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Abstract

In this note, we study the long time existence of the Calabi flow on X = C
n/Zn + iZn. Assuming

the uniform bound of the total energy, we establish the non-collapsing property of the Calabi flow by
using Donaldson’s estimates and Streets’ regularity theorem. Next we show that the curvature is uniformly
bounded along the Calabi flow on X when the dimension is 2, partially confirming Chen’s conjecture.
Moreover, we show that the Calabi flow exponentially converges to the flat Kähler metric for arbitrary
dimension if the curvature is uniformly bounded, partially confirming Donaldson’s conjecture.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

The Calabi flow was invented by Calabi [6] to search for the canonical metrics in a given
Kähler class. Let ϕ be a Kähler potential and S be the scalar curvature of ϕ, its equation is

∂ϕ

∂t
= S − S, (1)
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where S is the average of the scalar curvature. Since it is a 4th order parabolic equation, its
long time existence and convergence are hard to study. The Riemann surface case is settled
down by Chrusciél [15] and reproved by Chen [9]. The study of the Calabi flow on the ruled
manifolds is elaborated by Guan [24] and Székelyhidi [33]. Later, Chen and He prove the short
time existence of the Calabi flow in [10]. In the same paper, they prove that the obstruction of
the long time existence of the Calabi flow is the Ricci curvature. Furthermore, they establish the
stability property of the Calabi flow near a cscK metric. The stability property is generalized
by Zheng and the second named author in [26] for the case of extremal metrics. Tosatti and
Weinkove [34] also prove the stability the Calabi flow when the first Chern class c1 = 0 or c1 < 0.
The stability problem is further studied in Chen and Sun’s work [13], they prove that constant
scalar curvature Kähler metric “adjacent” to a fixed Kähler class is unique up to isomorphism.

The long time existence problem of the Calabi flow largely remains open. Assuming the long
time existence, Donaldson describes the limiting behavior of the Calabi flow in [17]. Székely-
hidi [32] shows that if the Calabi flow exists for all time in toric varieties, then the infimum of the
Calabi energy is equal to the supremum of the normalized Futaki invariant over all destabilizing
test-configurations, partially confirming Donaldson’s conjecture in [19].

The global convergence problem of the Calabi flow also largely remains open. An application
of the global convergence of the Calabi flow is to solve a conjecture proposed by Apostolov,
Calderbank, Gauduchon and Tønnesen-Friedman [2]: A projective bundle (M,J ) = P(E) over
a compact curve of genus � 2 admits an extremal Kähler metric in some Kähler class if and only
if E decomposes as a direct sum of stable sub-bundles.

One of the methods in studying the long time existence problem is the blow-up analysis. It
is firstly adopted in Chen and He’s work [12]. They establish the following weak regularity
theorem: Suppose the L∞ norm of Riemann curvature tensor of the Calabi flow is bounded by 1
in the time interval [−1,0], then

∫
X

∣∣∇kRm(0, x)
∣∣2

dω < C

(
n, k,

∫
X

∣∣Rm(−1, x)
∣∣2

dω

)
. (2)

Remark 1. Streets also obtains a similar result in [31].

When the Calabi energy is small in certain toric Fano surfaces, Chen and He are able to
obtain a uniform Sobolev constant along the Calabi flow [11]. Hence they derive the regularity
theorem of the Calabi flow: Suppose the L∞ norm of Riemann curvature tensor of the Calabi
flow is bounded by 1 in the time interval [−1,0], then

max
x∈X

∣∣∇kRm(0, x)
∣∣ < C(n, k). (3)

Remark 2. The regularity theorem is called Shi’s estimate in the Ricci flow [29].

After obtaining the uniform bound of Sobolev constant and the regularity theorem, Chen and
He rule out the singularities along the Calabi flow and show that the Calabi flow converges to
an extremal metric in the Cheeger–Gromov sense. This result gives us a better understanding of
Chen’s conjecture (see e.g. [11]):

Conjecture. The Calabi flow exists for all time.
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Motivated by Donaldson’s work in [16,18,20,21], the second named author studies the classi-
fication of singularities of the Calabi flow on toric varieties by assuming the total energy bound,
the regularity theorem and the non-collapsing property [25]. Later, Streets proves the regularity
theorem for the Calabi flow [30]. Then the remaining obstacle for the long time existence of the
Calabi flow on a toric variety is the non-collapsing property of the Calabi flow.

The Calabi flow on toric varieties is a parabolic version of the linearized Monge–Ampère
equation. The linearized Monge–Ampère equation is studied in the work of Caffarelli and Gutiér-
rez [5]. Their work has been used in Trudinger–Wang’s solution of the Bernstein problem [35]
and the affine Plateau problem [36]. In Donaldson’s work on the existence of cscK metrics on
toric surfaces, he also uses Caffarelli and Gutiérrez’s work to obtain the interior regularity of
his continuous method [18] and the M-condition near the boundary in order to resolve the non-
collapsing issue [21]. Caffarelli and Gutiérrez’s work also finds applications in Chen, Li and
Sheng’s work on the existence of extremal metrics on toric surfaces [14]. Székelyhidi and the
first named author apply the ideas of Trudinger and Wang and Donaldson to solve the Abreu’s
equation on Abelian varieties [22].

The difficulty of the long time existence of the Calabi flow is to show the non-collapsing prop-
erty, i.e., the injectivity radius has a uniform lower bound in the blow-up analysis. More details
can be found in [4,8] and [28] where authors explain how to use the non-collapsing property of
Ricci flow to classify the singularities of the Ricci flow in a 3-manifold.

1.1. Main results

For simplicity, we only consider the long time existence and the global convergence of the
Calabi flow on X = C

n/Λ, where Λ = Z
n + iZn. There is a natural T n action on X via the

translation in the Lagrangian subspace iRn ⊂ C
n. Let ω0 be a flat metric. We consider the space

of T n-invariant Kähler metric (Section 2):

HT n = {
φ ∈ CT n(X): ωφ = ω0 + ∂∂̄φ > 0

}
.

Then we can prove the following non-collapsing theorem along the Calabi flow in the space HT n .

Theorem 1.1. Let ωφ(−1)
∈ λHT n be an initial metric, where λ > 1 is an arbitrary rescaling

factor. Suppose that:

• The Calabi flow exists for t ∈ [−1,0] in λHT n and the L∞ norm of Riemann curvature
tensor of the Calabi flow is uniformly bounded by 1 on X × [−1,0].

• The total energy is bounded at the end point t = 0, i.e.,

∫
X

∣∣Rm(0, x)
∣∣nωn

φ0
< C,

where C is a positive constant.
• There is a constant M such that the Legendre transform of the Kähler potential of ωφ0 satis-

fies the M-condition.
• |Rm(0, x)| = 1 for some x ∈ X.
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Then the injectivity radius of x at time t = 0 is bounded from below by C1 depending only on
n, M , and C.

Next we obtain the following long time existence result of the Calabi flow which partially
confirms Chen’s conjecture.

Theorem 1.2. In dimension 2, given any initial data in HT n , the Calabi flow exists for all time
in HT n and the curvature is uniformly bounded along the flow.

For the global convergence, Donaldson has the conjecture that: If the Calabi flow exists for all
time and there exists a cscK metric in the Kähler class, then the Calabi flow converges to a cscK
metric [17]. Berman [3] proves that the Calabi flow converges to a Kähler Einstein metric in the
weak topology of currents if the Calabi flow exists for all time. Our following result confirms
Donaldson’s conjecture in X for arbitrary dimension.

Theorem 1.3. If the Calabi flow exists for all time in HT n and the curvature is uniformly
bounded, then it converges to ω0 which is a flat metric.

2. Abelian varieties

Let X = C
n/Λ where Λ = Z

n + iZn. We write each point as z = ξ + iη, where ξ and η ∈R
n

and can be viewed as the periodic coordinates of X. Let

ω0 =
√−1

2

n∑
α=1

dzα ∧ dz̄α =
n∑

α=1

dξα ∧ dηα

be the standard flat metric with associated local Kähler potential 1
2 |z|2. The group T n acts on

X via translation in η variable in the Lagrangian subspace iRn ⊂ C
n, thus we can consider the

space of torus invariant Kähler metrics in the fixed class [ω0]:

HT n =
{
φ ∈ C∞

T n(M): ωφ = ω0 +
√−1

2
∂∂̄φ > 0

}
.

Functions invariant under the translation of T n are independent of η, so they are smooth functions
on X/T n ∼= T n, i.e., φ(ξ) is a periodic and smooth function on R

n. Without loss of generality,
we can assume that the fundamental domain for the periodicity of φ is [− 1

2 , 1
2 ]n. We can write

the local Kähler potential in HT n in complex coordinates as

v(ξ) = 1

2
|ξ |2 + φ(ξ)

and the scalar curvature is

S = −
∑

vij̄ log
[
det(vab̄)

]
ij̄
i,j
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where v is a convex function on R
n since it is a local Kähler potential. Then we can take the

Legendre transform of v, with dual coordinate x = ∇v(ξ). In fact, x induces a Lie group moment
map: X → T n. The transformed function u(x) is defined by

u(x) + v(ξ) = x · ξ.

The image of the Lie group moment is isomorphic to X/T n ∼= T n. We denote P = [− 1
2 , 1

2 ]n
as the fundamental domain of T n. Let u = 1

2 |x|2. One can check that u−u is a periodic function
in R

n with fundamental domain P .
A calculation in [1] gives

S = −
∑
i,j

∂2uij (x)

∂xi∂xj

which is called Abreu’s equation, i.e., the expression of scalar curvature under symplectic co-
ordinates. Notice that in our case, the average of S is 0, thus we can rewrite the Calabi flow in
terms of Abreu’s equation as

∂u

∂t
=

∑
i,j

∂2uij (x)

∂xi∂xj

(4)

where we use the fact that ∂v(t,ξ)
∂t

= − ∂u(t,x)
∂t

[23]. In fact, by the proof of the short time existence
of the Calabi flow in [10], if the initial metric is in HT n , then the Calabi flow will stay in HT n

for a short time.

3. Calabi flow and M-condition

First, we want to introduce Donaldson’s M-condition which is crucial in controlling the in-
jectivity radius.

For any line segment p0p3 ⊂ P , let p1,p2 ∈ P be two points in P such that the lengths of
p0p1,p1p2,p2p3 are the same. Let ν be the unit vector parallel to the vector p3 − p0. We say
that u satisfies the M-condition on p0p3 if

∣∣∇νu(p1) − ∇νu(p2)
∣∣ < M.

Definition 3.1. If for any line segment l ⊂ P , u satisfies the M-condition on l, then we say that
u satisfies the M-condition on P .

The goal of this section is to prove the following proposition:

Proposition 3.2. The M-condition is preserved under the Calabi flow.

To achieve this goal, we prove C0 and C1 bounds of the solution of the Calabi flow. Thus,
there is a uniform constant M such that the M-condition holds for all time.

In Calabi and Chen’s work [7], they show that the Calabi flow decreases the distance. We will
reproduce this result in our settings.
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Proposition 3.3. The L2 norm of u(t, x) − u is decreasing along the Calabi flow.

Proof. Let ν be the outward normal vector along the boundary of P and ds be the boundary
measure. We have

∂

∂t

∫
P

(
u(t, x) − u

)2
dx

= 2
∫
P

(
S − S(t)

)(
u(t, x) − u

)
dx

= 2
∫
P

(
u

ij
ij (t, x) − u

ij
ij

)(
u(t, x) − u

)
dx

= 2
∫
∂P

(
u

ij
i (t, x) − u

ij
i

)
νj

(
u(t, x) − u

)
ds − 2

∫
P

(
u

ij
i (t, x) − u

ij
i

)(
uj (t, x) − uj

)
dx

= −2
∫
P

(
u

ij
i (t, x) − u

ij
i

)(
uj (t, x) − uj

)
dx

= −2
∫
∂P

(
uij (t, x) − uij

)
νi

(
uj (t, x) − uj

)
ds + 2

∫
P

(
uij (t, x) − uij

)(
uij (t, x) − uij

)
dx

= 2
∫
P

(
uij (t, x) − uij

)(
uij (t, x) − uij

)
dx

� 0.

The boundary integrals vanish due to the fact that u − u is a periodic function on R
n with

fundamental domain P . For the last step, notice that

∑
ij

(
uij (t, x) − uij

)(
uij (t, x) − uij

) = Trace
((

uij (t, x) − I
)(

uij (t, x) − I
))

.

Thus at each point we can choose an orthonormal basis such that (uij (t, x)) = diag(λ1, . . . ,

λn) > 0 since u is convex, then

∑
ij

(
uij (t, x) − uij

)(
uij (t, x) − uij

) =
∑

i

(λi − 1)
(
λ−1

i − 1
)
� 0. �

As an immediate corollary, we have

Corollary 3.4. The L2 norm of u(t, x) depends only on the initial metric and is bounded inde-
pendent of t .
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Proof.
∫
P

u2(t, x) dx � 2
∫
P

u2 + (
u(t, x) − u

)2
dx � 2

∫
P

u2 + (
u(0) − u

)2
dx � C0. �

Then we have the following observation:

Proposition 3.5. The L∞ norm of u(t, x) in P depends only on the initial metric and is bounded
independent of t .

Proof. By the periodicity of u(t, x) − u(x), we can do the estimates in larger domains than P :
we control the upper bound of u(t, x) in [−2,2]n and the lower bound of u(t, x) in [−1,1]n.
Thus we are able to control the gradient of u(t, x) in P .

Notice that the L2 norm of u(t, x) in domain [−3,3]n is bounded C1 which depends only
on the initial metric and is independent of t . Let us temporarily suppress the t variable, we will
write u(t, x) as u(x) in the proof. First, we prove that u(x) has an upper bound. Suppose not,
then the maximum of u(x) in [−2,2]n reaches at one of its vertices. Without loss of generality,
we can assume that the maximum of u(x) is reached at (2, . . . ,2). We consider the supporting
plane of u(x), i.e. l(x), at (2, . . . ,2). Then it is easy to see that there is an area larger than 1 such
that the value of l(x) in this area is greater or equal to its value at (2, . . . ,2). Since the value
of u(x) is always greater than l(x), we conclude that the L2 norm of u(x) is greater than C1.
A contradiction.

Next we show that u(x) is bounded from below in [−1,1]n. Let x be the point in [−1,1]n
reaching the minimum of u(x) in [−1,1]n. Notice that u(x) is bounded from above along the
boundary of [−2,2]n. If u(x) is very negative, then there is an area larger than 2n such that the
value of u(x) in this area is less than u(x)/3. It also contradicts to the fact that the L2 norm of
u(x) is bounded by C1. �

Since u is convex, we have

Corollary 3.6. The derivative of u(t, x) with respect to x in P is bounded by C2 which depends
only on the initial metric and is independent of t .

Now we give a proof of Proposition 3.2.

Proof of Proposition 3.2. It is easy to see that if the derivative of u is bounded, then the M-
condition holds automatically by its definition. �
4. Non-collapsing

In this section, we apply Donaldson’s estimates and the regularity theorem to obtain the
lower bound of the injectivity radius in Theorem 1.1. Since the estimates are done in t = 0,
we will write u(x) instead of u(0, x) for convenience. Also we write P instead of λP in this
section.

Notice that although the evolution equation of the Riemann curvature tensor of the Calabi flow
is expressed in terms of holomorphic coordinates, Streets’ estimates which are done in terms of
real coordinates can still go through:
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(1) The integral estimates in [31] can go through because

1

2
�d = �∂ = �∂̄

in Kähler manifolds.
(2) To do the analysis in [30], we not only need to lift up the metric g to the tangent bundle at x,

i.e. TxX, but also we need to lift up the holomorphic structure J and the Kähler form ω. This
can also be done.

Donaldson proves the following lemma in dimension 2. With some modifications, the second
named author generalizes Donaldson’s result to any dimension.

Lemma 4.1. If the square of the Riemannian curvature norm

|Rm|2(x) =
∑

i,j,k,l

u
ij
klu

kl
ij (x) � 1

pointwisely and there is a constant M such that u satisfies the M-condition, then for any point
x ∈ P , we have

(
uij (x)

)
< CIn,

where C is a constant depending only on M .

Proof. See Lemma 4 in [20] and Lemma 4.4 in [25]. �
Remark 3. Once we have the upper bound of (D2u), we can give a proof of the regularity
theorem from the weak regularity theorem, as shown in Appendix A.

The following lemma which obtains the lower bound of (uij ) at one point is established by
Donaldson in dimension 2. The second named author generalizes it to higher dimensions.

Lemma 4.2. Suppose in P , the L∞ norm of Riemannian curvature

|Rm|L∞ � 1

and
∫
P

∣∣Rm(x)
∣∣n dx < C1.

If there is a point x ∈ P such that |Rm|(x) = 1. Then the regularity theorem tells us that

(
uij (x)

)
> C2In,

where C2 depends only on M , C1 and n.
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Proof. See Proposition 11 in [20] and Section 5 in [25]. �
By applying Donaldson’s estimates, we can control the lower bound of (uij (y)) for any other

point y.

Lemma 4.3. Suppose in the polytope P , |Rm|L∞ � 1. For any point y ∈ P , let the Riemannian
distance between x and y be d . We have

(
uij (y)

)
� 1

e2d

(
uij (x)

)
.

Proof. We apply Lemma 7 in [20]. Since we do not have boundaries in our case, we can let the
boundary distance α go to ∞. Hence we obtain the result. �

Notice that if (uij ) is bounded from above, then the geodesic distance is bounded above by the
Euclidean distance multiplying a constant. Thus we obtain the lower bound of (uij )(y) depending
on the Euclidean distance between y and x.

Once we obtain the upper bound and lower bound of (uij ) of points around x. Applying
Donaldson’s arguments in Lemma 11 of [20], we see that the injectivity radius at x is bounded
from below. For reader’s convenience, we repeat his arguments here.

Proof of Theorem 1.1. Since we already control the upper bound and lower bound of (D2u),
we only need to control the injectivity radius of P × R

n. Moreover, we only need to consider
cut points because the curvature is bounded. Applying Lemma 8 of [20] (Lemma 4.9 of [25]),
we conclude that the Euclidean metric can be comparable with the Riemannian metric. Then
Lemma 10 of [20] shows that the injectivity radius at x has a lower bound. �
5. Singularity analysis

Since we have controlled the M-condition along the Calabi flow, thus we are ready to prove
Theorem 1.2 by the blow-up analysis. First, we study the formation of singularities of the Calabi
flow under the assumption that the total energy, i.e.,

∫
P

∣∣Rm(t, x)
∣∣n dx

is uniformly bounded along the flow.
By Chen and He’s result [10], we know that if the Calabi flow cannot extend over time T , then

there is a sequence of times ti → T and a sequence of points pi ∈ P such that |Ric|(ti , pi) → ∞.
Since we are dealing with the global convergence, we also need to rule out the case that there is
a sequence of points (ti , pi) where ti may approach to ∞ such that |Rm(ti , pi)| → ∞. We will
prove this by the contradiction arguments.

Suppose not, then without loss of generality, we can assume that

∣∣Rm(ti , pi)
∣∣ = max

t�ti , p∈P

∣∣Rm(t,p)
∣∣.

Denote λi = |Rm(ti , pi)|, rescaling the original Calabi flow u(t) by λi , i.e.,
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Pi = λiP,

ui(t, x) = λiu

(
t − Ti

λ2
i

,
x − pi

λi

)
.

Then we get a sequence of the Calabi flows ui(t) such that |Rmi (0,0)| = 1 and

max
t�0, p∈Pi

|Rm|(t,p) = 1.

We try to show that a subsequence of the Calabi flow converges to a limiting Calabi flow and
the limiting Calabi flow cannot exist. Then we can conclude that the Riemannian curvature is
uniformly bounded along the Calabi flow.

We apply the regularity theorem now. Notice that the first Euclidean derivative of u is un-
changed by rescaling, thus the M-condition is preserved under the rescaling. Also the total energy
is preserved under the rescaling because the contribution from the |Rm|n cancels with the con-
tribution from the volume. Thus we obtain the non-collapsing property of (Pi, ui(0)). By [18],
Abreu’s equation can be rewritten as

Uij

(
1

det(ukl)

)
ij

= −S,

where S is the scalar curvature. Notice that (Uij ) is an elliptic operator. In order to apply Shaud-
er’s estimates to control the derivatives of u, we need to control the derivatives of S in the
Euclidean sense. Using the regularity theorem, we can show that the scalar curvature S has a
uniform Ck bound in the Euclidean sense.

Proposition 5.1. Let f be any smooth function on X and be invariant under the torus action.
Then

∣∣∂kf
∣∣2
g

=
∑

i1,j1,...,ik,jk

ui1j1 · · ·uikjkfi1···ik fj1···jk
.

Proof. By definition,

∣∣∂kf
∣∣2
g

= gi1j̄1 · · ·gikj̄k f, i1···ik f, j̄1···j̄k
.

A direct calculation shows

gi1j̄1 · · ·gikj̄k f, i1···ik f, j̄1···j̄k

= gik j̄k
∂

∂zik

(
gik−1j̄k−1 · · ·gi1j̄1f, i1···ik−1

)
f, j̄1···j̄k

= gik j̄k
∂

∂zik

(
gik−1 j̄k−1

∂

∂zik−1

(
· · ·gi2j̄2

∂

∂zi2

(
gi1j̄1fi1

) · · ·
))

f, j̄1···j̄k

= ∂kf
f, j̄1···j̄k
∂xjk

· · · ∂xj1
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= δ
i1
j1

· · · δik
jk

∂kf

∂xik · · · ∂xi1

f, j̄1···j̄k

= ui1α1 · · ·uikαk
∂kf

∂xik · · · ∂xi1

gα1 j̄1 · · ·gαkj̄k f, j̄1···j̄k

= ui1j1 · · ·uikjkfi1···ik fj1···jk
. �

Corollary 5.2. If (D2u) is bounded from above, then DkS is bounded.

Proof. We choose an orthonormal basis such that (D2u) = diag(λ1, . . . , λn). Since (D2u) is
bounded from above, we have λi � C for all i. Thus

ui1j1 · · ·uikjkSi1···ik Sj1···jk
=

∑
i1,...,ik

S2
i1···ik

λi1 · · ·λik

� 1

Ck

∑
i1,...,ik

S2
i1···ik .

Since |∇kS| is bounded by the regularity theorem, we conclude that |DkS| is bounded. �
We normalize ui(0, ·) at the origin by subtracting an affine function such that

ui(0,0) = 0, Dxui(0,0) = 0.

Since for any t , (D2ui(t, ·)) is bounded from above, we obtain the Ck bound of S in the Euclidean
sense. Thus there is a constant δ0 > 0 such that

C1 <
(
D2ui(t,0)

)
< C2

for all −δ0 � t � 0. Hence for any p and t ∈ [−δ0,0], (D2ui(t,p)) is bounded from below
where the lower bound depends on the Euclidean distance from p to the origin. So we obtain the
Ck bound of ui(t,p) in the Euclidean sense for t ∈ [−δ0,0].

Next we calculate the derivatives of ui(t,p) in time and the mixed derivatives in time and
space. Notice that the first derivative of ui(t, ·) in t is just the scalar curvature Si(t, ·). We use u

instead of ui(t, ·) in the following calculations for convenience. The second derivative of u in t

is

∂2u

∂t2
= −∂S

∂t

=
∑
ij

(
∂uij

∂t

)
ij

=
∑
ij

(
uikSklu

jl
)
ij

= −(
uiαuαβiu

βkSklu
jl

) + (
uikSkliu

jl
) − (

uikSklu
jαuαβiu

βl
)

j j j
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= uiγ uγ δju
δαuαβiu

βkSklu
jl − uiαuαβij u

βkSklu
jl

+ uiαuαβiu
βγ uγ δju

δkSklu
jl − uiαuαβiu

βkSklj u
jl

+ uiαuαβiu
βkSklu

jγ uγ δju
δl − uiαuαβju

βkSkliu
jl

+ uikSklij u
jl − uikSkliu

jαuαβju
βl + uiγ uγ δju

δkSklu
jαuαβiu

βl

− uikSklj u
jαuαβiu

βl + uikSklu
jγ uγ δju

δαuαβiu
βl

− uikSklu
jαuαβij u

βl + uikSklu
jαuαβiu

βγ uγ δju
δl . (∗)

Lemma 5.3. If we change the coordinate system by an orthonormal transformation, the value
of (∗) remains unchanged at the origin.

Proof. Let O = (aij ) be an orthonormal matrix and v(x) = u(x O), A(x) = S(x O). Following
the calculations in Claim 4.1 of [25], we have

∂v

∂xi

(0) =
∑
α

aiαuα(0),
∂2v

∂xi∂xj

(0) =
∑
α,β

aiαajβuαβ(0),

∂3v

∂xi∂xj ∂xk

(0) =
∑
α,β,γ

aiαajβakγ uαβγ (0),

∂4v

∂xi∂xj ∂xk∂xl

(0) =
∑

α,β,γ,δ

aiαajβakγ alδuαβγ δ(0),

and

∂A

∂xi

(0) =
∑
α

aiαSα(0),
∂2A

∂xi∂xj

(0) =
∑
α,β

aiαajβSαβ(0),

∂3A

∂xi∂xj ∂xk

(0) =
∑
α,β,γ

aiαajβakγ Sαβγ (0),

∂4A

∂xi∂xj ∂xk∂xl

(0) =
∑

α,β,γ,δ

aiαajβakγ alδSαβγ δ(0).

Also we have

vij (0) =
∑
α,β

aiαajβuαβ(0).

By routine calculations, we can check that, for example,

uiγ uγ δju
δαuαβiu

βkSklu
jl = viγ vγ δj v

δαvαβiv
βkAklv

jl .

Thus we obtain the conclusion. �
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To show that (∗) is bounded, we can assume that we are in the origin. By an orthonormal trans-
formation of the coordinate system, we can assume that (uij ) = diag(λ1, . . . , λn) is a diagonal
matrix. Then

uiγ uγ δju
δαuαβiu

βkSklu
jl =

∑
i,j,k,δ

1

λiλjλkλδ

uiδjuδkiSkj .

The right hand side is obviously bounded. Thus we conclude that ∂2u

∂t2 (t,p), t ∈ [−δ0,0] is
bounded by a constant depending only on the Euclidean distance between p and the origin.
Similar arguments show that

Proposition 5.4.

∂ku

∂tk
(t,p),

∂k+lu

∂tk∂xl
(t,p)

is bounded for all t ∈ [−δ0,0], k � 1, l � 0. The bounds depend on k or k, l and the Euclidean
distance between p and the origin.

So there is a subsequence of ui(t) converging to a limiting Calabi flow u∞(t), −δ0 � t � 0.
Moreover, u∞(0) is a smooth convex function ū in R

n with the following property:

(1) The L∞ norm of Riemannian curvature is bounded by 1, i.e.,

|Rm|L∞ = max
p∈Rn

∑
i,j

ū
ij
kl(p)ūkl

ij (p)� 1.

(2) The Euclidean derivative of ū is bounded by M which is the same constant in the M-
condition, i.e.,

|Dū| < M.

We want to rule out the above singularity by the following nonexistence lemma:

Lemma 5.5. If in addition S̄ = 0, then such ū cannot exist.

Proof. For dimensional 2, see Theorem 2 in [20]. For higher dimension, see Proposition 5.2
in [25]. �
Remark 4. In dimensional 2, Jia and Li prove a more general result in [27]: the solution to the
equation

∑
ij

u
ij
ij = 0

in R
2 must be a quadratic function.
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5.1. The case of dimension 2

In dimension 2, we will prove that the scalar curvature of the limiting Calabi flow u∞(t) is 0.
For each ui(t), we temporarily suppress the index i. Let

Eij = ∂uij

∂t

and notice that the derivative of the Calabi energy

Cai(t) =
∫
Pi

S(t, x)2 dx

with respect to t is

∂

∂t

∫
Pi

S(t, x)2 dx = −2
∫
Pi

(S − S)E
ij
ij dx

= −2
∫

∂Pi

(S − S)E
ij
i νj ds + 2

∫
Pi

SjE
ij
i dx

= 2
∫
Pi

SjE
ij
i dx

= 2
∫

∂Pi

SjE
ij νi ds − 2

∫
Pi

SijE
ij dx

= −2
∫
Pi

SijE
ij dμ

= −2
∫
Pi

Sij u
iaSabu

bj dx

� 0.

Hence

Cai(−δ0) − Cai(0) = 2

0∫
δ0

∫
Pi

Siju
iaSabu

bj dx dt.

For the limiting Calabi flow, we have

0 = lim
i→∞Cai(−δ0) − Cai(0) � 2

0∫ ∫
n

Sij u
iaSabu

bj dx dt.
−δ0 R
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That is to say, S(t) must be an affine function on R
n. Since

Ca∞(0) = lim
i→∞Cai(0) < C,

S(t) must be 0.

Proof of Theorem 1.2. In [6], Calabi shows that the Calabi flow decreases the Calabi energy.
Moreover, he shows that in dimension 2, the total energy is equivalent to the Calabi energy.
Combining the above results, we obtain that the curvature is uniformly bounded along the Calabi
flow. �
6. Exponential convergence

Suppose that the Calabi flow exists for all time and the curvature is uniformly bounded. The re-
maining question is whether the Calabi flow converges to the flat Kähler metric. A well-known
fact is that the Calabi flow decreases the Mabuchi energy. In our case, the Mabuchi energy can
be explicitly written as

Ma(u) = −
∫
P

log det(uij ) dx.

Taking the derivative with respect to the time variable t , we obtain

∂

∂t
Ma

(
u(t, x)

) =
∫
P

uij (t, x)Sij (t, x) dx = −
∫
P

S2(t, x) dx � 0.

Since the curvature is bounded uniformly and the M-condition is preserved along the Cal-
abi flow, we know that (uij (t, x)) is bounded from above. The fact that the Mabuchi energy is
decreasing along the Calabi flow shows that for any t , there is at least one point p ∈ P such that

det
(
D2u(t, x)(p)

)
> C

for some constant C. Hence

(
D2u(t, x)(p)

)
> CIn.

Thus (D2u(t, x)) is bounded from below point-wisely. Notice that u(t, x) has a priori C0 and C1

bound. Hence if we take a sequence of time ti → ∞, applying Corollary 5.2 and Proposition 5.4,
we can show that there is a subsequence of ti such that the Calabi flow

ui(t, x) = u(t − ti , x)

in the interval [−1,0] converges to a limiting flow u∞(t, x), t ∈ [−1,0]. Following the arguments
as in the previous section, we conclude that A∞(t, x) must be an affine function with respect to x.
Hence u∞(t, x) must be the flat Kähler metric.
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To show the exponential convergence, by the stability result of [26], we only need to show
that the corresponding Kähler potential φ(ti , ξ) satisfies the following conditions:

• ω(ti) � C1ω∞.
• |φ(ti , ξ)|C2,α(ω∞) < C2.
• limi→∞ dist(φ(ti), φ∞) = 0.

It is easy to see that the first and the last conditions are satisfied. Since ω∞ is a flat metric, to
control the C2,α norm of φ(ti , ξ), by compact embedding C3 ↪→ C2,α , we only need to control
the third derivative of φ(ti , ξ),

∂3φ(ti , ξ)

∂ξj ∂ξk∂ξl

< C.

We can obtain this inequality by the following formula:

∂3φ(ti , ξ)

∂ξj ∂ξk∂ξl

= ∂ujk(ti , x)

∂ξl

= ∂xα

∂ξl

∂ujk(ti , x)

∂xα

= uαl(ti , x)
∂ujk(ti , x)

∂xα

= −ujα(ti , x)ukβ(ti , x)ulγ (ti , x)u(ti , x)αβγ .

Appendix A

In this appendix, we want to show that the M-condition with the weak regularity theorem can
give us the strong regularity theorem.

Theorem A.1. Suppose in P , the L∞ norm of Riemann curvature tensor is bounded by 1 and
the symplectic potential u satisfies the M-condition. If

∫
P

∣∣∇kRm
∣∣2

(x) dx < C(k),

for all k, then

∣∣∇kRm
∣∣(x) < C(k,M),

for all k and x ∈ P .

Proof. Let Fk(x) = |∇kRm|(x). Since the curvature is bounded and u satisfies the M-condition,
we conclude that

(
uij (x)

)
< C
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for all x ∈ P . It is easy to see that for any x ∈ P ,

∣∣∇Fk(x)
∣∣ � ∣∣Fk+1(x)

∣∣.
Since

∣∣∇Fk(x)
∣∣2 = 2

∑
i,j

uijF k
i F k

j � C
∣∣∇EFk

∣∣2
E
,

where |∇EFk|E is the Euclidean norm of the Euclidean derivative. Thus we have

∫
P

∣∣∇EFk
∣∣2
E

dx < C(k).

The Sobolev embedding theorem tells us that

∫
P

(
Fk(x)

)q
dx < C(k),

where q = 2n
n−2 if n > 2 or q = 4 if n = 2. It is easy to see that after finite steps, we could reach

the conclusion. �
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