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We consider the canonical map from the Calogero–Moser space to symmetric

powers of the affine line, sending conjugacy classes of pairs of n � n-matrices to their

eigenvalues. We show that the character of a natural Cn-action on the scheme-

theoretic zero fiber of this map is given by Kostka polynomials. A similar result is

proved for a cyclic version of the Calogero–Moser space. # 2002 Elsevier Science (USA)
1. INTRODUCTION

1.1. The aim of this paper is to prove a refined version of Conjecture 17.14
of [EG]. To explain our result, recall the so-called Calogero–Moser space Cn;
a 2n-dimensional complex algebraic manifold introduced by Kazhdan–
Kostant–Sternberg [KKS], and studied further by Wilson [W]. It is defined
as Cn :¼ CMn==PGLn; the quotient by the natural (free) conjugation-action
of the group PGLn on the set

CMn :¼ fðX ;YÞ 2 Matn �Matn j ½X ;Y 	 þ Id ¼ rank 1 matrixg: ð1:1Þ

Let AðnÞ denote the space of unordered n-tuples of complex numbers. The
assignment ðX ;YÞ/ðSpecðXÞ;SpecðYÞÞ; sending a pair of ðn � nÞ-matrices
to the corresponding pair of n-tuples of their eigenvalues gives a map p :
Cn ! AðnÞ � AðnÞ: The zero fiber p1ð0; 0Þ of this map is formed by the
1To whom correspondence should be addressed.
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conjugacy classes of nilpotent pairs ðX ;YÞ 2 CMn: This fiber is known to be
a finite set labelled naturally by partitions of n: Given such a partition l; let
p1ð0; 0Þl be the corresponding point in the zero fiber.
Conjecture 17.14 of [EG] states that, for any partition l; the corres-

ponding point in the (scheme-theoretic) zero fiber of p comes with
multiplicity equal to ðdim VlÞ2; where Vl is an irreducible representation
of the symmetric group Sn attached to the partition l in the standard way,
see [M].

1.2. In the present paper, we propose and prove the following q-analogue
of the above conjecture. Observe that the complex torus Cn acts naturally on
CMn by z : ðX ;Y Þ/ðz1 � X ; z � YÞ; 8z 2 Cn: This Cn-action descends to
the Calogero–Moser space Cn and preserves the zero fiber p1ð0; 0Þ: Now
given l; a partition of n; let p1ð0; 0Þl be the corresponding irreducible
component of the zero fiber viewed as a nonreduced scheme (set theoretically
concentrated at one point). The C

n-action keeps these points (set
theoretically) fixed hence, for each l; induces a C

n-action on the coordinate
ring of the scheme p1ð0; 0Þl; a finite-dimensional vector space. The
character of this finite-dimensional Cn-module may be viewed as a Laurent
polynomial chl 2 Z½q; q1	: Now, recall that for each partition l one defines
the Kostka polynomial KlðqÞ 2 Z½q	 which is a certain q-analogue2 of dim Vl;
the dimension of the corresponding irreducible Sn-representation, see e.g.
[M, III.6].

Our result reads

Theorem. For any partition l (of n), we have: chl ¼ KlðqÞ � Klðq1Þ:

1.3. This result has a natural generalization to other finite complex
reflection groups W in a vector space h: In more details, in [EG] the authors
associate to a pair ðh;WÞ a Calogero–Moser space CW together with a finite
map p : CW ! h=W � h=W : In the special case h ¼ C

n and W ¼ Sn; the
space CW reduces to the variety Cn; and the map p : CW ! h=W � h=W

reduces to the map p : Cn ! AðnÞ � AðnÞ considered above.

More generally, in this paper we will consider the case where h ¼ Cn and
W ¼ G � Sn is a wreath product of Sn and G ¼ Z=NZ; a cyclic group of
some fixed order N (thus, W ¼ SnrðZ=NZÞn), acting naturally in h: It has
been proved in [EG] that the corresponding Calogero–Moser space
CG;n :¼ CW is a smooth affine algebraic variety isomorphic to a certain
Nakajima’s Quiver variety for a cyclic quiver.
2 In the main body of the paper, we use a minor modification KlðqÞ of the standard KlðqÞ
possessing a property KlðqÞ � Klðq1Þ ¼ KlðqÞ � Klðq1Þ:
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Conjecture 17.14 of [EG] states that the reduced fiber of p over ð0; 0Þ 2
h=W � h=W can be identified with the set IrrepðWÞ of isomorphism classes
of irreducible representations of W ; and the multiplicity of the point in this
fiber corresponding to r 2 IrrepðWÞ equals ðdim rÞ2:
It is well known that the irreducible G � Sn-modules are naturally

parametrized by the set PGðnÞ of G_-partitions of n; see e.g. [M, Part I,
Appendix B]. Here G_ is the set of irreducible characters of G; and a G_-
partition L is a collection ðlw; w 2 G_Þ of ordinary partitions such thatP

w jlwj ¼ n: It is known that the points of reduced fiber of CG;n over ð0; 0Þ
are also naturally numbered by PGðnÞ (in case of trivial G it was proved in
[W], and in the general case in [K2]). By abuse of notation we will denote the
point in the fiber corresponding to L 2 PGðnÞ by L as well.

1.4. The cyclic Calogero–Moser space CG;n has a natural C
n-action, such

that its fixed point set CCn

G;n coincides with the reduced zero fiber. We
consider the character of induced C

n-action in the Artin coordinate ring OL

of the component p1ð0; 0ÞL of the fiber concentrated at the point L 2 CCn

G;n:

1.5. For an arbitrary cyclic group G ¼ Z=NZ and L 2 PGðnÞ; we
introduce a polynomial KLðqÞ 2 Z½q	 which is a q-analogue of dim VL; the
dimension of the corresponding irreducible G � Sn-module, see 5.4, and
prove the following.

Theorem. The character of Cn-module OL equals KLðqÞ � KLðq1Þ:

1.6. Our proof is a straightforward application of the remarkable work
[W]. Wilson has studied the reduced fibers of the second projection p2 :
Cn ! AðnÞ and identified them as certain products of Schubert cells in
Grassmannians. His results reduce our problem to some classical computa-
tions in Grassmannians.

One ingredient in the proof of Theorem 1.2 is a relative Drinfeld

compactification %CCn of the Calogero–Moser space Cn (such that the
projection p2 extends to the proper projection p2 : %CCn ! AðnÞ; see 2.5) and
its cyclic version, see 5.3. Though it enters our proof only at some technical
point, we believe that %CCn is a very interesting object in itself.
The space %CCn was, in fact, implicitly introduced in [W] where Wilson

studied the embedding of Cn into the adelic Grassmannian Grad (the cyclic
version of this embedding is studied in [BGK]). Wilson constructed a set-
theoretic partition Grad ¼

F
k2N Cn: However, it turns out that the unionF

04k4n Ck cannot be equipped with the structure of an algebraic variety.
The algebraic variety %CCn has, on the other hand, a natural partition %CCn ¼F

04k4n Ck � AðnkÞ; see 2.6, into smooth locally closed strata (similar in
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spirit to the stratification used in [K1]) and may be viewed as an algebraic
‘‘resolution’’ of

F
04k4n Ck; a nonalgebraic substack of Grad: The name

‘‘Drinfeld’s compactification’’ is suggested by a close analogy with Drinfeld’s
quasimap spaces, cf. [K1].
In 2.7 we propose an alternative conjectural definition of %CCn as a step

towards its generalization for other Nakajima quiver varieties.

2. WILSON’S EMBEDDING INTO A RELATIVE GRASSMANNIAN

2.1. The Calogero–Moser space. Fix a positive integer n and consider the
space CMn defined in (1.1). Then CMn is smooth, and the action of PGLn

by the simultaneous conjugation is free (see [W]). The quotient space
Cn :¼ CMn=PGLn is a 2n-dimensional smooth affine algebraic variety, the
Calogero–Moser space. For n ¼ 0 we define C0 to be a point.
Recall that AðnÞ :¼ An=Sn: The assignment Y/SpecðYÞ; sending a matrix

Y 2 Matn to the n-tuple of its eigenvalues viewed as a finite subscheme of A1

given by zeros of the characteristic polynomial of Y ; yields an isomorphism
of algebraic varieties: Matn==PGLn !

�
AðnÞ (where Matn==PGLn denotes the

categorical quotient). The second projection CMn ! Matn; ðX ;Y Þ/Y ;
descends to the projection pn : Cn ! AðnÞ: Wilson has determined all the
reduced fibers of pn: Namely, he constructed an embedding of any fiber into
a certain product of (finite dimensional) Grassmann varieties, and identified
the image with a union of products of certain Schubert cells. Let us
formulate his results more precisely. Till the end of this section fiber means
reduced fiber, and we write p1ðÞ instead of p1ðÞreduced:

2.2. Theorem (Wilson [W, 7.1]). Suppose a divisor D ¼ D1 þ D2 2 AðnÞ

is a sum of divisors D1 2 AðmÞ; D2 2 AðkÞ with disjoint supports. Then there is

a canonical isomorphism p1n ðDÞ ’ p1m ðD1Þ � p1k ðD2Þ:

We will refer to this result as the factorization property of the projection pn

(or rather of the collection of maps pn over n 2 N).

2.3. In view of the above theorem, in order to describe an arbitrary fiber
of pn; it suffices to describe the fiber over the principal diagonal, p1n ðnyÞ;
y 2 A1: To this end, consider the polynomial algebra C½z	 and, for any y 2 C

write my ¼ ðz  yÞ � C½z	 for the corresponding maximal ideal. Let Grðn; yÞ ’
GrnðC2nÞ be the Grassmannian of n-dimensional subspaces in the 2n-
dimensional vector space C½z	=m2n

y : The vector space C½z	=m2n
y comes

equipped with a distinguished complete flag

0 � m2n1
y =m2n

y � m2n2
y =m2n

y � � � � � my=m
2n
y � C½z	=m2n

y
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(quotients of ideals). This flag defines the Schubert stratification of Grðn; yÞ:
Let SchnðyÞ � Grðn; yÞ denote the locally closed subvariety formed by all
the Schubert cells (the strata) of dimension n:

Theorem (Wilson [W, 6.4]). There is a canonical isomorphism p1n ðnyÞ ’
SchnðyÞ:

2.4. Wilson also describes the way the above fibers glue together. In order
to formulate his result, we recall that AðnÞ may be viewed as the space of all
codimension n ideals I � C½z	; and introduce the following definition.

Definition. The relative Grassmannian Gn is the space of pairs ðI ;WÞ
where I � C½z	 is a codimension n ideal, and W � C½z	=I2 is an n-
dimensional linear subspace.

Clearly, Gn is a quasiprojective variety equipped with a projection pn :
Gn !! AðnÞ; ðI ;WÞ/I : For any I 2 AðnÞ we have: p1n ðIÞ ’ GrnðC2nÞ:
Wilson considers an open subset Creg

n � Cn formed by the (conjugacy
classes of) pairs ðX ;Y Þ such that Y is diagonalizable and has pairwise
distinct eigenvalues. Each element in Creg

n has a unique representative of the
form Y ¼ diagðy1; . . . ; ynÞ; X ¼ jjxij jj; with xij ¼ ðyi  yjÞ1; for iaj; and
xii ¼ ai: To the n-tuple ðy1; . . . ; ynÞ we associate the n-tuple of lines Wi ¼
h1 aiðz  yiÞi � C½z	=m2

yi
; i ¼ 1; . . . ; n; in the corresponding 2-planes.

Wilson defines an embedding b : Creg
n ! Gn by the formula b : ðX ;YÞ/

ðI ;WÞ where I ¼ ðz  y1Þ � . . . � ðz  ynÞ; and W is set to be a direct sum of
the lines Wi; that is,

I ¼ my1 � . . . � myn
; W ¼ �iWi � C½z	=I2 � C½z	=m2

y1
� � � � � C½z	=m2

yn
:

Theorem (Wilson [W, 5.1]). (i) The map b extends to an embedding

b : Cn+Gn commuting with the projections pn:

(ii) Given D ¼
Pl

k¼1 nkyk 2 AðnÞ and C 2 p1n ðDÞ � Cn write C ¼
ðW1; . . . ;WlÞ; Wk 2 Schnk

ðykÞ: Then, under the natural identification

C½z	=
Ql

k¼1 m2nk
yk

� �l
k¼1C½z	=m2nk

yk
; we have

b :C/
Yl

k¼1
mnk

yk
;
Ml

k¼1
Wk

 !
:

2.5. Drinfeld relative compactification. We define %CCn � Gn as the closure of
bðCnÞ or, equivalently, of bðCreg

n Þ: Specifically, consider the open stratum

of the diagonal stratification (AA
ðnÞ � AðnÞ formed by all the n-tuples
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of pairwise distinct points. Consider the locally closed subvariety

%CC
reg

n � p1n ð (AAðnÞÞ � Gn formed by all pairs

ðI ;WÞ j I ¼ my1 � . . . � myn
; W � C½z	=I2 �

C½z	=m2
y1
� � � � � C½z	=m2

yn
Þ; such that W \ ðC½z	=m2

yi
Þa0; 8i:

( )

Thus, W is a direct sum of lines Wi � C½z	=m2
yi
:

Definition. The Drinfeld compactification %CCn � Gn is defined as the
closure of %CC

reg

n in Gn: The restriction of pn :Gn ! AðnÞ to %CCn is also denoted
by pn:

Clearly, pn : %CCn ! AðnÞ is a projective morphism.

2.6. Twist by a divisor. The rest of this section will not be used elsewhere in
the paper but it helps to understand better the structure of %CCn:
For 04k4n we will define a map twistnk : %CCk � AðnkÞ ! %CCn (twist by a

divisor). To this end, given an ideal I � C½z	 of codimension n  k;
and ðJ;WÞ 2 %CCk; take the preimage of W under the natural projection
C½z	=IJ2 ! C½z	=J2; and let W 0 � I=I2J2 � C½z	=I2J2 correspond to this
preimage under the natural identification I=I2J2 ’ C½z	=IJ2: We set
twistkððJ;WÞ; IÞ :¼ ðIJ;W 0Þ:
From now on we will identify Cn with its image bðCnÞ � %CCn � Gn: Given

y 2 A; write SchmðyÞ � Grðm;C½z	=m2m
y Þ for the union of Schubert cells of

dimension 4m: Wilson’s Theorem 2.4 yields

Theorem. (i) Let D ¼
Pl

k¼1 nkyk 2 AðnÞ: Then p1n ðDÞ � %CCn equalsQl
k¼1 Schnk

ðykÞ: Specifically, under the natural identification

C½z	=
Ql

k¼1 m2nk
yk

� �l
k¼1C½z	=m2nk

yk
; a point ðW1; . . . ;WlÞ; Wk 2 Schnk

ðykÞ;
corresponds to �l

k¼1 Wk:

(ii) %CCn=Cn ¼ twistnn1ð %CCn1 � A1Þ; where the RHS is a closed subvariety.

(iii) %CCn is a disjoint union of the locally closed subvarieties:

%CCn ¼
Gn
k¼1

twistnkðCk � AðnkÞÞ:

Part (i) implies, in particular, that the map pn : %CCn ! AðnÞ enjoys the
factorization property.

2.7 Remark. One would like to find a construction of %CCn in the ordinary
Calogero–Moser setup of 2.1, avoiding the use of adelic Grassmannian.
Here is a conjectural definition. Recall that CMn � Matn �Matn is a smooth
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closed subvariety. Now Matn can be viewed as an open subset of Grðn; 2nÞ
via identifying a matrix X with the graph WX � C

n � C
n of the

corresponding linear map C
n ! C

n: Let CM0
n be the closure of CMn in

Grðn; 2nÞ �Matn: The group PGLn acts on CM0
n naturally: gðW ;YÞ ¼

ðgW ; gYg1Þ: Let %CC
0
n be the GIT quotient of CM0

n with respect to PGLn:

Question. Is there an isomorphism %CC
0
n ’ %CCn extending the identity

isomorphism on the common open subset %CC
0
n*Cn � %CCn?

3. C
n-ACTION ON SCHUBERT CELLS

3.1. For y ¼ 0; we write GrðnÞ instead of Grðn; yÞ for the Grassmannian of
n-dimensional subspaces of C½z	=ðz2nÞ: We have the standard complete flag
in C½z	=ðz2nÞ (see 2.3):

0 � m2n1
0 =m2n

0 � m2n2
0 =m2n

0 � � � � � m0=m
2n
0 � C½z	=m2n

0 :

Recall that Schn � GrðnÞ is a disjoint union of the n-dimensional cells,
which are known to be exactly the cells Schl numbered by the set PðnÞ of
partitions of n: In more detail, given a partition l ¼ ðl1; . . . ; lnÞ; 04l14 � � �
4ln; l1 þ . . .þ ln ¼ n; we have

Schl ¼fW 2 GrðnÞ j dim ðW \ ðm2nlii
0 =m2n

0 ÞÞ ¼ i; 8i ¼ 1; . . . ; n;

and dim ðW \ ðmj
0=m

2n
0 ÞÞ ¼ i; 8j such that

2n  li  i > j > 2n  liþ1  i  1g:

The multiplicative group C
n acts on C½z	 by ðc; ziÞ/cizi: This action

induces a natural action on Schl � GrðnÞ contracting this Schubert cell to
the unique fixed point Wl :¼ hz2nl11; z2nl22; . . . ; z2nlnni (we think of the
point Wl 2 GrðnÞ as a vector subspace spanned by the base vectors
z2nl11; . . . ; z2nlnn). The tangent space TWlSchl at the point Wl is
naturally isomorphic to the direct sum of the following vector spaces of
linear maps:

HomðCz2nl11; hz2n1; . . . ; z2nl1iÞ�

HomðCz2nl22; hz2n1; . . . ; dz2nl11z2nl11; . . . ; z2nl21iÞ � � � � �

HomðCz2nlnn; hz2n1; . . . ; dz2nl11z2nl11; . . . ; dz2nliiz2nlii; . . . ; z2nlnnþ1iÞ;

where # means omission of an element. From this we read off easily the
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character of Cn on TWlSchl: Specifically, write hlðuÞ for the hook length of
a box u in the Young diagram attached naturally to a partition l: Below, we
use the notation qi for the character Cn ! C

n; c/ci; and write ch V for the
character of a finite-dimensional Cn-module V :

3.2. Lemma. We have: chðTWlSchlÞ ¼
P

u2l qhlðuÞ:

4. NILPOTENT EXTENSIONS OF SCHUBERT CELLS

4.1. Recall the map pn :Cn ! AðnÞ; ðX ;YÞ/SpecðY Þ: Denote this map
by p2; and similarly, consider the other projection p1 :Cn ! AðnÞ; ðX ;Y Þ
/SpecðX Þ: Note that there is an involution o on Cn such that o :
ðX ;Y Þ/ðY t;X tÞ; and we have: p1 ¼ p2 8o: Let p ¼ ðp1; p2Þ stand for the
simultaneous projection ðp1; p2Þ : Cn ! AðnÞ � AðnÞ: To distinguish between
the two copies of AðnÞ we will use the notation p : Cn ! A

ðnÞ
1 � A

ðnÞ
2 :

According to [EG], the map p is a finite morphism.

The scheme theoretic fiber p1
2 ð0Þ is a disjoint union of schemes p1

2 ð0Þl
such that the underlying reduced scheme is Schl; to be denoted Sch2l from
now on. Similarly, the scheme theoretic fiber p1

1 ð0Þ is a disjoint union
of schemes p1

1 ð0Þl such that the underlying reduced scheme is denoted
by Sch1l:
Our goal is to compute the scheme theoretic fiber p1ð0; 0Þ: It is well

known that the corresponding reduced scheme is a disjoint union of points:
the Cn-fixed points of Sch1n (or equivalently, Sch2n). Abusing the language
we will denote the C

n-fixed point of Sch2l by l; thus Sch1l \ Sch2l ¼ l: We
will denote the (scheme-theoretic) connected component of p1ð0; 0Þ
concentrated at l by p1ð0; 0Þl:
Note that p1ð0; 0Þl is the fiber over 0 2 A

ðnÞ
1 with respect to the projection

p1 : p1
2 ð0Þl ! A

ðnÞ
1 : Our first step will be to compute the fiber over 0 2 A

ðnÞ
1

with respect to the projection p1 : Sch2l ! A
ðnÞ
1 :

4.2. Recall that the Kostka polynomial associated to a Young diagram l
is a polynomial in the variable ‘q’ given by the formula: qmðlÞð1 qÞ . . .
ð1 qnÞ

Q
u2lð1 qhlðuÞÞ1; where mðlÞ is a certain positive integer, see [M,

p. 243, Example 2]. This is a q-analogue of the dimension dim Vl of the
irreducible representation Vl of the symmetric group Sn:We will consider a
version of Kostka polynomial with the lowest term equal to 1, that is, we put

KlðqÞ :¼ ð1 qÞ . . . ð1 qnÞ
Y
u2l

ð1 qhlðuÞÞ1:
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Proposition. For scheme-theoretic intersections, we have

ch OðSch2l \ p1
1 ð0ÞlÞ ¼ KlðqÞ and ch OðSch1l \ p1

2 ð0ÞlÞ ¼ Klðq1Þ:

Proof. The two formulas are analogous, so we only prove the first one.

We compute the geometric fiber of the sheaf ðp1ÞnOðSch2lÞ
at the point 0 2 A

ðnÞ
1 :

This is a locally free coherent sheaf, that is a (trivial) vector bundle, so to
compute the character of its geometric fiber at 0 it suffices to know the
character ch OðSch2lÞ of its space of global sections, and the character of
OðAðnÞ

2 Þ: Now we pass to the formal completions at 0 and l: Thus, we are
reduced to finding the characters of tangent spaces T0A

ðnÞ
1 and TlSch

2
l: The

former character equals 1þ q1 þ � � � þ qn; while the latter character was
computed in Lemma 3.2. We conclude that ch #OO

A
ðnÞ
1
;0
¼ ð1 qÞ1 . . .

ð1 qnÞ1; and ch #OOSch2l;l
¼
Q

u2l ð1 qhlðuÞÞ1: Thus, we get

ch OðSch2l \ p1
1 ð0ÞlÞ ¼ ch #OOSch2l;l

=ch #OO
A

ðnÞ
1
;0
¼ KlðqÞ ]

4.3. We are going to compute ch Oðp1ð0; 0ÞlÞ along similar lines. To
this end, it suffices to compute the character of the completion ch #OOp1

2
ð0Þl;l:

We will prove that ch #OOp1
2
ð0Þl;l ¼ Klðq1Þ

Q
u2l ð1 qhlðuÞÞ1: Hence,

arguing exactly as in the proof of Proposition 4.2 we will be able to
conclude that ch Oðp1ð0; 0ÞlÞ ¼ KlðqÞKlðq1Þ; as required in Theorem 1.2.
Thus, to prove the theorem it suffices to prove the following.

Proposition. ch #OOp1
2
ð0Þl;l ¼ Klðq1Þ

Q
u2lð1 qhlðuÞÞ1:

4.4. We start the proof of the proposition with the following.

Lemma. The smooth varieties Schl
1 and Schl

2 are transversal at l.

Proof. The varieties Sch1l and Sch2l are smooth of complementary
dimensions. Moreover, the character of TlSch

2
l is a polynomial in q1

without a constant term, while the character of TlSch
1
l is a polynomial in q

without a constant term. Hence, these two tangent spaces must have zero
intersection, and we are done. ]

Thus, the formal completion of Cn at l is isomorphic to a product of
formal completions of Sch1l and Sch2l at l:We will denote by pr1 and pr2 the
projections to the corresponding factor. The fiber over l of the restriction of
pr2 to the formal completion of p1

2 ð0Þl equals: pr12 ðlÞ ¼ Sch1l \ p1
2 ð0Þl:

We already know formulas for ch OðSch1l \ p1
2 ð0ÞlÞ and ch #OOSch2l;l

; so to

complete the proof it suffices to show that pr2*
#OOp1

2
ð0Þl;l is a (trivial) vector
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bundle on the completion of Sch2l at l: To this end, it suffices to show that
the dimension of the generic fiber of ðpr2Þn #OOp1

2
ð0Þl;l equals dim OðSch1l \

p1
2 ð0ÞlÞ ¼ dl ð¼ dim VlÞ: But the dimension of the generic fiber equals ml;
the multiplicity of the scheme p1

2 ð0Þ at the generic point of its reduced
subscheme Sch2l:
To compute this multiplicity ml we may as well work in the Drinfeld

compactification %CCn embedded into the relative Grassmannian Gn over A
ðnÞ
2 :

For a general point
%
y; the fiber p1

2 ð
%
yÞ � Grðn;

%
yÞ is reduced at the generic

point, so ml is the coefficient of the cycle class ½p1
2 ð

%
yÞ	 with respect to the

Schubert basis f½Schl	; l 2 PðnÞg of the degree 2n homology group of
GrnðC2nÞ:
Now recall that a general n-tuple

%
y ¼ ðy1; . . . ; ynÞ 2 A

ðnÞ
2 of pairwise

distinct points gives rise to a direct sum decomposition C½z	=m2
y1
� . . . � m2

yn

¼ �i C½z	=m2
yi
; and p1

2 ð
%
yÞ � Grðn;

%
yÞ is the product of corresponding

projective lines: p1
2 ð

%
yÞ ¼ P1 � � � � � P1 � GrnðC2nÞ: It is the classical result

of Schubert calculus that for the corresponding homology classes one has an
expansion: ½P1 � � � � � P1	 ¼

P
l ml � ½Schl	; moreover, the coefficients ml

can be read off from the formula: pn
1 ¼

P
l ml � sl; an expansion of the nth

power of the first symmetric function p1 with respect to the basis of Schur
functions sl: The coefficients in the latter expansion are well-known to be
equal to dl ¼ Klð1Þ; see e.g. [M, p. 114].
This completes the proof of Proposition 4.3. and the proof of

Theorem 1.2.

5. CYCLIC CALOGERO–MOSER SPACE

5.1. Consider the action of G ¼ Z=NZ � Cn on the Calogero–Moser
space CnN : The fixed-point subvariety CG

nN consists of various connected
components. There is a single component characterized by the property that
the representation of G in the fiber of the tautological bundle at any point in
this component is a multiple of the regular representation, see [K2]. We will
call this connected component CG;n: According to [M], CG;n is a special case
of Nakajima’s Quiver variety (corresponding to N-cyclic quiver with n-
dimensional spaces at all ‘‘finite’’ vertices, one-dimensional space at an
‘‘extended’’ vertex, and a nonzero value of the diagonal moment map).

We have the natural projection p ¼ ðp1; p2Þ : CG;n ! ðAðnNÞ
1 � A

ðnNÞ
2 ÞG:

Note that

ðAðnNÞ
1 � A

ðnNÞ
2 ÞG ¼ ðAðnNÞ

1 ÞG � ðAðnNÞ
2 ÞG and ðAðnNÞ

{ ÞG ¼ ðA1
{ =GÞ

ðnÞ

to be denoted A
ðnNÞ
G;{ :¼ ðAðnNÞ

{ ÞG; { ¼ 1; 2; and view p as a projection p ¼
ðp1; p2Þ : CG;n ! A

ðnÞ
G;1 � A

ðnÞ
G;2: The natural C

n-action on CnN when restricted
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to CG;n factors through C
n !c/cN

C
n; and we will consider the resulting

C
n-action on CG;n (which is generically free).

5.2. Wilson’s embedding b : CnN+GnN is G-equivariant, and its image
lands into a connected component GG;n � GG

nN characterized by the property
that the representation of G in the fiber of the tautological bundle at any
point of this component is a multiple of the regular representation (to see the
inclusion: CG;n � GG;n it suffices to check it at any C

n-fixed point, e.g.
l ¼ ðnNÞ). We will denote by b : CG;n+GG;n this G-version of Wilson’s
embedding, and we will use it to describe the reduced fibers of p2:
First of all, the action of G on C½z	=ðz2nNÞ yields a weight space

decomposition: C½z	=ðz2nNÞ ¼ �w2G_ðC½z	=ðz2nNÞÞw, according to the char-
acters of G: Each weight space is 2n-dimensional. Note that we can
canonically identify G_ with Z=NZ; and then ðC½z	=ðz2nNÞÞw is spanned by

fzk; k � w ðmodNÞg: The fiber of GG;n over nN � 0 2 ðAðnNÞ
2 ÞG is given by

W � C½z	=ðz2nNÞ j W ¼
M
w2G_

Ww; Ww � ðC½z	=ðz2nNÞÞw; dim Ww ¼ n

8<:
9=;

(hence, each vector space W has dimension nN). Thus, this fiber equalsQ
w2G_ Grðn; ðC½z	=ðz2nNÞÞwÞ: Each space ðC½z	=ðz2nNÞÞw has a distinguished

complete flag (given by the intersections with powers of the maximal ideal).
Thus, each variety Grðn; ðC½z	=ðz2nNÞÞwÞ has a natural stratification into
Schubert cells numbered by partitions.
Set PGðnÞ :¼ flw j w 2 G_;

P
w jlwj ¼ ng; and given L 2 PGðnÞ put Sch2L

:¼
Q

w Schlw �
Q

w2G_ Grðn; ðC½z	=ðz2nNÞÞwÞ: Now Wilson’s Theorem 2.3
together with [K2, Corollary 4.18, Theorem 5.3] yield the following.

Proposition. The reduced fiber of CG;n over 0 2 A
ðnÞ
G;2 is canonically

isomorphic to
‘

L2PGðnÞ Sch
2
L:

Corollary. (i) Each component Sch2L contains a unique Cn-fixed point

L 2 CG;n:

(ii) The reduced fiber of p : CG;n ! A
ðnÞ
G;1 � A

ðnÞ
G;2 over ð0; 0Þ coincides

with the set CCn

G;n ¼ PGðnÞ:

We will denote by p1ð0; 0ÞL the connected component of the scheme
theoretic fiber concentrated at the point L; and we will write p1

1 ð0ÞL; resp.
p1
2 ð0ÞL; for the connected component of the scheme theoretic fiber
concentrated at Sch1L; resp. Sch

2
L:
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5.3. We define the Drinfeld compactification %CCG;n*CG;n as the closure of
CG;n inside GG;n:
We will need a description of a general fiber of p2 : %CCG;n ! A

ðnÞ
G;2: Choose

z; a primitive Nth root of unity. Then a general point
%
y 2 A

ðnÞ
G;2 can be

represented by a collection

%
y ¼ ðy1; zy1; . . . ; z

N1y1; y2; . . . ; z
N1y2; . . . ; yn; . . . ; z

N1ynÞ

of nN pairwise distinct points of A1
2: The 2nN-dimensional vector space

V ¼ C½z	=m2
y1
. . .m2

zN1yn
is acted upon by G; and has a weight space

decomposition V ¼ �w2G_ Vw according to the characters of G: Thus, this
decomposition has N direct summands, each of dimension 2n: We also
have a direct sum decomposition V ¼ U1 � � � � � Un where Ui ¼
C½z	=m2

yi
. . .m2

zN1yi
: Note that for any i ¼ 1; . . . ; n; and w 2 G_; the

intersection Ui \ Vw is two dimensional. We will denote this intersection

by Vi;w:

The fiber of the projection p2 : GG;n ! A
ðnÞ
G;2 over

%
y 2 A

ðnÞ
G;2 equalsQ

w2G_ Grðn;VwÞ: The fiber over
%
y of the restriction of this projection to

%CCn � GG;n is isomorphic to
Q

14i4n P
1; where the space

Q
14i4n P

1 is

embedded into
Q

w2G_ Grðn;VwÞ as follows. We have a direct sum

decomposition Ui ¼ �k2Z=NZC½z	=m2
zkyi

; and the action of G on Ui

permutes the summands. Hence C½z	=m2
yi

projects isomorphically onto

any Vi;w: Given a line ‘i 2 P1ðC½z	=m2
yi
Þ we denote by ‘i;w � Vi;w its

image under the bijective projection above. Finally, for a collection

f‘ig 2
Q

14i4n P
1ðC½z	=m2

yi
Þ the corresponding point of

Q
w2G_ Grðn;VwÞ

is the collection of subspaces f�i‘i;w � Vwgw2G_ :

5.4. Our aim is to compute the character of Cn-action on the Artin ring
Oðp1ð0; 0ÞLÞ; that is, to prove Theorem 1.5. The proof is entirely similar to
that of 1.2. Let us spell out the intermediate steps. First, we define:

KLðqÞ :¼ ð1 qÞ . . . ð1 qnÞ
Y

u2lw;w2G_

ð1 qhlðuÞÞ1:

Analogous to Proposition 4.2, we obtain

Proposition. We have

ch OðSch2L \ p1
1 ð0ÞLÞ ¼ KLðqÞ and ch OðSch1L \ p1

2 ð0ÞLÞ ¼ KLðq1Þ:

Further, an analogue of Proposition 4.3 reads
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5.5 Proposition. ch #OOp1
2
ð0ÞL;L ¼ KLðq1Þ �

Q
u2lw;w2G_ ð1 qhlðuÞÞ1:

To prove this last Proposition we argue as in 4.4. It suffices to show that
the generic multiplicity mL of p1

2 ð0ÞL equals dL :¼ KLð1Þ: To this end, we
turn to the cyclic version of Drinfeld compactification %CCG;n; see 5.3. A
general fiber p1

2 ð
%
yÞ being reduced at the generic point, mL are the

coefficients of the fundamental class ½p1
2 ð

%
yÞ	 with respect to the

Schubert basis f½SchL	; L 2 PGðnÞg of the degree 2n homology group
of
Q

w2G_ GrnðC2nÞ: Our description of the general fiber p1
2 ð

%
yÞ in 5.3 boils

down to the following.
Take the diagonal embedding P1 ¼ DP1+

Q
w2G_ P1

w: For each w 2 G_ we
have an embedding ðP1

wÞ
n+Grn as in 4.4. Now form the composition

ðP1Þn ¼ ðDP1Þn+
Y
w2G_

ðP1
wÞ

n+
Y
w2G_

Grðn;VwÞ:

The homology class of ½DP1 	 in the second homology group of
Q

w2G_ P1
w

equals
P

w ½P1
w	; the sum of degree 2 generators of the homology groups of

the factors. As in 4.4, we conclude that ½ðDP1Þn	 ¼
P

L mL � ½SchL	; where
the coefficients mL are equal to the coefficients in the expansion of ð

P
w p1;wÞ

n

with respect to the basis of Schur functions SL: (Here p1;w is the first
power sum symmetric function in the variables xi;w; 14io1; and SL :¼Q

w slwðxi;wÞ; see [M, part I, Appendix B].) The latter coefficients are
in turn equal to: n!=

Q
u2lw;w2G_ hlðuÞ ¼ dL ¼ KLð1Þ; see [M, (9.6) on p. 178].

This completes the proof of Proposition 5.5, hence the proof of
Theorem 1.5.
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