã
is N−2l−#(π)+2#(A). Let ci be the number of blocks of B

that contain i cycles of γπ−1. By our assumption on the second order limiting distribution of
{A1, . . . ,As}N

kγπ−1,B( �D) =
{

O(Nc1) c3 + c4 + · · · = 0,

o(Nc1) c3 + c4 + · · · > 0.

Suppose first that c3 + c4 + · · · > 0. Then

∑
i�2

ici = (c2 + c3 + · · ·) +
∑
i�1

(i − 1)ci � 1 + #
(
γπ−1) − #(B).

So

c1 = #
(
γπ−1) −

∑
i�2

ici � #(B) − 1.

By Lemma 2.2(1), #(A) + #(B) � 2l + 1. Thus

−2l − #(π) + 2#(A) + c1 � −2l − #(π) + 2#(A) + #(B) − 1 � 0.

Hence C
π̃,Ã

· kγπ−1( �D) = o(N0) as required.

So now suppose that c3 + c4 + · · · = 0. Then #(γ π−1) = c2 + #(B). In this case

C
π̃,Ã

· kγπ−1( �D) = O
(
N−2l−#(π)+2#(A)+c1

)

and thus it remains to show that

−2l − #(π) + 2#(A) + c1 � 2 − r. (19)
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Note that

∣∣(12l , γ )
∣∣ = 2|12l | − |γ | = 2l − 2 + r,∣∣(A,π)

∣∣ = 2|A| − |π | = 2l − 2#(A) + #(π)

and

∣∣(B,γπ−1)∣∣ = 2|B| − ∣∣γπ−1
∣∣ = 2l − 2#(B) + #

(
γπ−1).

So by Lemma 2.2(2)

2
(
#(A) + #(B)

) − 2l − #(π) − #
(
γπ−1) � 2 − r. (20)

However

2#(B) − #
(
γπ−1) = #(B) − c2 = c1

together with (20) proves (19). �
Remark 3.11. As a corollary of Theorem 3.10 we obtain that if {U}N is a sequence of Haar
distributed unitary random matrices, then {U}N has a second order limit distribution given by
Eq. (15). Indeed, relative to E(Tr(·)), U is already a Haar unitary so condition (9) of Defin-
ition 3.5 is satisfied. We have observed in Remark 3.8 that condition (10) is satisfied and by
Theorem 3.10 above we have that condition (11) is satisfied.

Then {U}N has a second order limit distribution which is given by

lim
N→∞ k2

(
Tr

(
Uε1 · · ·Uεm

)
,Tr

(
Uεm+1 · · ·Uεm+n

))

=
∑

π∈S
(ε)
NC(m,n)

μ(π̃) +
∑

π1∈NC(ε1)(m)

π2∈NC(ε2)(n)

μ2(π̃1, π̃2). (21)

Combining this formula with Eq. (15) allows one to derive the values of μ2. These kind of
questions will be considered elsewhere.

Theorem 3.12. Let {U}N be a sequence of Haar distributed unitary N × N -random matrices
and {A1, . . . ,As}N a sequence of N ×N -random matrices which has a second order limit distri-
bution. If {U}N and {A1, . . . ,As}N are independent, then they are asymptotically free of second
order.

Proof. The asymptotic freeness with respect to k1(tr(·)) is essentially the same argument as
Voiculescu’s proof [16,17] for the case of constant matrices, see also the proof of Collins [3].

Theorem 3.10 provides the bound on higher order cumulants so we need to prove now only
the second order statement.
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We have to consider cyclically alternating and centered words in the U ’s and the A’s. For
the U ’s, every centered word is a linear combination of non-trivial powers of U , thus it suffices
to consider such powers. Thus we have to look at expressions of the form

k2
(
Tr

(
B1U

i(1) · · ·BpUi(p)
)
,Tr

(
Uj(r)Cr · · ·Uj(1)C1

))
, (22)

where the B’s and the C’s are centered polynomials in the A’s and i(1), . . . , i(p), j (1), . . . , j (r)

are integers different from zero. We have to show that in the limit N → ∞ the expression (22)
converges to

lim
N

δpr

p−1∑
k=0

ϕ1(B1C1+k)ϕ1
(
Ui(1)Uj (1+k)

) · · ·ϕ1(BpCp+k)ϕ1
(
Ui(p)Uj(p+k)

)
. (23)

We can bring the expression (22) into the form considered in Theorem 3.7 by inserting 1’s be-
tween neighbouring factors U or neighbouring factors U∗. If we relabel the B’s, C’s, and 1’s
as D’s then we have to look at the following situation: For polynomials pi in s non-commuting
indeterminates we consider

Di := pi(A1, . . . ,As),

which are either asymptotically centered or equal to 1. The latter case can only appear if we have
cyclically the pattern . . .UDiU . . . or . . .U∗DiU

∗ . . . . Formally, this means:

• if εγ −1(i) = εi then either Di = 1 (for all N , i.e., pi = 1) or

lim
N→∞ k1

(
tr[Di]

) = 0;

• if εγ −1(i) �= εi then

lim
N→∞ k1

(
tr[Di]

) = 0.

We can now use Theorem 3.7 for calculating the limit

lim
N→∞ k2

(
Tr

(
D1U

ε1 · · ·DmUεm
)
,Tr

(
Dm+1U

εm+1 · · ·Dm+nU
εm+n

))
,

and we will argue that most terms appearing there will vanish. First consider the last two sums in
Eq. (12), corresponding to π1 ∈ NC(m) and π2 ∈ NC(n). Since π1 is non-crossing we have that
#(π1) + #(γmπ−1

1 ) = m + 1. Since each cycle of π1 must contain at least one U and one U∗, we
have

#(π1) � m
,

2
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which implies #(γmπ−1
1 ) � m/2 + 1. However, this can only be true if γmπ−1

1 contains at least
two singletons. Note that if (i) is a singleton of γmπ−1

1 and if we have Di = 1 for that i, then we
have

γmπ−1
1 (i) = i, thus π−1

1 (i) = γ −1
m (i) = γ −1(i),

and hence

ε
π−1

1 (i)
= εγ −1(i) = εi,

which is not allowed because π1 is from NC(ε1)(m), i.e., it must connect alternatingly U with U∗.
Hence Di �= 1 and so ϕ1(di) = limN k1(tr(Di)) = 0. Thus, both

ϕ1
(
γmπ−1

1 × γnπ
−1
2

)[d1, . . . , dm+n]
and

ϕ2
(
γmπ−1

1 , γnπ
−1
2

)[d1, . . . , dm+n]
are zero, because at least one singleton (i) gives the contribution ϕ1(di) = 0.

Consider now the first summand of Eq. (12). Suppose π ∈ S
(ε)
NC(m,n). Let us again put

γ := γm,n. Since π is annular non-crossing we have

|π | + ∣∣γπ−1
∣∣ = m + n,

or

#(π) + #
(
γπ−1) = m + n.

Again, each cycle of π must contain at least two elements, i.e.,

#(π) � m + n

2
,

thus

#
(
γπ−1) � m + n

2
.

If γπ−1 has a singleton (i), then this will contribute ϕ1(di) and since, as above the case di = 1 is
excluded for a singleton, we get a vanishing contribution in this case. This implies that, in order
to get a non-vanishing contribution, γπ−1 must contain no singletons, which, however, means
that we must have

#
(
γπ−1) = m + n

2
, and thus also #(π) = m + n

2
,

i.e., all cycles of γπ−1 and of π contain exactly two elements. This, however, can only be the
case if each cycle connects one point on the outer circle to one point on the inner circle. Being
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non-crossing fixes the permutation up to a rotation of the inner circle. Thus, in order to get a
non-vanishing contribution, we need m = n and

π = (
1, γ k(2n)

)(
2, γ k(2n − 1)

)
, . . . ,

(
n,γ k(n + 1)

)

for some k = 0,1, . . . , n− 1. Note that π must always couple a U with a U∗ and the factor μ(π̃)

is always 1 for such pairings. This gives exactly the contribution as needed for second order
freeness. �

Of course, a natural question in this context is how the result of Diaconis and Shahshahani
(Remark 3.8) generalizes to the case of several independent unitary random matrices. Note that
as we have established the existence of a second order limit distribution for Haar distributed
unitary random matrices we can use an independent copy of them as the ensemble {A1, . . . ,As}
in our Theorem 3.12. By Remark 2.7 this can be iterated to give the following.

Theorem 3.13. Let {U(1)}N, . . . , {U(r)}N be r sequences of Haar distributed unitary N × N -
random matrices. If {U(1)}N, . . . , {U(r)}N are independent, then they are asymptotically free of
second order.

This contains the information about the fluctuation of several independent Haar distributed
unitary random matrices. Again, it suffices to consider traces of reduced words in our random
matrices, i.e., expressions of the form

Tr
(
U

k(1)
i(1) · · ·Uk(n)

i(n)

)
(24)

for n ∈ N, and k(r) ∈ Z \ {0} and i(r) �= i(r + 1) for all r = 1, . . . , n (where i(n + 1) = i(1)).
But these are now products in cyclically alternating and centered variables, so that by the very
definition of second order freeness we get

lim
N→∞ k2

(
Tr

(
U

k(1)
i(1)

· · ·Uk(m)
i(m)

)
,Tr

(
U

l(n)
j (n)

· · ·Ul(1)
j (1)

))

= δmn

n−1∑
r=0

ϕ1
(
U

k(1)
i(1) U

l(1+r)
j (1+r)

) · · ·ϕ1
(
U

k(n)
i(n) U

l(n+r)
j (n+r)

)
. (25)

The contribution of ϕ1 in these terms vanishes unless the matrices and their powers match. Note
also that the vanishing of higher cumulants can be rephrased in a more probabilistic language by
saying that the random variables (24) converge to a Gaussian family.

Corollary 3.14. Let {U(1)}N, . . . , {U(r)}N be independent sequences of Haar distributed unitary
N × N -random matrices. Then, the collection (24) of unnormalized traces in cyclically reduced
words in these random matrices converges to a Gaussian family of centered random variables
whose covariance is given by the number of matchings between the two reduced words,

lim
N→∞ k2

(
Tr

(
U

k(1)
i(1) · · ·Uk(m)

i(m)

)
,Tr

(
U

l(n)
j (n) · · ·Ul(1)

j (1)

))

= δmn · #
{
r ∈ {1, . . . , n} | i(s) = j (s + r), k(s) = −l(s + r) ∀s = 1, . . . , n

}
. (26)
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This result was also obtained independently in the recent work of Rădulescu [15] around
Connes’s embedding problem.

The following theorem gives an easy way to construct families of random matrices which are
asymptotically free of second order.

Theorem 3.15. Let {U}N be a sequence of Haar distributed unitary N × N -random ma-
trices. Suppose that {A1, . . . ,As}N and {B1, . . . ,Bt }N are sequences of N × N -random
matrices each of which has a second order limit distribution. Furthermore, assume that
{A1, . . . ,As}N , {B1, . . . ,Bt }N , and {U}N are independent. Then the sequences {A1, . . . ,As}N
and {UB1U

∗, . . . ,UBtU
∗}N are asymptotically free of second order.

Proof. The proof is a repetition of the proof of Theorem 3.12 except that we cannot assume that
{A1, . . . ,As,B1, . . . ,Bt }N has a second order limit distribution. Instead we have the indepen-
dence of the Ai from the Bi ’s and a special ε. So we shall only indicate how the proof has to be
modified.

The first order freeness follows as in the proof of Theorem 3.12. In the proofs of Theorems 3.7,
3.10, and 3.12 the cumulants we need are all sums over S

(ε)
2n for various n’s. Now we have a

special form of ε, namely

εi = (−1)i+1.

Thus if π ∈ S
(ε)
2n then π takes even numbers to odd numbers and vice versa. Since the same

applies to any of the γ ’s, we have that γπ−1 takes even numbers to even numbers and odd
numbers to odd numbers. Thus the orbits of γπ−1 consist either of all odd numbers or of all even
numbers. Hence if P1, . . . ,Pn are words in A1, . . . ,As and Q1, . . . ,Qn are words in B1, . . . ,Bt ,
then by the independence of the A’s and the B’s

E
(
Trγπ−1(P1,Q1, . . . ,Pn,Qn)

)
= E

(
Tr(W1) · · ·Tr(Wj )

) · E
(

Tr(Wj+1) · · ·Tr(Wk)
)
,

where k = #(γ π−1) and Wi for 1 � i � j is a word only in A’s and for j + 1 � i � k is a word
only in B’s. This means that as far as the asymptotic behaviour of E(Trγπ−1(P1,Q1, . . . ,Pn,Qn))

is concerned we may assume that {A1, . . . ,As,B1, . . . ,Bt }N has a second order limit distribu-
tion. Hence our claim follows from Theorem 3.12. �

We say that a tuple {B1, . . . ,Bs} of N × N -random matrices is U(N)-invariant if for every
U ∈ U(N) the joint probability distribution of the random matrices {B1, . . . ,Bs} coincides with
the joint probability distribution of the random matrices {UB1U

∗, . . . ,UBsU
∗}.

Corollary 3.16. Let {A1, . . . ,As}N be a sequence of N × N -random matrices which has a
second order limit distribution and let {B1, . . . ,Bt }N be a sequence of U(N)-invariant N × N -
random matrices which has a second order limit distribution. Furthermore, assume that the
matrices {A1, . . . ,As}N and the matrices {B1, . . . ,Bt }N are independent. Then the sequences
{A1, . . . ,As}N and {B1, . . . ,Bt }N are asymptotically free of second order.
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4. Failure of universality for multi-matrix models

In this section we want to make the meaning of second order freeness for fluctuations of ran-
dom matrices more explicit and relate this with the question of universality of such fluctuations.
There has been much interest in global fluctuations of random matrices, in particular, since it
was observed that for large classes of one-matrix models these fluctuations are universal. In the
physical literature this observation goes at least back to Politzer [14], culminating in the paper of
Ambjørn et al. [1], whereas a proof on the mathematical level of rigour is due to Johansson [7].
Universality for one-matrix models lets one expect that one would also have such universality for
multi-matrix models. Indeed, this expectation was one of the starting points of our investigations.
However, our machinery around second order freeness shows that such universality is not present
in multi-matrix models.

Before we address multi-matrix models let us first recall the relevant result of Johansson [7].
We consider Hermitian N × N -random matrices A = (aij )

N
i,j=1 equipped with the probability

measure

dμN(A) = 1

ZN

exp
{−N Tr

[
P(A)

]}
dA, (27)

where

dA =
∏

1�i<j�N

d Reaij d Imaij

N∏
i=1

daii .

Here, P is a polynomial in one variable, which we will address as “potential" in the following,
and ZN is a normalization constant. If one restricts to a special class V of potentials P (the
most important condition being that the limit eigenvalue distribution has a single interval as
support—which we normalize in the following to [−2,2]) then Johansson proved the following
universality of fluctuations for this class: Consider the sequence of N × N -random matrices
{AN }N given by (27). Then this sequence has a second order limit distribution which can be
described as follows:

(1) We have

lim
N→∞ k1

{
tr
[
An

N

]} =
∫

tn dνP (t) (n ∈ N),

where νP is a probability measure on R (“limiting eigenvalue distribution”) which is given
as the solution of the singular integral equation

∫
dνP (t)

t − s
= −1

2
P ′(s) for all s ∈ suppνP . (28)

(2) Let Tn (n ∈ N) be the Chebyshev polynomials of first kind (which are the orthogonal poly-
nomials with respect to the arcsine law on [−2,2]). Then

lim
N→∞ k2

{
Tr

[
Tn(AN)

]
,Tr

[
Tm(AN)

]} = δmn · n.
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Whereas the limiting eigenvalue distribution νP depends on the form of the potential P , the
fluctuations are the same for all potentials in the class V—they are always diagonalized by the
same polynomials {Tn | n ∈ N}. Note that the most prominent example for the considered class
of random matrices is given by P(A) = A2, which corresponds to the Gaussian random matrix
ensemble. So one can phrase this universality also in the way that all considered random matrices
have the same fluctuations as Gaussian random matrices (but their eigenvalue distributions are of
course different from Wigner’s semi-circle law).

Let us now consider multi-matrix models. For notational convenience we restrict to the case
of two-matrix models. Take now a polynomial P(A,B) in two non-commuting variables and
consider pairs of Hermitian N × N -matrices A = (aij )

N
i,j=1 and B = (bij )

N
i,j=1 equipped with

the probability measure

dμN(A,B) = 1

ZN

exp
{−N Tr

[
P(A,B)

]}
dAdB, (29)

where ZN is a normalization constant. The simplest ensemble of this kind is the case of two
independent Gaussian random matrices which corresponds to the choice P(A,B) = A2 + B2.
The above mentioned universality result for the one-matrix case lets one expect that one might
also have universality for multi-matrix ensembles which are close to the ensemble of independent
Gaussian random matrices. However, we will now show that even restricted to potentials of the
form P(A,B) = P1(A) + P2(B) we do not have universal fluctuations.

Let us first observe that our concept of second order freeness tells us how to diagonalize fluctu-
ations. We spell this out in the following theorem which is an easy consequence of Definition 2.5
of second order freeness.

Theorem 4.1. Let {AN }N and {BN }N be two sequences of N × N -random matrices which are
asymptotically free of second order. Let {QA

n | n ∈ N} and {QB
n | n ∈ N} be the orthogonal poly-

nomials for the limiting eigenvalue distribution of AN and BN , respectively, determined by the
requirements that QA

n and QB
n are polynomials of degree n and that

lim
N→∞ k1

{
tr
[
QA

n (AN)QA
m(AN)

]} = δnm,

lim
N→∞ k1

{
tr
[
QB

n (BN)QB
m(BN)

]} = δnm.

Then the fluctuations of mixed traces in AN and BN are diagonalized by cyclically alternating
products of QA

n and QB
n and the covariances are given by the number of cyclic matchings of

these products:

lim
N→∞ k2

{
Tr

[
QA

i(1)(AN)QB
j(1)(BN) · · ·QA

i(m)(AN)QB
j(m)(BN)

]
,

Tr
[
QB

l(n)(BN)QA
k(n)(AN) · · ·QB

l(1)(BN)QA
k(1)(AN)

]}
= δmn · #

{
r ∈ {1, . . . , n} | i(s) = k(s + r), j (s) = l(s + r) ∀s = 1, . . . , n

}
.

In the case of Wishart matrices the polynomials are shown in [8] to have an interpretation in
terms of planar diagrams whose linear span forms a basis for the irreducible representations of
the of the annular Temperly–Lieb algebra.
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To come back to our problem of universality for multi-matrix models we only have to observe
that Corollary 3.16 tells us that we have asymptotic freeness of second order if we choose a
potential of the form P(A,B) = P1(A) + P2(B).

Theorem 4.2. Let P(A,B) = P1(A)+P2(B) where P1 and P2 are polynomials from the class V .
Consider the two-matrix model {AN,BN }N given by the probability measure (29). Let ν1 and ν2
be the limiting eigenvalue distribution for P1 and P2, respectively (as described in Eq. (28))
and denote by {Q1

n | n ∈ N} and {Q2
n | n ∈ N} the respective orthogonal polynomials. Then the

sequence {AN,BN }N has a second order limit distribution given by (A, ϕ1, ϕ2) and a, b ∈ A
which can be described as follows:

(1) ϕ1 is the free product of ν1 and ν2.
(2) ϕ2 is diagonalized by the following collection of polynomials:

{
Tn(a) | n ∈ N

}
,

{
Tn(b) | n ∈ N

}
,{

Q1
i(1)(a)Q2

j (1)(b) · · ·Q1
i(n)(a)Q2

j (n)(b)
}
,

where in the last set we choose one representative from each cyclic equivalence class, i.e.,
for all n ∈ N, n-tuples ((i(1), j (1)), . . . , (i(n), j (n))) which are different modulo cyclic ro-
tation.

Proof. Note that the additive form of the potential P(A,B) = P1(A) + P2(B) means that AN

and BN are independent, AN is a one-matrix ensemble corresponding, via (27), to a potential P1,
and BN is a one-matrix ensemble corresponding to a potential P2. Thus the statement about the
diagonalizing polynomials in either only AN or in only BN is just Johansson’s result. For getting
the statement about the diagonalizing polynomials in both AN and BN we have to note that the
random matrices AN (and also BN ) are U(N)-invariant, thus Corollary 3.16 implies that {AN }N
and {BN }N are asymptotically free of second order. Hence we can apply Theorem 4.1 above. �

Note that whereas the polynomials in only one of the matrices are universal (namely equal to
the Chebyshev polynomials {Tn}n), the polynomials which involve both matrices are not univer-
sal but depend on the eigenvalue distributions ν1 and ν2. Since the latter vary with the potentials
P1 and P2, the polynomials Q1

n and Q2
n, and thus also the alternating products in them, depend

on the choice of P . Thus we can conclude that even within the very restricted class of P ’s of the
form P(A,B) = P1(A) + P2(B) we have no universality of global fluctuations in multi-matrix
models.
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