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Abstract Silver is known for its antimicrobial effects and silver nanoparticles are gaining their

importance due to their antimicrobial activities. The aims of the current study were to use plant

extract for the biosynthesis of silver nanoparticles and to evaluate their antibacterial and antioxi-

dant activity in vitro. The results indicated that silver nanoparticles (AgNPs) can be synthesized

in a simple method using Chenopodium murale leaf extract. The TEM analysis showed that the sizes

of the synthesized AgNps ranged from 30 to 50 nm. The essential oil of C. murale leaf extract was

formed mainly of a-Terpinene, (Z)-Ascaridole and cis-Ascaridole. The total phenolic compounds

and total flavonides were higher in AgNPs-containing plant extract compared to the plant extract.

AgNPs-containing leaf extract showed a higher antioxidant and antimicrobial activity compared to

C. murale leaf extract alone or silver nitrate. It could be concluded that C. murale leaf extract can be

used effectively in the production of potential antioxidant and antimicrobial AgNPs for commercial

application.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
D license.
1. Introduction

The synthesis of noble metal nanoparticles attracts an increas-

ing interest due to their new and different characteristics as
compared with those of macroscopic phase, that allow attrac-
tive applications in various fields such as antimicrobials [48],
medicine, biotechnology, optics, microelectronics, catalysis,

information storage and energy conversion [71]. Silver nano-
particles (AgNPs) have the properties of high surface area,
very small size (<20 nm) and high dispersion [40]. Silver is a

safe and effective bactericidal metal because it is non-toxic to
animal cells and highly toxic to bacteria [33,38,72]. Silver
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nanoparticles (AgNPs) are one of the most commonly used
nanomaterials. AgNPs are known to have antioxidant and
antimicrobial properties [1]. AgNPs are used in coating or

embedding for medical purposes [70]. In addition to their med-
ical uses, AgNPs are also used in clothing, food industry,
paints, electronics and other fields [15,37,66]. Several

techniques have demonstrated that AgNPs can be synthesized
using chemical and physical methods, but due to the fact of
usage of a huge amount of toxic chemicals and high tempera-

ture conditions, it becomes a mandate to find an alternative
method [49].

Green chemistry approach emphasizes that the usage of
natural organisms has offered a reliable, simple, nontoxic

and eco-friendly [43,54]. Therefore, researchers in the last
years have turned to biological systems for nanoparticle syn-
thesis [64]. Synthesis of nanoparticles by biological methods,

using microorganisms, enzyme and plant or plant extract,
has been suggested as possible eco-friendly alternatives to
chemical and physical methods [56,42]. Biosynthesis of nano-

particles by plant surpasses other biological methods by
reducing the complicated process of maintaining cell culture
[69].

A plant species Gliricidia sepium used for the synthesis of
silver nanoparticles, showed an absorption maximum at
440 nm [51]. Green synthesis of AgNPs using Argimone max-
icana leaves broth generated particles of 20 nm and was

found to be effective against many bacterial and fungal
pathogens [30]. Cycas leaf extract was used to prepare silver
nanoparticles of 2 to 6 nm [29]. A plant species Solanum tor-

vum produced AgNPs of 14 nm dimension and showed the
absorbance peak at 434 nm. The antimicrobial activity of
synthesized nanoparticles was tested against Pseudomonas

aeruginosa, Staphylococcus aureus, Aspergillus flavus and
Aspergillus niger, showing a zone of inhibition [22]. Weeds
such as Ipomoea aquatica, Enhydra fluctuans and Ludwigia

adscendens were used as precursors for the synthesis of
AgNPs that showed an absorbance peak between 400 and
480 nm [53]. AgNPs synthesized from Boswellia ovalifoliolata
stem bark showed UV–Vis analysis absorption maxima at

430 nm and their size varied from 30 to 40 nm [6]. Dried
leaves of Cinnamomum camphora have been implicated in
the synthesis of 55–80 nm of AgNPs [26]. Emblica officinalis

fruit extract was used for fabrication of gold and silver
nanoparticles of 10 nm, showed a maximum absorption of
light at 430 nm [5]. Eucalyptus hybrida (Safeda) leaves have

been shown to synthesize AgNPs of 50 nm [16]. Dried leaves
of Pongamia pinnata (L) Pierre were used to synthesize
AgNPs of 20 nm size with an antimicrobial activity against
many gram negative and gram positive microorganisms

[52]. Bio-reduction of silver using various plant extracts such
as Helianthus annus, Basella alba, Oryza sativa, Saccharum
officinarum, Sorghum bicolor and Zea mays have been stud-

ied by Leela and Vivekanandan [36]. Leaf extract of Parthe-
nium hysterophorus synthesized AgNPs of average size of
50 nm [46]. An aqueous extract of Azadirachta indica (Neem)

leaves too was studied for the biogenic synthesis of AgNPs,
showed a maximum absorbance between 440 and 500 nm
[41]. Chenopodium murale (Nettleleaf goosefoot) is one of

the fast-growing annuals of the family Chenopodiaceae
and is widespread throughout different habitat types in
Egypt [34,57]. It was introduced from Europe and grows
best in moist soil. It is an abundant winter to early summer
weed and is considered a pest in agroecosystems, roadsides,
and waste places. Field observations reveal the failure of
some other plant species to establish within pure patches

of C. murale, as proved by its negative association pattern
with many weeds and cultivated species in some community
types [19,20]. The hypothesis is that several factors together

determines the nanoparticle synthesis, including the plant
source, the organic compounds in the crude leaf extract,
the concentration of silver nitrate, the temperature and other

than these, even the pigments in the leaf extract. Conse-
quently, the longtime aims are to identify those compounds
in C. murale grown in Egypt and to investigate their effi-
ciency to reduce silver ions as well as the formation of silver

nanoparticles. The aims of the current study were to utilize
for the first time the C. murale grown in Egypt to (1) eval-
uate the chemical composition, antioxidant activity, total

phenolic content and total flavonoids of the plant (2) synthe-
sis of silver nanoparticles using the leaf extract of C. murale
and (3) evaluate the antibacterial activity of the plant extract

alone or with the plant nanosliver.

2. Materials and methods

2.1. Plant materials

The leaf of C. murale (Family: Chenopodiaceae) was collected
from the Dekernis District, Dakahlia governorate, Egypt dur-
ing December 2011 and January 2012 (Fig. 1).

2.2. Biosynthesis of AgNPs

The fresh leaf extract used for the biosynthesis of AgNPs was
prepared from 20 g of thoroughly washed leaf in a 500 ml

Erlenmeyer flask, boiled in 50 ml distilled water for 30 min
and the produced extract was subjected to freeze drying. Sus-
pensions were filtered with Whatman No. 40 filter paper [17].

Fifty ml of 5 · 10�3 M aqueous solution of silver nitrate was
prepared in a Stoppard Erlenmeyer flask and 1 ml of leaf ex-
tract (0.2 g/ml) was added at room temperature for 24 h in

the dark until the brownish color was developed which indi-
cated the formation of AgNPs [46].

2.3. Characterization of AgNPs

2.3.1. UV–vis adsorbance spectroscopy analysis

The bioreduction of silver nitrate (AgNO3) to AgNPs was

monitored periodically by UV–vis spectroscopy (Shimazu
2401PC) after the dilution of the samples with deionized water
[51]. A UV–vis spectrograph of the silver and nanoparticles

was recorded by using a quartz cuvette with water as reference.
The UV–vis spectrometric readings were recorded at a scan-
ning speed of 200–800 nm [36].

2.3.2. TEM analysis of AgNPs

The suspension containing AgNPs of C. murale was sampled
by TEM analysis using JEOL model 1200 EX electron micro-

scope. TEM samples were prepared by placing a drop of the
suspension of AgNP solutions on carbon-coated copper grids
and allowing water to evaporate. The samples on the grids

were allowed to dry for 4 min. The shape and size of silver
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nanoparticles from C. murale were determined from TEM
micrographs [18].

2.4. Preparation of plant solvent extracts

Fresh leaves of C. murale (5, 10 and 20 g/L) were shaken with
absolute ethanol and water (80:20 v/v) in a metabolic shaker

for 6 h and filtered. The residues were dried overnight and then
were extracted with ethanol and water.

2.5. Extraction of Chenopodium murale essential oil

C. murale leaves were mixed with water (1:5 w/v) for hydrodi-
stillation. The distillate was extracted twice with dichlorometh-

ane (1:1 v/v). The organic phase was collected and dried with
anhydrous sodium sulfate and dichloromethane was evapo-
rated in a rotatory evaporator at 40 �C under reduced
pressure.

2.6. Identification of essential oil components

2.6.1. 1. Gas chromatographic analysis (GC)

GC analysis was performed by Hewlett–Packard model 5890
equipped with a flame ionization detector (FID). A fused silica

capillary column DB-5 (60 m · 0.32 mm id) was used. The oven
temperature was maintained initially at 50 �C for 5 min, and
then programed from 50 to 250 �C at a rate of 4 �C/min. Helium

was used as the carrier gas at flow rate of 1.1 ml/min. The
injector and detector temperatures were 220 and 250 �C, respec-
tively. The retention indices (Kovats index) of the separated
volatile components were calculated using hydrocarbons

(C7- C22, Aldrich Co.) as described by Adams [2].
For RI data, a mixture of linear saturated hydrocarbons

was co-injected and the mixture was analyzed by GC. RIs were

calculated using the following equation:

RI ¼ 100yþ 100ðz� yÞ � tRðxÞ � tRðyÞ=tRðzÞ � tRðyÞ

where y and z are the carbon numbers in the hydrocarbons
eluting before and after a GC peak of interest, respectively;

tR(x) is the retention time of the acetate; tR(y) and tR(z) are
the retention times of the hydrocarbons eluting before and
after a GC peak of interest, respectively [28].

2.6.2. 2. Gas chromatographic–mass spectrometric analysis
(GC/MS)

The analysis was carried out using a coupled Varian gas chro-

matography/mass spectrometery. The ionization voltage was
70 eV, mass range m/z 39–400 amu. The GC condition was
carried out as mentioned above. The isolated peaks were iden-
tified by matching with data from the library of mass spectra

(National Institute of Standard and Technology) and com-
pared with those of authentic compounds and published data
[2]. The quantitative determination was carried out based on

peak area integration.

2.7. Determination of total phenol content

Phenol was determined by Folin–Ciocalteau reagent in an
alkaline medium and was expressed as gallic acid equivalents
[59].
2.8. Determination of total flavonoid content

Total flavonoid content was determined as described by Kim
et al. [31] and was expressed as catechin equivalents.

2.9. Determination of antioxidant activity

2.9.1. Free radical scavenging ability on 2, 2-diphenyl-2-

picrylhydrazyl (DPPH)

To assess the scavenging ability on DPPH, each extract (5–
20 mg/ml) in water and ethanol was mixed with 1 ml of meth-
anolic solution containing DPPH radicals (0.2 mM). The mix-

ture was shaken vigorously and left to stand for 30 min in the
dark before measuring the absorbance at 517 nm against a
blank [11]. Then the scavenging ability was calculated using

the following equation:

Ið%Þ ¼ 100� ðAblank� Asample=AblankÞ

Where I (%) is the inhibition percent, A blank is the absor-
bance of the control reaction (containing all reagents except

the test compound) and A sample is the absorbance of the test
compound.

2.9.2. b-Carotene bleaching assay

The determination of b-carotene was carried out according to
the method developed earlier [68]. In brief, 2 ml of b-carotene
solution (0.2 mg/ml in chloroform) was pipetted into a round-

bottom flask containing 20 linoleic acid and 200 ll nonionic
detergents Tween 20. The mixture was then evaporated at
40 �C for 10 min to remove the solvent, immediately followed
by the addition of distilled water (100 ml). After agitating vig-

orously the mixture, 5 ml aliquots of the resulting emulsion
were transferred into test tubes containing different concentra-
tions (5–20 mg/ml) of extracts. The mixture was vortexed and

placed in a water bath at 50 �C for 2 h while the absorbance of
the tested sample was repeatedly measured every 15 min at
470 nm using a UV–VIS spectrophotometer. The blank solu-

tion contained the same concentration of sample without b-
carotene. All determinations were performed in triplicates
and the total antioxidant activity was calculated based on
the following equation:

AA ¼ 1� ðA0 �AtÞ=ðA0
0 �At

0Þ

where AA is the antioxidant activity, A0 and A0
0 are the absor-

bance values measured at initial time of the incubation for
samples and control, respectively, while At and At

0 are the
absorbance in the samples and control at t= 120 min.

2.10. Determination of antibacterial activity of AgNPs

The cup-plate agar diffusion method described by Srinivasan

et al. [61] was adopted to assess the antibacterial activity of
the prepared water extract and plant-nanosilver. One ml of
standardized Staphylococcus aureus bacterial stock suspen-

sions (108–109) colony forming units (cfu) per ml was thor-
oughly mixed with 250 ml of sterile nutrient agar. Twenty ml
of the inoculated nutrient agar was distributed into sterile petri
dishes. The agar was left to set and in each plate 3–4 cups,

10 mm in diameter was cut using a sterile cork borer No.4
and the agar disks were removed. Cups were filled with



Figure 1 Chenopodium murale plant.

Figure 2 Color change of silver nitrate to silver nanoparticles

(brown, left) by the addition of C. murale leaf extract (yellowish

green, right).
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Figure 3 The UV/Vis spectrum of the silver nanoparticles

synthesized by C. murale.

Figure 4 TEM analysis of AgNPs revealed that the size of the

nanoparticles ranged between 30 and 50 nm.
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0.1 ml of samples and were allowed to diffuse at room temper-
ature for 2 h. The plates were then incubated in the upright po-

sition at 37 �C for 18 h. After incubation the diameter of the
results and growth inhibition zones were measured averaged
and the mean values were recorded.

3. Results

The current results indicated that addition of 0.2 g of the ex-

tract to 50 ml of 5 mM aqueous silver nitrate (AgNO3) resulted
in the formation of the brown solution after the overnight
incubation at 40 �C in the dark which indicated the biosynthe-

sis of silver nanoparticles (AgNPs) (Fig. 2). Spectrophotomet-
ric study of the produced brown colored solution through the
rage spectra 190–800 nm using Shimadzu UV/VIS 2401PC
showed a maximum absorption at 440 nm (Fig. 3). The
TEM analysis revealed that the size of AgNPs ranged between

30 and 50 nm (Fig. 4).
The results of chemical composition of plant extract alone

or plus AgNPs (Table 1) showed that hydrodistillation of the

Chenopodium leaves yielded 0.02% essential oil (EO) on a fresh
weight basis. The GC–MS and GC analysis using RI revealed
that a total of 21 components were identified and represented

93.6% of the crude EO. These included a-Terpinene (40.01%),
(Z)-Ascaridole (32.21%), trans-Ascaridole (4.2%), p-Cymene
(2.11%), b-Myrcene (1.72%), (E)-2-Hexenal (1.72%), (E)-
Ascaridole (1.83%) and cis-Ascardole (2.02%), constituting

85.82% of the EO (Table 1).
The current study also revealed that AgNPs EO synthesized

by the C. murale leaves was formed mainly of a-Terpinene
(36.8%), (Z)-Ascaridole (30.4%) and cis-Ascaridole (4.21%).
The results of total phenolics content (TPC) presented in Ta-
ble 2 indicated that TPC was higher in plant-AgNPs

(80.83 ± 0.15 mg/g GAE) compared to the aqueous extract
alone (74.9 ± 0.23 mg/g GAE). The results presented in Ta-
ble 2 also revealed that total flavonids were higher in plant-
AgNPs compared to those found in the plant extract alone



Table 1 Chemical composition of the Chenopodium murale leaf and AgNPs.

No. % Area RI Compounds Method of identification

Plant extract AgNPs

1 1.72 1.48 847 (E)-2-Hexenal RI & MS

2 1.72 1.9 1160 b-Myrcene RI & MS

3 40.01 36.8 1020 a-Terpinene RI & MS

4 2.11 3.49 1030 p-Cymene RI

5 1.25 1.38 1033 Benzyl alcohol RI & MS

6 0.39 0.43 1075 p-Cresol RI & MS

7 0.46 0.35 1113 p-Mentha-1,3,8-triene RI & MS

8 0.44 0.62 1191 p-Cimen-8-ol RI & MS

9 1.03 1.29 1200 a-Terpineol RI

10 32.21 30.4 1249 (Z)-Ascaridole RI & MS

11 0.95 1.25 1260 Piperitone RI & MS

12 1.83 2.1 1309 (E)-Ascaridole RI & MS

13 0.49 0.58 1345 (E)-Piperitol acetate RI & MS

14 0.69 0.42 1363 (Z)-Carvyl acetate RI

15 0.7 0.9 1558 b-Caryophyllene RI

16 0.21 0.34 1627 trans-p-Mentha-2,8-dien-1-ol RI

17 0.95 1.4 1662 Citronellyl acetate RI

18 0.12 0.18 1686 c-Curcumene RI

19 2.02 4.21 1714 cis-Ascaridole RI

20 0.1 2.22 1732 trans-p-Mentha-1(7),8-dien-2-ol RI & MS

21 4.2 0.42 1828 trans-Ascaridole RI

Total 93.6% 94.26%

Table 2 Characterization of the aqueous and AgNP extracts of Chenopodium Spp.

Extract TPC TF Antioxidant activity

DPPH (IC50) bC (IC50)

5 g/L 10 g/L 20 g/L 5 g/L 10 g/L 20 g/L

Aqueous 74.9 ± 0.23 12.77 ± 0.07 12.63 ± 0.15 22.97 ± 0.12 59.43 ± 0.15 15.47 ± 0.09 30.2 ± 0.12 51.13 ± 0.12

AgNPs 80.83 ± 0.15 14.1 ± 0.12 13.27 ± 0.12 21.3 ± 0.2 65.43 ± 0.18 13.97 ± 0.09 29.11 ± 0.06 53.38 ± 0.04

TPC, total phonic content; TF, total flavoniods; bC, b carotene assay.

Figure 5 The antibacterial effect of C. murale leaf extract (a),

silver nitrate (b, left) and the biosynthesized AgNPs (b, right)

using the test bacterium Staphylococcus aureus.
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and the recorded values were 12.77 ± 0.07 and

14.1 ± 0.12 mg/g respectively.
The antioxidant activity of the aqueous extract and plant-

AgNPs was evaluated using DPPH scavenging and b-carotene
bleaching assays. As shown in Table 2, a significant difference
was observed among the respective values obtained. The
DPPH values were increased in a dose dependent manner.
The recorded value for the lowest concentration of the aque-

ous extract (5 mg/L) was 12.63 ± 0.15 and this value was in-
creased to 59.43 ± 0.15 when the concentration was
increased to 20 mg/L. However, these values recorded
13.27 ± 0.12 and 65.43 ± 0.18 for the two concentrations of

the plant-AgNPs respectively indicating that plant-AgNPs
possessed a higher scavenging activity compared to the plant
extract alone. Interestingly, the results of b-carotene oxidation
demonstrated also a higher antioxidant activity of plant-
AgNPs than the extract alone and this activity increased in a
dose dependent manner (Table 2).

The antimicrobial activity of C. murale leaf extract, silver
nitrate (AgNO3) and plant-AgNPs was determined by the
cup plate method as a simple and fast method to distinguish
the antimicrobial activity of the tested samples and to explain

the increment of the clear zone using the same concentration
before (AgNO3) and after nanoparticle (AgNPs) formation.
The results indicated that the leaf extract alone did not exhibit

antimicrobial effect (Fig. 5) against S. aureus (G+ve bacteria).
Silver nitrate (5 m M) showed an appreciable positive effect
against the tested microorganisms (low clear zone). However,

plant-AgNPs showed the greatest antimicrobial activity
against the tested microorganism.
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4. Discussion

Previous studies reported that AgNPs can be synthesized by
plants such as Azadirachta indica [58], Capsicum annuum [9],

Carica papaya [29], Gliricidia sepium [52], Eucalyptus hybrida
[16] and microorganisms such as Aspergillus fumigatus [10]
Cladosporium cladosporioides [8], Fusarium oxysporum [3],

Pseudomonas aeruginosa [27] and Rhodopseudomonas capsulate
[25]. In the current study, aqueous silver ions were reduced to
AgNPs after mixing with C. murale leaf extract followed by
incubation for 24 h in the dark. The color turned to reddish

brown and this change in color has been previously observed
by several investigators [65,55,30]. These authors suggested
that the color change appeared due to the surface plasmon res-

onance of deposited AgNPs. In the current study, the mecha-
nism by which the plant extract could be synthesized AgNPs
may be explained by the higher total phenolics content in the

plant. These plant phenolics are strong antioxidants with high
reducing capacity [47] which can be used for AgNPs synthesis
[39]. The higher content of total phenolic content in C. murale

leaf extract facilitates the reduction of silver ions to nano-
scale-sized silver particles due to the electron donating ability
of these phenolic compounds. Moreover, the quinoid com-
pound produced due to the oxidation of the phenol group in

phenolics can be adsorbed on the surface of nanoparticles,
accounting for their suspension stabilization [67].

The total yield of crude oil reported in the current study

was lower than the reported yield range from Nigeria [45]
and Cameroon [62]. However, yields between 0.2% and
0.3% have been reported by Gupta et al. [24]. On the other

hand, the chemical composition of the EO is substantially dif-
ferent from those reported by Jardim et al. [28], where a-Ter-
pinene (40.01%), (Z)-Ascaridole (32.21%) and trans-

Ascaridole (4.2%) constituted the major portion of the EO.
Moreover, the variation of the volatile components (93.6%)
of EO may be due to the differences in extraction and identifi-
cation method applied. [2]. On the other hand, the chemical

composition of EO was quite different from that reported in
other studies. a-Terpinene (40.01%) and Ascaridoles (Z, E,
cis and trans with 40.26%) were the major components

(80.27%) in the present study. However, previous studies indi-
cated that p-cymene and a-terpinene were the major compo-
nents in EO which represent 15.5% and 56% in Nigerian

plants [45], 19.5% and 63.6% in Indian plants [24] and 50%
and 37.6% in Cameroon plants [62]. Moreover, the current re-
sults showed that (Z) – and (E)-ascaridole were the minor com-
ponents. In this concern, Cavalli et al. [12] reported that a-
terpinene (9.7%), p-cymene (16.2%) and ascaridole (41.8%)
were found in a commercial EO available in France. Thus,
in all cases, the ascaridoles considered to be quality indicators

of C. ambrosioides EO were much lower than those obtained in
Brazil [23].

It is well documented that the phenolic compounds may

contribute directly to antioxidative action [7]. However, anti-
oxidant activities are attributed to the phenolic contents in
plants probably due to their redox properties, which allow

them to act as reducing agents, hydrogen donors, and singlet
oxygen quenchers [13]. Although no available literature on
the total phenolic content in C. murale, Laghari et al. [35] re-
ported higher total phenolic contents (3066 mg of GAE/

100 g) in Chenopodium album. In the same concern, Emam
[21] reported that plants in the family Chenopodiaceae are rich
in phenolic and flavonoid compounds and induced antioxidant
potentials. Similar to the current results, Nsimba et al. [44] re-

ported a higher antioxidant activity to other spices of the fam-
ily Chenopodiaceae i.e. chenopodium quinoa and chenopodium
album. Moreover, the results also indicated that the marginal

increase in antioxidant activity of plant-AgNPs, compared to
the plant extract suggested that the plant extract itself is
responsible for the majority of the antioxidant activity and

AgNP is not contributing much to the antioxidant activity.
The antimicrobial activity of AgNPs was reported in a ser-

ies of reports [50,30,29,22]. In the current study, plant-AgNPs
were effective against S. aureus. Similar to these observations,

Govindaraju et al. [22] showed a zone of inhibition when the
synthesized nanoparticles were tested against Pseudomonas
aeruginosa, Staphylococcus aureus, Aspergillus flavus and

Aspergillus niger. A number of theories for antimicrobial ac-
tions of colloidal silver solution have been proposed. For
example, alteration of permeability of cell membrane [60], re-

lease of lipopolysaccharides and membrane proteins [4], gener-
ation of free radicals responsible for the damage of membrane
[32], and dissipation of the proton motive force resulting in the

collapse of the membrane potential [14], however; the exact
mechanism has not been fully deciphered. Moreover, Tripathi
et al. [63] studied the effect of silver nano balls on Escherichia
coli, S. typhimurium, B. subtilis and P. aeruginosa by colony

forming unit (cfu) and growth curve at a concentration of
40 lg/ml and showed a significant reduction of bacterial pop-
ulation and their growth pattern at the studied concentration.

5. Conclusion

The current study revealed that silver nanoparticles can be syn-

thesized in a simple method using C. murale leaf extract. The
TEM analysis showed that the sizes of the synthesized AgNps
ranged from 30 to 50 nm. The essential oil of plant-AgNPs was

formed mainly of a-Terpinene, (Z)-Ascaridole and cis-Ascari-
dole. The total phenolic compounds and total flavonides were
higher in plant-AgNPs compared to the plant extract alone.

Plant-AgNPs showed a higher antioxidant and antimicrobial
activity compared to C. murale leaf extract alone or silver
nitrate.
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