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Invasive alien plants pose a threat to biodiversity worldwide, and the costs of control are ever-escalating. Early
detection and prediction of areas potentially at risk is crucial to minimise ecological and socio-economic costs.
Maxent was used to predict the area within which Ageratina adenophora can potentially naturalise and spread
in South Africa. The model was set up with 1020 occurrence records (10 replicates, 70% of records for
calibration:30% for validation), and four climatic predictor variables. Background data were selected using
Köppen–Geiger (vegetation-based) climate classification zones. All model replicates performed better than
random in both binomial tests of omission and ROC analysis. The model was statistically significant and its
mean AUC was 94%. The modeled prevalence was 0.21 and the sensitivity was 0.99. The Eastern Cape,
KwaZulu-Natal, Mpumalanga and Gauteng provinces have climatic conditions indicative of a high potential for
invasion by A. adenophora, followed by parts of the Western Cape, North West and Limpopo provinces. The
model predicted areas beyond the current distribution, suggesting that A. adenophora has potential for further
spread, and that searches for it need to be made beyond its currently known distribution. On the other hand it
appears not to have spread into some climatically suitable areas near its current occupancy sites, such as through-
out the KwaZulu-Natal mist belt, suggesting that unknown biotic (including human) or abiotic factors are also
limiting its naturalization and require further study to be identified.

© 2014 SAAB. Published by Elsevier B.V. All rights reserved.
1. Introduction

Invasive alien plants (IAPs) have been recognised as one of the
drivers of global change (Kriticos et al., 2003;Mack et al., 2000), causing
significant negative ecological and socio-economic impacts (Bradley,
2012; Papes and Peterson, 2003; Pimentel et al., 2005; Sheng, 1998).
Plant invasions have been associated with declines in native biological
diversity and, in some cases, complete transformation of whole land-
scapes (Gaertner et al., 2009; Richardson et al., 2000; Tererai et al.,
2013; Vilà et al., 2011), and high costs of management (Starfinger
et al., 2003). South Africa is among the countries that have the greatest
problems with IAPs worldwide (Richardson and van Wilgen, 2004;
Trethowan et al., 2011). Managers and policymakers require a synoptic
view of biological invasions as early as possible in order to assess impact
risks (Kriticos et al., 2003; Wang and Wang, 2006), thereby reducing
costs of reactive management (Wang and Wang, 2006). Species
velopment Initiative (ACDI),
ape Town, South Africa. Fax: +
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distribution modeling (SDM) facilitates early detection and rapid
response (Richardson and van Wilgen, 2004).

Ageratina adenophora (Spreng.) R.M. King and H. Rob., previously
known as Eupatorium adenophorum Spreng., is a weedy perennial
shrub native to Mexico, and can grow up to 3 m in height (Heystek
et al., 2011; Kluge, 1991; Sun et al., 2004; Wang and Wang, 2006).
Several ecological attributes encourage its invasiveness. It is an
extremely aggressive competitor especially in shaded conditions
(Zhang et al., 2008; Zheng et al., 2009). A typical plant can produce up
to 10,000 seeds per season, 70% of which are viable (Parsons and
Cuthbertson, 1992) and can disperse over long distances (Wang et al.,
2011) enabling it to invade rapidly. Large quantities of easily dispersible
seeds make it more likely that environmental constraints rather than
dispersal limitation control distribution (Syfert et al., 2013). Its seeds
are long-lived, allowing large and persistent soil seed banks to develop
rapidly (Shen et al., 2006). It suppresses biodiversity (Niu et al., 2007),
reduces pasture carrying capacity and is poisonous to horses
(Muniappan et al., 2009; Wang, 2005). The plant is allelopathic (Yang
et al., 2008; Zheng and Feng, 2005; Zhong et al., 2007) and has been
recorded as altering soil microbial communities in its favor (Niu et al.,
2007; Yu et al., 2005). Stems set roots upon contact with the ground,
facilitating the formation of dense stands (Muniappan et al., 2009; Sun
et al., 2004).
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Globally, A. adenophora is invasive in southern and south-eastern
Asia, eastern Australia, New Zealand, and South Africa (Cronk and
Fuller, 1995; Kluge, 1991; Wang and Wang, 2006). In many of these
countries, it invades crop fields, plantations, and pastures (Kluge,
1991). It prefers moist conditions, such as the edges of slow flowing
streams and waterlogged sites on steep slopes in high rainfall areas
(Heystek et al., 2011). China is one of the worst hit countries, with
A. adenophora classified as one of their worst invasive alien species
(Wang and Wang, 2006; Zhang et al., 2008). In South Africa, the first
record of A. adenophora was from Limpopo province in 1958 (Heystek
et al., 2011). A. adenophora is also naturalised in parts of the Western
Cape, Mpumalanga, North–West and Gauteng provinces (Henderson,
2007; Heystek et al., 2011), but was expected to be most invasive in
the mist-belt region of KwaZulu-Natal, where it is a weed of roadsides,
railway embankments, riverbanks and commercial timber plantations
around Pietermaritzburg (Kluge, 1991). In the Western Cape and
North–West it appears to be restricted to riparian habitats, elsewhere
it is also invasive in grasslands or forest margin habitats especially
when these are disturbed as noted above. Globally, biological and
chemical approaches have been used to control it, but with limited
success (Wang and Wang, 2006; Zhang et al., 2008). In South Africa, a
stem-galling tephritid fly (Procedidochares utilis Stone) and a leaf spot
fungus (Passalora ageratinae Crous & A.R. Wood) were established in
the 1980s, but with little apparent effect on the size and density of
existing stands of A. adenophora (Buccellato et al., 2012; Kluge, 1991).

Predictive modeling of geographic distributions of species has many
applications in analytical biology including management of IAPs
(Phillips et al., 2006). In areas where A. adenophora has been invasive,
much research has focused on its local pernicious effects and chemical
control (Jiang et al., 2008; Yang et al., 2008; Yang et al., 2006). However,
in China, several studies have investigated potential distribution of the
species, using various modeling methods (Lu and Ma, 2006; Papes and
Peterson, 2003; Sang et al., 2010; Wang and Wang, 2006; Zhu et al.,
2007). Numerous methods exist to model species distributions where
presence–absence data are available, but presence-only methods have
been developed in recent decades (Yackulic et al., 2013). Commonly
used presence-only methods include Genetic Algorithm for Rule-set
Production (GARP) and Maximum entropy modeling (Maxent, Phillips
et al., 2006; Phillips and Dudík, 2008). The authenticity of any
presence-only model output is dependent on the degree to which its
assumptions are met, among them randomized or representative
sampling, and constancy of detection probability across sites. Accuracy
of the predicted potential range also depends on a sufficiently large
number of occurrence points, minimal sampling bias and the use of
functionally relevant predictors (Dudík et al., 2007; Elith and
Leathwick, 2009).We chose to useMaxent for several reasons including
its successful use for many applications with presence-only data
(Kumar and Stohlgren, 2009; Trethowan et al., 2011; Wolmarans
et al., 2010), its better performance compared to other presence-only
models (e.g. GARP) (Elith et al., 2006; Merow et al., 2013; Phillips
et al., 2006; Trethowan et al., 2011), and that it has a concisemathemat-
ical algorithm and a well-understood statistical interpretation (Phillips
et al., 2006; Yackulic et al., 2013). Furthermore, presence–absence
data are rarely available and where available, are often of poor quality
(Elith et al., 2006; Trethowan et al., 2011). Maxent is among the best
performing modeling methods (Dudík et al., 2007).

While A. adenophora is an aggressive invader in other parts of the
world (Heystek et al., 2011), especially Hawaii, China, New Zealand
and Australia, it has not been as invasive as expected in parts of South
Africa (Kluge, 1991). Despite this, A. adenophora remains a potential
risk because it has had significant ecological effects where it has been
a successful invader. Several reasons, although speculative, have been
proposed for the rather slow rates of spread in South Africa, including
the lack of a suitable climate and the effect of biological control agents
that were released about three decades ago (Heystek et al., 2011). This
study aims to identify the areas climatically suitable for naturalization
and possible spread of A. adenophora in South Africa. The specific
question we ask is, “is the climate in South Africa suitable for invasion
by A. adenophora?” The findings of this study will assist environmental
managers to assess risk of A. adenophora spreading from present
localities to non-invaded areas.

2. Materials and methods

2.1. Occurrence and “absence” records

We collected about 4000 occurrence records from online databases,
namely the Global Biodiversity Information Facility (GBIF, http://www.
gbif.org/) and South African Plant Invaders Atlas database (SAPIA,
Henderson, 2007). Most of the data records were museum and
herbarium specimens that rarely arise from random or systematic
sampling, necessitating the application of methods that minimise
sampling bias (Elith et al., 2006; Pearce and Boyce, 2006; Yackulic
et al., 2013). We checked the dates of collection (excluded records
collected prior 1950 to match bioclim data—1950–2000), completeness
of coordinates (at least one decimal place), coordinate precision (not
more than 10 km), and excluded records from managed environments
(botanical gardens and residential areas). Duplicates and any points fall-
ing in the oceanswere removed.We allowed only one sample per 5-min
pixel for calibration to avoid pseudo-replication, thereby minimising
sampling bias (Phillips et al., 2009; Webber et al., 2011). The final
occurrence dataset was mapped and overlayed on satellite images
available on Google Earth (http://www.earth.google.com) to check if
there were any artificial tendencies (e.g. points only occurring in
accessible areas), and if the given habitat descriptions matched reality.
We subsampled 50% of the remaining 2040 records by allocating
random numbers, in order to reduce the risk of spatial autocorrelation.
The data cleaning reduced the number of available records to a total of
49 in the native range and 971 in the invaded range, occurring across
13 countries. The use of data from both native and invaded range is
important to capture the full range of climate conditions to which the
species has adapted (Broennimann and Guisan, 2008). For “absence”
data, Maxent relies on a user-defined geographical background of a
reference set of grid cells which is compared to the climate of grid
cells where the species is present (Webber et al., 2011). The selection
of background (pseudo-absence) data significantly influences model
results (Elith et al., 2011) and these were chosen using a non-arbitrary
method. A subsample of 10,000 background points (recommended by
Barbet-Massin et al., 2012) was randomly selected from a target group
sample of 300,000 occurrence points across 300 species in the
Asteraceae family. The background points were chosen such that they
occur within the Köppen–Geiger climate zones in which presence of
A. adenophora points occurred (Webber et al., 2011). We excluded all
zones in which no presence of A. adenophora occurred, in order to
make the background a better approximation of actual absences.

2.2. Predictor variables

Based on previous habitat modeling studies of A. adenophora (Papes
and Peterson, 2003;Wang andWang, 2006; Zhu et al., 2007) and those
of other plant species in South Africa (Beaumont et al., 2005; Trethowan
et al., 2011), we selected variables that are thought to be of biological
relevance to its distribution (Kumar and Stohlgren, 2009). These
included mean annual temperature (Bio1), mean diurnal temperature
range (Bio2), temperature seasonality (Bio4), mean temperature of
the coldest quarter (Bio11), annual precipitation (Bio12), precipitation
of the driest month (Bio14), precipitation seasonality (Bio15) and
precipitation of the wettest month (Bio13). We obtained these
bioclimatic variables from the Worldclim database (Hijmans et al.,
2005; http://www.worldclim.org/bioclim.htm), at 5-min spatial
resolution suitable for capturing steep climatic gradients (Webber
et al., 2011). We examined all variables for multicollinearity (Kumar
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Fig. 1. Potential distribution of Ageratina adenophora in South Africa (average of 10 random models). The colors show relative suitabilities of different localities in South Africa for
occupancy by A. adenophora. LPT is the lowest presence threshold. The black points are the current occurrence localities of A. adenophora.
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and Stohlgren, 2009), after which we retained four (Bio1, Bio4, Bio12
and Bio15) that were least correlated (−0.2 b r b 0.4). The rest were
strongly correlated (r N 0.8) with at least one of the four selected
variables, or among themselves, thuswere excluded for easy interpreta-
tion of results includingmodeled relationships and variable importance.
Precipitation and temperature have long been recognized as major
determinants of species distributions (Woodward and Williams, 1987;
Syfert et al., 2013). Points occurring outside the A. adenophora’s normal
mean annual temperature and rainfall ranges, and were excluded from
the analysis (Fig. A.1). Spatial data files were prepared for analysis in
Maxent using Environmental Systems Research Institute’s ArcGIS
version 10.

2.3. Modeling the ecological niche of A. adenophora

We developed an ecological niche model of A. adenophora using
Maxent 3.3.3k (Phillips et al., 2006; Phillips and Dudík, 2008; Phillips,
2008). We used Maxent for the reasons outlined in the Introduction.
The ecological nichemodel was developed based on 10 random subsets
of georeferenced occurrence points (70% of points used for
calibration:30% for validation (Phillips et al., 2006)) of A. adenophora
worldwide. We used linear and quadratic features whose outputs
make ecological sense and are easier to interpret (Merow et al., 2013;
Syfert et al., 2013). Since the choice of features has negligible effects
on predictive performance, and sampling bias was accounted for, we
considered simple feature types to be sufficient (Syfert et al., 2013). To
Fig. 2.Mean response curves of 10 replicate Maxent runs (red) and the mean ± 1 standard de
keeping all other environmental variables at an average sample value. ii. Graphs e–h show a M
determine where the model was interpolating (estimating relative
rate of occurrence (ROR) within a range of known presence points) or
extrapolating (estimation of ROR outside the range presence data),
multivariate environmental similarity surfaces (MESS maps sensu Elith
et al., 2010) were produced. To determinemodel performance we com-
puted the Lowest Presence Threshold (LPT) (Kumar and Stohlgren,
2009; Webber et al., 2011). We then converted the suitability indices
in each grid cell to presence (suitable) and absence (unsuitable) using
the LPT (Webber et al., 2011). We determined the model sensitivity,
that is, the proportion of test locations accurately predicted. A model
that is performing well should ideally encompass all test locations
(Webber et al., 2011). To determine usefulness of the model, we
computed prevalence (proportion of the study region estimated to be
climatically suitable)—a small prevalence is better (Webber et al.,
2011). Area under curve (AUC) was used to assess how well the
model was able to discriminate between known presences and
pseudo/assumed absences. The model output map was prepared using
ArcGIS version 10.

2.4. Interpretation of the results

While we attempted to meet most of the assumptions of presence-
only modeling, we took a cautious andmodest approach in interpreting
Maxent outputs following the advice of Yackulic et al. (2013). The raw
output presented in the resulting map (Fig. 1) was interpreted as
relative occurrence rate, not probability of occurrence (Elith and
viation (blue). i. Graphs a–d show how the prediction changes as each variable varies and
axent model created using only the corresponding variable.
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Graham, 2009;Merow et al., 2013; Yackulic et al., 2013).We report here
information on modeled relationships that is often unreported in many
similar studies, e.g. number of covariates, relative importance of each
covariate in the model, details about the “model that was fit”
including response curves; number of features included in the model
(giving an indication of model complexity), and number of data points.
AUCmeasures the ability of predictions to discriminate betweenobserved
presence and absence (Elith and Graham, 2009), or in the case of
presence-only modeling presence versus background (pseudo-absence)
(Lobo et al., 2008; Yackulic et al., 2013). However it is considered to be po-
tentiallymisleading (Lobo et al., 2008), therefore, it is given but not relied
on for model accuracy. We mainly rely on sensitivity, prevalence and
MESS and LPT for assessing model accuracy.

3. Results

3.1. Model results

The model projection tested against its training distribution records
in its relevant training domain (i.e. the Köppen–Geiger derived
background points) was found to be statistically significant using the
exact binomial test (p b 0.0001). Clearly the model predicted some cli-
matically suitable areas not currently occupied by the species (Fig. 1).
Parts of the Eastern Cape, KwaZulu-Natal, Mpumalanga, and Gauteng
emerged as the most suitable for A. adenophora occupancy. These
regions coincided with A. adenophora occurrence records (Fig. 1).
These are followed by the Western Cape and Limpopo provinces.
Mean annual temperature (42.8%) and temperature seasonality
(35.6%) make the biggest contributions to the Maxent model; and
both exhibit a relatively narrower tolerance range for A. adenophora
compared to precipitation (Fig. 2).

3.2. Model performance

The mean AUC for the 10 replicate models was 94% (Fig. A.3). MESS
maps (Fig. A.4) showed that the output model was in interpolation
mode (MESS+), except in the Sahara desert and theArctic and sub-Arctic
region. Ourmodel predicted potentially suitable habitat for A. adenophora
with good success rates, 83% at the LPT (0.0002), and was statistically
significant (p b 0.001). Our model gave a sensitivity of 0.99, while the
modeled prevalence was 0.21. According to the model, the Bioclim
variable with the greatest influence on model prediction was mean
annual temperature (Bio1), followed by temperature seasonality (Bio4)
(Table A.1, Fig. A.5).

4. Discussion

Our ecological nichemodel predicted locations with suitable climatic
conditions where A. adenophora can potentially establish. These predict-
ed locations, including Mpumalanga, Gauteng, Kwazulu-Natal, Eastern
Cape and Western Cape, are the sites where the species can naturalize,
and not necessarily where it will be a problematic invader producing
large dense infestations. The distribution of potential areaswith high rel-
ative occurrence rate of A. adenophora follows areas with warm temper-
atures and high precipitation or generally wet micro-habitats.
A. adenophora appears to prefer temperatures in the range of 10–25 °C;
and low temperature and rainfall seasonality as shown by the response
curves. This concurs with findings of studies in other parts of the
world, especially the subtropics including southwest China and
southeast Australia (see Sun et al., 2004, for a review).

If these areas are indeed climatically suitable, the absence of
A. adenophora may be explained by factors not included in this model.
A species may fail to colonize its fundamental or ecological niche
because of human factors, biotic interactions (inter-specific competi-
tion, predation),and geographic barriers hindering dispersal (Peterson
and Vieglais, 2001; Phillips et al., 2006). Interspecific species
interactions resulting from the presence of other invasive species such
as Lantana camara L. (Baars and Neser, 1999) and Chromolaena odorata
(L.) R.M. King & H. Rob. (Goodall and Zacharias, 2002) on the east coast
may be limiting the spreadofA. adenophora into these areas. A predicted
potential distribution broader than the current distributionmay be a re-
sult of the lack of niche conservatism (Peterson and Shaw, 2003;
Peterson and Vieglais, 2001;Wiens et al., 2010) between native and in-
vaded range for the species, that is, the ability of a species to broaden its
ecological niche over time. Areas west and north of Lesotho are classi-
fied as having low to moderate risk of invasion by A. adenophora, and
this may be a result of low annual temperatures. The derivation of a
local model (South Africa) from a global dataset (Bioclim) may reduce
accuracy (e.g. the prediction of areas beyond current occurrences).
However, we consider such inaccuracies to be negligible since Maxent
projected areas of climate suitability in interpolation (MESS+) space
beyond the areas where A. adenophora is known to be present in
South Africa. MESS+ curbs extrapolation inaccuracies, a concern raised
for modeling (Elith et al., 2010; Kriticos and Randall, 2001; Sutherst and
Bourne, 2009).

A proper understanding of species invasions requires models that
capture key determinants of the fundamental niche, and projections
that are meaningful and reliable beyond the training regions (Webber
et al., 2011). We therefore endeavored to ascertain that our model is
sound by determining LPT, sensitivity and model prevalence, all of
which confirmed that our model was sound. The fact that the LPT
value prediction was significant shows that test points are predicted
better than by a random prediction with the same fractional area pre-
dicted. We obtained good sensitivity for the model and this reduces
the likelihood of underestimating invasive species risk (Webber et al.,
2011). Our modeled prevalence was quite low. Webber et al. (2011)
showed through the use of Fisher’s exact one-tailed binomial and X2

tests that the smaller the prevalence, the lower the probability that all
presence points would be included within the suitable area by chance
alone. The model performance was thus good.

5. Implications for management

The results suggest that a large area is climatically suitable for
A. adenophora to naturalize and potentially spread in South Africa.
However, this species has not aggressively invaded all suitable areas,
though it is becoming more widespread and is highly invasive in at
least some parts of the country (Heystek et al., 2011). There is no
room for complacency on the part of managers, as conditions may
change to favor the spread of A. adenophora into areas that have been
predicted as climatically suitable, especially changes in the
disturbance regime (Richardson and van Wilgen, 2004), which our
model did not consider. For the areas that are not currently occupied,
but predicted suitable, pre-emptive measures may be necessary to
prevent invasion (Trethowan et al., 2011).

Our study successfully addressed the main research question. It is
clear that there is potential for A. adenophora to spread further than its
current distribution. These findings can be applied in various ways
including the identification of additional localities where A. adenophora
may already exist, but has not yet been detected (Dudík et al., 2007);
identification of localities where it is likely to spread to (Peterson and
Shaw, 2003); and in combination with other information such as distri-
bution of threatened ecosystems or biodiversity hotspots, identification
of areas to prioritise formanagement.We suggest that a key intervention
could be containment by preventing it from extending its range. Howev-
er, a resulting key question is, “why has this species not spread rapidly in
other parts of South Africa, despite a suitable climate?” Various factors
that are operating locally, rather than internationally, and therefore not
included in the model require investigation. Biotic factors identified as
important to the plant’s invasion elsewhere include changing soil mi-
crobe communities (Yu et al., 2005), and a changed energy-use strategy
(Feng et al., 2011). Other possible biotic interactions that are playing a
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role are interspecific competition by indigenous plants and impact of dis-
turbance on this, as well as the effect of the introduced biological control
agents, and this warrants further research.
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