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Emotional impairments such as depressive symptoms often develop in patients with sustained and
systemic immune activation. The objective of this study is to investigate the effect of gomisin N, a
dibenzocyclooctadiene lignan isolated from the dried fruits of Schisandra chinensis (Turcz.) Baill., which
exhibited inhibitory effects of the bacterial endotoxin lipopolysaccharide (LPS)-induced NO production in
a screening assay, on inflammation-induced depressive symptoms. We examined the effects of gomisin N
on inflammation induced by LPS in murine microglial BV-2 cells and on LPS-induced behavioral changes
in mice. Gomisin N inhibited LPS-induced expression of mRNAs for inflammation-related genes
(inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, interleukin (IL)-1b, IL-6 and tumor
necrosis factor (TNF)-a) in BV-2 cells. Administration of gomisin N attenuated LPS-induced expression of
mRNAs for inflammation-related genes, increases in the number of c-Fos immunopositive cells in the
hypothalamus and amygdala, depressive-like behavior in the forced swim test and exploratory behavior
deficits 24 h after LPS administration in mice. These results suggest that gomisin N might ameliorate LPS-
induced depressive-like behaviors through inhibition of inflammatory responses and neural activation in
the hypothalamus and amygdala.

© 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of Japanese Pharmacological
Society. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Many researchers have previously pointed out that the central
nervous system is closely related to the immune system (1,2).
Increased pro-inflammatory cytokines cause a coordinated set of
adaptive psychological changes such as depression and anhedonia,
which are recognized as emotional aspects of sickness behavior, in
patients with infection and cancer (1,3,4). These depressive
symptoms also occur as a comorbidity of a wide range of illnesses
with sustained and systemic inflammation, including stroke,
type 2 diabetes, coronary heart disease and rheumatoid arthritis
(5e8). Behavioral effects have been well-studied in animal models
of inflammation induced by the bacterial endotoxin,
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lipopolysaccharide (LPS) (9,10). Peripheral administration of LPS
induces systemic immune activation, including production of pro-
inflammatory cytokines, and causes increased immobility in the
forced swim test and decreased exploratory behavior in rodents (11,
12). Although how systemic inflammation leads to behavioral
changes is not well understood, neural activation in the para-
ventricular nucleus (PVN) of the hypothalamus and central nucleus
of the amygdala (CeA) is likely to be associated with these changes
in LPS-treated mice (9,13,14). These studies suggest that regulation
of immune and neural activation in the central nervous system
(CNS) can ameliorate inflammation-induced behavioral changes.
Several studies have shown candidates for treatment of
inflammation-induced behavioral changes, such as probiotics (15),
agmatine (16), zinc (17) and a hydroethanolic extract of flowers of
Pyrostegia venusta, a plant used as a Brazilian traditional medicine
(18). We have also reported Japanese traditional medicines as a
potential treatment for inflammation-induced depressive-like be-
haviors (13,19,20).
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Fig. 1. Chemical structure of gomisin N.
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Gomisin N, also known as (�)-schisandrin B, is a lignan iso-
lated from the dried fruit of Schisandra chinensis (Turcz.) Baill.,
(Schizandrae Fructus) which is used in Japanese Kampo medi-
cines. We previously screened medicinal herb-derived com-
pounds using an in vitro assay in murine microglial BV-2 cells,
with the goal of finding natural compounds that have amelio-
rative effects on inflammation-induced depressive-like behav-
iors. In the assay, we found that gomisin N exhibited the
inhibitory effect of LPS-induced nitric oxide (NO) production (our
unpublished data). Previous studies have reported various
pharmacological activities of schisandrin B such as antioxidant
and protective effects against tissue injury of heart, liver, kidney
and brain (21e28). These effects led us to speculate that gomisin
N may also suppress inflammation in the CNS and ameliorate
inflammation-induced behavioral changes. Therefore, in this
study, we investigated the effects of gomisin N on LPS-induced
inflammation and depressive-like behaviors such as increased
immobility in the forced swim test and exploratory behavior
deficit in mice.

2. Materials and methods

2.1. Cell culture

Murine microglial BV-2 cells were a generous gift from Dr. E.
Blasi. Cell culture was performed as previously described (13).
Briefly, the cells were grown in Dulbecco's modified Eagle's me-
dium supplemented with 10% heat-inactivated fetal bovine serum
(Gibco-BRL, Gaithersburg, MD, USA) containing 100 mg/mL strep-
tomycin and 100 IU/mL penicillin in a humidified atmosphere of
95% air/5% CO2 at 37 �C. The cells were plated at a density of
7.5 � 104 cells/well in 96-well tissue culture plates for Griess and
MTS assays, or at 1.0� 106 cells/well in a 60-mm tissue culture dish
for real-time PCR. Gomisin N was added 1 h before exposure to
0.1 mg/mL LPS.

2.2. Animals

Experimental procedures concerning the use of animals were
conducted according to the Guiding Principles for the Care and
Use of Laboratory Animals approved by the Japanese Pharmaco-
logical Society and the committee for Ethical Use of Experimental
Animals at Setsunan University. Every effort was made to mini-
mize animal suffering and to reduce the number of animals used.
Seven-week-old male ddY mice were obtained from Shimizu
Laboratory Supplies Co., Ltd. (Kyoto, Japan) and housed in cages
(24 � 17 � 12 cm) in groups of 5 animals under controlled envi-
ronmental conditions (23 ± 1 �C; 12:12-h lightedark cycle, hu-
midity of 55%, food and water ad libitum) for 1 week before use in
experiments. We used 168 mice in total and in single use for each
purpose.

2.3. Drug preparation and treatment

Dried fruits of S. chinensis (3.0 kg; Lot No. 003913003) culti-
vated in Liaoning province, China were purchased from Tochi-
moto Tenkaido Co. Ltd (Osaka, Japan) in March 2014, and ground
and extracted three times with n-hexane. Evaporation of the
solvent under reduced pressure gave an n-hexane extract
(360.0 g), which was chromatographed on silica gel (eluted
successively with n-hexane-EtOAc (10:1, 5:1, 2:1, 1:1, v/v) and
EtOAc) to give 12 fractions. Fraction 6 (12.4 g) was recrystallized
from n-hexane-ether to give gomisin N (501.0 mg): colorless
prisms (n-hexane: ether), HR EI MS m/z: 400.1888 (calcd for
C23H28O6: 400.1886 [Mþ]), CD (6.00 � 10�5 mol/L, MeOH) Dε (l
nm): �11.15 (252), �9.79 (241), 8.73 (220), 1H-NMR (600 MHz,
CDCl3) d: 6.53 (1H, s, H-4), 6.46 (1H, s, H-11), 5.92 (2H, dd, J ¼ 3.8,
1.5, OCH2O), 3.87 (3H, s, 2-OCH3), 3.86 (3H, s, 3-OCH3), 3.80 (3H,
s, 14-OCH3), 3.52 (3H, s, 1-OCH3), 2.55 (1H, dd, J ¼ 13.6, 7.3, 6a),
2.50 (1H, dd, J ¼ 13.6, 2.0, H-6b), 2.20 (1H, dd, J ¼ 13.3, 9.5, H-9a),
2.00 (1H, d, J ¼ 13.3, H-9b), 1.87 (1H, m, H-7), 1.76 (1H, m, H-8),
0.95 (3H, d, J ¼ 7.3, 8-CH3), 0.71 (3H, d, J ¼ 7.1, 7-CH3), 13C-NMR
(150 MHz, CDCl3) d: 151.6 (C-1), 151.5 (C-3), 148.6 (C-12), 141.1 (C-
14), 140.0 (C-2), 137.8 (C-10), 134.5 (C-13), 134.1 (C-5), 123.3 (C-
16), 121.3 (C-15), 110.6 (C-4), 102.9 (C-11), 100.7 (OCH2O), 61.0 (2-
OCH3), 60.5 (1-OCH3), 59.6 (14-OCH3), 55.9 (3-OCH3), 40.7 (C-8),
39.1 (C-6). 35.5 (C-9), 33.5 (C-7), 21.5 (8-CH3), 12.8 (7-CH3)
(Supplementary Figs. 1 and 2). 1H- and 13C-NMR spectra were
measured on a JEOL JNM-ECA 600 spectrometer (1H at 600 MHz
and 13C at 150 MHz). Chemical shifts are given in d values (ppm)
relative to tetramethylsilane (TMS) as internal standard. EI- and
HR-EI-MS spectra (at 30 eV) were obtained by JEOL JMS-700T
spectrometer. CD spectra were measured on JASCO J-805 spec-
tropolarimeter. For column chromatography, silica gel 60
(230e400 mesh; Merck, Darmstadt, Germany) was used. Kiesel
gel 60 F254 (Merck) and RP-18 F254 (Merck) were used for
analytical TLC. The structure was identified by spectroscopic
analysis and comparison with authentic data (29) (Fig. 1).
Gomisin N was dissolved in 100% methanol for in vitro assays or
suspended in 0.5% w/v carboxymethylcellulose (CMC) for in vivo
tests. LPS (from Escherichia coli O127:B8, Sigma, St. Louis, MO,
USA) was dissolved in phosphate-buffered saline (PBS) for in vitro
assays or in saline (0.9% w/v solution of NaCl) for in vivo tests.
Cells were treated with LPS (0.1 mg/mL) 6 h before in vitro mRNA
measurement or 24 h before Griess and MTS assays. In mice, LPS
(500 mg/kg) was injected intraperitoneally 2 h before decapita-
tion for mRNA measurement or 24 h before behavioral tests or
decapitation for immunohistochemistry. Gomisin N was added to
cells or injected orally 1 h before LPS treatment. All drugs were
injected at a fixed volume of 10 ml/kg body weight.

2.4. Griess assay

Griess assay was performed as previously described (13). Briefly,
cell-free supernatants were collected and mixed with an equal
volume of Griess reagent. Absorbance was measured at 570 nm
with a microplate reader (Bio-Rad, Hercules, CA, USA).
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2.5. MTS assay

MTS assay was performed as previously described (13). Briefly,
cell toxicity was measured with a CellTiter 96 Aqueous One Solu-
tion Cell Proliferation Assay (Promega, Madison, WI, USA). Absor-
bance was measured at 490 nmwith a microplate reader (Bio-Rad,
Hercules, CA, USA).

2.6. Quantitative real-time PCR

Total RNA isolated, reverse transcription and quantitative real-
time PCR were performed as previously described with the
primers indicated in Table 1 (13). Changes in gene expression were
calculated relative to the endogenous b-actin standard.

2.7. Object exploration test

The object exploration test was performed as previously
described (19). Briefly, each mouse was first placed in an observa-
tion cage (24 � 17 � 12 cm) and allowed 15 min of habituation.
After the habituation period, a novel object (a wooden ball of
diameter 5 cm) was placed in the center of the cage and behaviors
were videotaped for 5 min. The duration of object exploratory
behavior (sniffing or licking the wooden ball) was measured by an
observer blinded to the treatment conditions.

2.8. Forced swim test

The forced swim test was performed as previously described
(30). Briefly, mice were individually placed in a polymethylpentene
beaker (height 27 cm, diameter 18 cm) containing 25 ± 1 �C water
of depth 13 cm. The performance of the mice for 6 min in the
swimming session was videotaped. After the session, mice were
removed from the beakers, dried with paper towels and returned to
their home cages. The total duration of immobility wasmeasured in
the final 4 min of the 6-min test session by an observer blinded to
the treatment conditions.

2.9. Locomotor activity

Measurement of locomotor activity was performed as previ-
ously described (30). Briefly, each mouse was placed individually in
a novel cage (30 � 30 � 30 cm3) and locomotor activity was
measured using ANY-maze video tracking software (Stoelting
Company, Wood Dale, IL, USA).

2.10. c-Fos immunohistochemistry

The c-Fos immunohistochemistry was performed as previously
described (13). Briefly, mice were deeply anesthetized with pento-
barbital and perfused transcardially with saline, followed by a solu-
tion of 4% paraformaldehyde. The brain was fixed with 4%
paraformaldehyde over 2 days. Serial 50-mm thick coronal sections
Table 1
List of primer sequences used in quantitative real-time PCR.

mRNA Forward primer
sequence (50 to 30)

Reverse primer
sequence (50 to 30)

iNOS AGACCTCAACAGAGCCCTCA GGCTGGACTTTTCACTCTGC
COX-2 GGCCATGGAGTGGACTTAAA GGGATACACCTCTCCACCAA
IL-1b TGTGAAATGCCACCTTTTGA CAGGTCAAAGGTTTGGAAGC
IL-6 GTTCTCTGGGAAATCGTGGA TTCTGCAAGTGCATCATCGT
TNF-a ATGGCCTCCCTCTCATCAGT CACTTGGTGGTTTGCTACGA
b-actin ACCCACACTGTGCCCATCTA GCCACAGGATTCCATACCCA
containing the PVN of the hypothalamus (�0.8 to �1.0 mm with
respect to the bregma) and the CeA (�1.0 to�1.2mmwith respect to
the bregma)were cut using amicroslicer (DTK-1000, Dosaka EMCo.,
Ltd., Kyoto, Japan). The free-floating sections were incubated in 0.3%
hydrogenperoxide,1%bovine serumalbumin containing0.3%Triton-
X, anti-c-Fos rabbit polyclonal primary antibody solution (1:20,000
dilution; Calbiochem, San Diego, CA, USA), biotinylated anti-rabbit
IgG (1:200 dilution; Vector Laboratories, Burlingame, CA, USA) and
avidin-biotin-horseradish peroxidase complex (Vectastain ABC kit;
Vector Laboratories). Brown cytosolic products were obtained by
reaction with 3,30-diaminobenzidine (Sigma, St. Louis, MO, USA).
Three independent sections per animal containing the PVN and CeA
were selected. c-Fos-positive nuclei were counted manually under
bright-field illumination using a microscope (IX71, Olympus, Tokyo,
Japan) with a CCD camera (VB-7010, Keyence, Osaka, Japan) by an
observer blinded to the treatment conditions. The number of c-Fos-
positive nuclei in each section was determined in a 500 � 500 mm2

area in the left and right hemispheres. The mean of this average
across three sections was then calculated for each mouse.

2.11. Statistical analysis

All data are expressed as the mean ± standard error of the mean
(SEM) and were analyzed using one-way analysis of variance
(ANOVA) followed by TukeyeKramer post-hoc test in Statview 5.0J
for Apple Macintosh (SAS Institute Inc., Cary, NC, USA). A value of
p < 0.05 was considered to be significant.

3. Results

3.1. Effects of gomisin N on LPS-induced inflammation in BV-2 cells

To identify compounds that can suppress inflammation-induced
depressive-like behaviors, we screened 109medicinal herb-derived
compounds using an in vitro NO production assay in BV-2 cells
(data not shown). Among these compounds, gomisin N
(1.6e50 mM) significantly suppressed LPS (0.1 mg/ml)-induced NO
production (F7, 16 ¼ 66.327, P < 0.0001) (Fig. 2A). Gomisin N
(1.6e25 mM) had no effect on cell viability, whereas 50 mM gomisin
N showed cytotoxicity (F7, 16¼ 8.706, P¼ 0.0002) (Fig. 2B). Thus, we
examined the effect of gomisin N (12.5 and 25 mM) on LPS-induced
mRNA expression of inflammation-related genes (inducible nitric
oxide synthase (iNOS), cyclooxygenase (COX)-2, IL-1b, IL-6 and
TNF-a) in BV-2 cells. LPS-induced expression of mRNA for iNOS (F3,
8 ¼ 44.697, P < 0.0001), COX-2 (F3, 8 ¼ 103.230, P < 0.0001), IL-1b
(F3, 8 ¼ 49.738, P < 0.0001), IL-6 (F3, 8 ¼ 40.546, P < 0.0001) and
TNF-a (F3, 8 ¼ 40.505, P < 0.0001) was significantly suppressed by
25 mM gomisin N. In contrast, 12.5 mM gomisin N suppressed LPS-
induced expression of mRNA for TNF-a, but not for iNOS, COX-2,
IL-1b or IL-6 (Fig. 3AeE).

3.2. Effects of gomisin N on LPS-induced inflammation in the
hypothalamus and amygdala

Administration of LPS (500 mg/kg) increased iNOS, COX-2, IL-1b,
IL-6 and TNF-a mRNA levels in the hypothalamus and amygdala at
2 h after administration. ThemRNA levels returned to normal levels
at 24 h after administration (data not shown). Gomisin N (100 mg/
kg) attenuated LPS-induced mRNA expression in the hypothalamus
(F2, 28 ¼ 7.516, P ¼ 0.0024 for iNOS; F2, 28 ¼ 6.706, P ¼ 0.0042 for
COX-2; F2, 28¼ 8.409, P¼ 0.0014 for IL-1b; F2, 28¼ 9.449, P¼ 0.0007
for IL-6; F2, 28 ¼ 7.003, P ¼ 0.0034 for TNF-a) and amygdala (F2,
28 ¼ 7.655, P ¼ 0.0022 for iNOS; F2, 28 ¼ 15.232, P < 0.0001 for COX-
2; F2, 28¼ 16.800, P< 0.0001 for IL-1b; F2, 28¼ 20.205, P< 0.0001 for
IL-6; F2, 28 ¼ 12.312, P ¼ 0.0001 for TNF-a) (Fig. 4).



Fig. 2. Effects of gomisin N on LPS-induced NO production and cell viability in BV-2 cells. BV-2 cells were treated with gomisin N (12.5e50 mM) and 0.1 mg/ml LPS. (A) The nitrite
level was determined by Griess assay. (B) Cell viability was determined by MTS assay. Values are expressed as the mean ± S.E.M. of 3 wells. **P < 0.01 vs. control cells. yyP < 0.01 vs.
LPS-treated cells.

Fig. 3. Effects of gomisin N on LPS-induced expression of mRNAs for inflammation-related genes in BV-2 cells. BV-2 cells were treated with gomisin N (12.5 or 25 mM) and LPS
(0.1 mg/ml) was added to cultures. The mRNA levels for iNOS, COX-2, IL-1b, IL-6 and TNF-a are shown as fold-changes relative to levels in control cultures. Values are expressed as
the mean ± S.E.M. of 3 cultures. **P < 0.01 vs. control culture. yP < 0.05, yyP < 0.01 vs. LPS-treated culture.
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3.3. Effects of gomisin N on LPS-induced neural activation in the
paraventricular nucleus of the hypothalamus (PVN) and the central
nucleus of the amygdala (CeA)

Neural activity in the PVN and CeA is persistently increased for
at least 24 h after LPS administration, and this persistent neural
activation is thought to be associated with behavioral changes such
as depressive-like behavior and loss of interest (9,13,14). Thus, to
investigate the effects of gomisin N on LPS-induced neural activa-
tion, the number of c-Fos immunopositive cells was examined as an
indirect neural activity marker (Dragunow and Faull, 1989) in the
PVN and CeA at 24 h after LPS administration. LPS-induced
significant increases in c-Fos-positive cells in the PVN and CeA, and
Gomisin N (100 mg/kg) attenuated these increases in the PVN
(Fig. 5A; F2, 21 ¼18.893, P < 0.0001) and CeA (Fig. 5B; F2, 21 ¼10.198,
P ¼ 0.0008).

3.4. Effects of gomisin N on LPS-induced persistent behavioral
changes

LPS induces depressive-like behavior characterized by an
increased immobility time in the forced swim test and loss of in-
terest characterized by a decreased time spent exploring a novel
object in the object exploration test (13,14). Therefore, the effects of



Fig. 4. Effects of gomisin N on LPS-induced increases in levels of mRNAs for inflammation-related genes in the hypothalamus and amygdala. The mRNA levels for iNOS, COX-2, IL-1b
IL-6 and TNF-a in the hypothalamus (A) and amygdala (B) are shown as fold-changes relative to levels in saline/CMC-treated mice. Values are expressed as the mean ± S.E.M. of
7e12 mice. **P < 0.01 vs. saline/CMC-treated mice. yP < 0.05, yyP < 0.01 vs. LPS/CMC-treated mice.

Fig. 5. Effects of gomisin N on LPS-induced neural activation in the PVN and CeA. Representative photomicrographs showing c-Fos staining in the PVN of the hypothalamus (top
panels) and CeA (bottom panels) and in brain sections of mice treated with saline/CMC (left panels), LPS/CMC (center panels) and LPS/gomisin N (right panels). Scale bars,
100 mm (A). The number of c-Fos-positive cells in the PVN (B) and CeA (C). Values are expressed as the mean ± S.E.M. of eight mice. **P < 0.01 vs. saline/CMC-treated mice. yP < 0.05,
yyP < 0.01 vs. LPS/CMC-treated mice.
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gomisin N on LPS-induced behavioral changes were examined in
these tests. Depressive-like behavior and loss of interest were
present at 24 h after LPS (500 mg/kg) administration. Gomisin N
(100 mg/kg) significantly reversed the increase in immobility time
in the forced swim test (Fig. 6A; F2, 33 ¼ 8.987, P ¼ 0.0008) and the
decrease in exploratory behavior in the object exploration test
(Fig. 6B; F2, 22 ¼ 10.180, P ¼ 0.0007). LPS and gomisin N did not
affect locomotor activity at 24 h after LPS administration (Fig. 6C; F2,
24 ¼ 0.186, P ¼ 0.8315).
4. Discussion

Schizandrae Fructus contains several pharmacologically active
lignans. In this study, we screened 109 medicinal herb-derived
compounds including 3 lignans isolated from Schizandrae Fruc-
tus: gomisin N, gomisin A and schisandrin, for effects on LPS-
induced NO production. Gomisin N attenuated LPS-induced NO
production in a dose-dependent manner. In contrast, gomisin A or
schisandrin did not affect LPS-induced NO production (data not



Fig. 6. Effects of gomisin N on LPS-induced behavioral changes. (A) Effect of gomisin N
on LPS-induced immobility in the forced swim test. (B) Effect of gomisin N on LPS-
induced exploratory behavior deficits. (C) Effect of LPS and gomisin N on sponta-
neous locomotor activity. Values are expressed as the mean ± S.E.M. of 11e13 mice for
the forced swim test, 5e10 mice for the object exploration test, and 8e9 mice for
analysis of spontaneous locomotor activity. **P < 0.01 vs. saline/CMC-treated mice.
yP < 0.05 vs. LPS/CMC-treated mice.
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shown). In a study of structure-activity relationships of dibenzo-
cyclooctadiene lignans isolated from S. chinensis, Hu et al (31) found
that lignans with a S-biphenyl configuration, including gomisin N
(Fig. 1), had more potent inhibitory activities on LPS-induced NO
production compared to those with an R-biphenyl, including
gomisin A and schisandrin. These results suggest that the axial
chirality of biphenyl is associated with the differences in pharma-
cological effects on immune activation by lignans.

Inflammation-induced depressive symptoms are triggered by
soluble mediators produced by innate immune cells at inflam-
matory sites. In continuous peripheral immune activation, such as
that during infections, cancer and autoimmune diseases, innate
immune cells produce pro-inflammatory cytokines that act on the
CNS. Microglia in the CNS with macrophage-like activity, including
phagocytosis and pro-inflammatory cytokine production, interpret
and propagate inflammatory signals initiated in peripheral tissue
to the brain. Thus, systemic administration of LPS induces
expression of mRNAs for inflammation-related genes such as COX-
2, IL-1b, IL-6 and TNF-a in the brain. Systemic or central admin-
istration of IL-1b or TNF-a induces depressive-like behavior (32),
and LPS-induced behavioral change and production of IL-1b and
TNF-a are attenuated in IL-6-deficient mice compared with wild-
type mice (33). Prostaglandin synthesis through inflammation-
induced COX-2 in the brain is also implicated in depressive-like
behavior (10). Intravenous administration of LPS or IL-1b induces
COX-2 expression in vasculature-associated cells in brain and
neural activation in the PVN (34,35). We and others have shown
that neural activation in the PVN and CeA plays a role in LPS-
induced depressive-like behavior and loss of interest (9,13,14).
These behaviors are thought to be caused by pro-inflammatory
cytokine-induced neural activation. Moreover, in this study, LPS-
induced neural activation was observed at 24 after LPS adminis-
tration in the PVN and CeA, nevertheless the expression of mRNAs
for inflammation-related genes return normal levels (data not
shown), which suggests that inflammation might be just a trigger
of neural activation and that neural activation, but not pro-
inflammatory cytokines, might be directly involved in LPS-
induced behavioral changes observed at 24 after LPS administra-
tion. Gomisin N inhibited LPS-induced NO production and
increased mRNA levels for iNOS, COX-2, IL-1b, IL-6 and TNF-a in
murine microglial cell line BV-2 (Figs. 2A and 3). Similar findings
for gomisin N have been reported in a murine macrophage-like
cell line RAW264.7 (36). Collectively, these results suggest that
gomisin N has anti-inflammatory activity in the central and pe-
ripheral immune systems, and indicate that gomisin N may have
an ameliorative effect on inflammation-induced behavioral
changes. This is consistent with our results showing that gomisin
N attenuated LPS-induced increases in mRNAs for inflammation-
related genes and c-Fos immunopositive cells in the hypothala-
mus and amygdala, and improved depressive-like behavior and
loss of interest (Figs. 4e6).

LPS-induced behavioral changes can be divided into transient
changes such as decreases in locomotor activity and food intake,
and persistent changes such as depressive-like behavior and
exploratory behavior deficit (9,14). In rodents, inoculation of tu-
mor cells induces depressive-like behavior and exploratory
behavior deficit, but does not decrease locomotor activity and food
intake (19, 37). Haba et al (14) suggested that an exploratory
behavior deficit that probably reflects loss of interest is one of the
most vulnerable behaviors to the effects of LPS administration.
Thus, depressive-like behavior can be regarded as common
symptoms of inflammation-induced behavioral changes. We have
previously shown that LPS (500 mg/kg, i.p.) induces persistent
behavioral changes such as increased immobility in the forced
swim test and decreased exploration to a novel object which last
even after locomotor activity returned in ddY male mice. To
evaluate effects of gomisin N on LPS-induced depressive-like be-
haviors under normal locomotor activity, thus, we examined
behavioral tests 24 h after administration of LPS at 500 mg/kg in
this study. We performed the forced swim test and novel object
exploration test to investigate the effect of gomisin N on LPS-
induced depressive-like behavior and loss of interest. Gomisin N
inhibited LPS-induced immobility in the forced swim test and
exploratory behavior deficit in the novel object exploration test
without affecting locomotor activity. These results suggest that
gomisin N has ameliorative effects on the depressive symptoms in
patients with sustained and systemic inflammation. Schizandrae
Fructus is an ingredient of Ninjinyoeito, a Japanese Kampo medi-
cine, which could be used for the deconditioned patients with a
malignant tumor. It can be expected that Kampo medicines con-
taining Schizandrae Fructus may ameliorate depressive symptoms
of sickness behavior in tumor patients due to anti-inflammatory
effect of contained gomisin N.

In conclusion, this study shows that gomisin N ameliorates LPS-
induced depressive-like behavior and loss of interest, which are
putative core symptoms in patients with sustained and systemic
inflammation. These ameliorative effects of gomisin N are likely to
occur through suppression of inflammation and neural activation
in the PVN and CeA. These results indicate that Schizandrae
Fructus may have potential therapeutic value for treatment of
depressive symptoms in patients with sustained and systemic
inflammation.
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