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Abstract

Let (X, Y ) be a Rd × N0-valued random vector where the conditional distribution of Y given X = x is
a Poisson distribution with mean m(x). We estimate m by a local polynomial kernel estimate defined by
maximizing a localized log-likelihood function. We use this estimate of m(x) to estimate the conditional
distribution of Y given X = x by a corresponding Poisson distribution and to construct confidence intervals
of level � of Y given X = x. Under mild regularity conditions on m(x) and on the distribution of X we show
strong convergence of the integrated L1 distance between Poisson distribution and its estimate. We also
demonstrate that the corresponding confidence interval has asymptotically (i.e., for sample size tending to
infinity) level �, and that the probability that the length of this confidence interval deviates from the optimal
length by more than one converges to zero with the number of samples tending to infinity.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let (X, Y ) be a Rd × R-valued random variable. In regression analysis the dependency of the
value of Y on the value of X is studied, e.g., by considering the so-called regression function
m(x) = E{Y |X = x}. Usually in applications there is little or no a priori knowledge on the
structure of m and, therefore, nonparametric methods for analyzing m are of interest. For a
general introduction to nonparametric regression see, e.g., [12] and the literature cited therein. In
this paper we are interested in the special case that Y takes on with probability one only values
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in the set of nonnegative integers N0, and we assume that the conditional distribution of Y given
X = x is a Poisson distribution, i.e., we assume

P{Y = y|X = x} = m(x)y

y! · e−m(x) (y ∈ N0, x ∈ Rd).

In case of a linear function m this is the well-known generalized linear model (cf. [26]) with
Poisson likelihood. In the sequel we do not want to make any parametric assumption on m. In
this situation we want to use the observed value of X to make some inference about the value of
Y , in particular we are interested in constructing confidence intervals for Y given X = x.

To do this we assume that a sample (X1, Y1), . . . , (Xn, Yn) of the distribution of (X, Y ) is
given, where (X, Y ), (X1, Y1), (X2, Y2), . . . are independent and identically distributed. In a first
step we use the given data

Dn = {(X1, Y1), . . . , (Xn, Yn)}
to construct an estimate mn(x) = mn(x, Dn) of m(x) and estimate the above conditional proba-
bilities of Y = y given X = x by

P̂n{Y = y|X = x} = mn(x)y

y! · e−mn(x). (1)

Of course, any of the standard nonparametric regression estimates (like local polynomial kernel
estimates, least-squares estimates, or smoothing spline estimates) could be used to estimate the
regression function m at this point. However, we are not so much interested in good estimates of
m but instead in good estimates of P{Y = y|X = x}. Our main aim is to construct estimates such
that the integrated L1 distance between P{Y = y|X = x} and P̂n{Y = y|X = x} converges to
zero. Since convergence of the L1 distance between densities to zero is equivalent to convergence
to zero of the total variation distance between the corresponding distributions (cf., e.g., [7]),
this automatically implies that the level of confidence regions of Y given X = x based on
P̂n{Y = y|X = x} converges in the average and for sample sizes tending to infinity to the
nominal value (cf. Corollary 1 below).

We define regression estimates with this property similarly to [10] by maximizing a localized
log-likelihood function with respect to polynomials. This kind of estimate can be considered as an
adaptation of the famous local polynomial kernel regression estimate (cf., e.g., [11]) to Poisson
regression. The main result of this paper is that we show (under some mild conditions on the
underlying distribution) almost sure convergence to zero of the integrated L1 distance between
P{Y = y|X = x} and its estimate (1).

A number of papers have been devoted to Poisson regression and its applications. Automatic
methods for the choice of the bandwidth of the Nadaraya–Watson kernel estimate (cf. [27,36])
in Poisson regression have been investigated in [5,15], while in the first paper, in addition, the
estimation of a direction vector in a single index model is considered. The Nadaraya–Watson kernel
estimate can be also defined as localized log-likelihood estimate provided polynomials of degree
zero are used. Related penalized log-likelihood estimates have been investigated (in particular in
view of automatic choice of the parameters) in [29,38]. For the related local maximum likelihood
estimates the choice of the bandwidth was investigated in [10] in particular in the context of
nonparametric logistic regression. Cross-validation of deviance in generalized linear models was
discussed in [16]. The amount of smoothing for Poisson intensity reconstructions in medical
computed tomography was studied in [30]. Poisson regression estimation has been applied by
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Kolaczyk [20] to estimation of X-ray and �-ray burst intensity maps in astrophysics using Haar
wavelets. Regression estimation minimizing roughness-penalized Poisson likelihood was applied
to tomographic image reconstruction by La Riviere and Pan [22]. Nowak and Kolaczyk [28]
applied Bayesian multiscale methods to Poisson inverse problem.

In the proofs of the main results we use ideas developed in empirical process theory for the anal-
ysis of local-likelihood density estimates as described in Chapter 4 of [33] (see also [23,24,3,4])
and apply them to Poisson regression. The proofs are tailor-made for the proposed estimate.

The definition of the estimate is given in Section 2, the main results are described in Section
3, an outline of the proof of the main theorem is given in Section 4, and Section 5 contains the
proofs.

2. Definition of the estimate

We define the estimate by maximizing a localized version of the log-likelihood-function

L(�) =
n∑

i=1

log

(
�Yi

Yi ! · e−�

)

of a Poisson distribution and throughout the paper log is a natural logarithm. To define such a
localized log-likelihood function, let K : Rd → R be a so-called kernel function, e.g., K(u) =
1{‖u‖�1} (where 1A denotes the indicator function of a set A and ‖u‖ is the Euclidean norm of
u ∈ Rd ), and let hn > 0 be the so-called bandwidth, which we will choose later such that

hn → 0 (n → ∞).

The localized log-likelihood of a function g : Rd → R+ at point x ∈ Rd is defined by

Lloc(g|x) =
n∑

i=1

log

(
g(Xi)

Yi

Yi ! · e−g(Xi)

)
· K

(
x − Xi

hn

)
.

We estimate m(x) by maximizing Lloc(g|x) with respect to functions of the form

g(x(1), . . . , x(d)) = exp

⎛⎝ ∑
j1,...,jd=0,...,M

aj1,...,jd
· (x(1))j1 · · · · · (x(d))jd

⎞⎠ . (2)

More precisely, let M ∈ N0, �n > 1 and set

FM,�n
=
⎧⎨⎩f : Rd → R:f (x(1), . . . , x(d))=

∑
j1,...,jd=0,...,M

aj1,...,jd
(x(1))j1 · . . . · (x(d))jd

(x(1), . . . , x(d) ∈ R) for some aj1,...,jd
∈ R with |aj1,...,jd

|� log(�n)

(M + 1)d

⎫⎬⎭
and

GM,�n
=
{
g : Rd → R+ : g(x) = exp(f (x)) (x ∈ Rd) for some f ∈ FM,�n

}
.
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Note that M controls the degrees of polynomials in (2) and �n controls the size of polynomial
coefficients. The bound on the coefficients in the definition of FM,�n

implies

1

�n

�g(x)��n for all x ∈ [0, 1]d

for all g ∈ GM,�n
. Later we will choose �n such that

�n → ∞ (n → ∞).

We note that �n is needed in the proof of consistency of the estimate. For an example of a
nonconsistent regression estimate without �n in context of L2 regression estimation using local
polynomial kernel estimates with degree greater zero refer to Problem 10.3 in [12]. With this
notation we define our estimate by

mn(x) = ĝx(x), (3)

where ĝx ∈ GM,�n
satisfies

ĝx = arg max
g∈GM,�n

n∑
i=1

log

(
g(Xi)

Yi

Yi ! · e−g(Xi)

)
· K

(
x − Xi

hn

)
.

(Here z0 = arg maxz∈D f (z) is the value at which the function f : D → R takes on its maximum,
i.e., z0 ∈ D satisfies f (z0) = maxz∈D f (z).) For notational simplicity we assume here and in the
sequel that the maximum above does indeed exist. In case that it does not exist, it is easy to see
that the results below do also hold if we define the value of the estimate at point x as the value of
a function ĝ ∈ GM,�n

which satisfies
n∑

i=1

log

(
ĝ(Xi)

Yi

Yi ! · e−ĝ(Xi)

)
· K

(
x − Xi

hn

)

� sup
g∈GM,�n

n∑
i=1

log

(
g(Xi)

Yi

Yi ! · e−g(Xi)

)
· K

(
x − Xi

hn

)
− �n,

provided �n > 0 is chosen such that

�n → 0 (n → ∞).

Results concerning practical implementation of the estimate with degree zero are described in
Remark 5 in the next section.

3. Main results

In the next theorem, we formulate our main result which concerns convergence to zero of the
integrated L1 distance between the conditional Poisson distribution and its estimate.

Theorem 1. Let (X, Y ), (X1, Y1), (X2, Y2), . . . be independent and identically distributed Rd ×
N0-valued random vectors which satisfy

P{Y = y|X = x} = m(x)y

y! · e−m(x) (y ∈ N0, x ∈ Rd)
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for some function m : Rd → (0, ∞). Assume

X ∈ [0, 1]d a.s. (4)

and

|m(x) − m(z)|�Clip(m) · ‖x − z‖ (x, z ∈ Rd) (5)

for some constant Clip(m) ∈ R, i.e., assume that ‖X‖ is bounded a.s. and m is Lipschitz continuous
with Lipschitz constant Clip(m).

Consider a kernel K : Rd → R+ satisfying

K(u) = K̃(‖u‖) (u ∈ Rd)

for some K̃ : R+ → R+ which has total variation V < ∞ and satisfies for some r, R, b, B > 0

b · 1[0,r](v)�K̃(v)�B · 1[0,R](v) (v ∈ R+). (6)

Choose �n, hn > 0 such that

�n → ∞ (n → ∞), (7)

hn�
5
n exp(c · �n) → 0 (n → ∞) (8)

for any constant c > 0, and

n · h2d
n

log(n)6 → ∞ (n → ∞). (9)

Define the estimate P̂n{Y = y|X = x} as in (1) and (3). Then∫ ∞∑
y=0

∣∣̂Pn{Y = y|X = x} − P{Y = y|X = x}∣∣PX(dx) → 0 a.s.

The finite total variation condition and (6) is satisfied by many standard kernels with compact
support, e.g., by naive, triangular and parabolic kernel.

By a discrete version of Scheffe’s theorem (which follows, e.g., from the proof of Theorem 1.1
in [6]) we have for x ∈ Rd ,

∞∑
y=0

∣∣̂Pn{Y = y|X = x} − P{Y = y|X = x}∣∣
= 2 sup

A⊆N0

∣∣∣∣∣∣
∑
y∈A

P̂n{Y = y|X = x} −
∑
y∈A

P{Y = y|X = x}
∣∣∣∣∣∣ , (10)

therefore, under the assumptions of Theorem 1 the integrated total variation distance between
P{Y = ·|X = x} and P̂n{Y = ·|X = x} converges to zero almost surely. This can be used to
construct asymptotic confidence intervals for Y given X = x. Let � ∈ (0, 1). Assume that given
X we want to find an interval I (X) of the form I (X) = [0, u(X)], which is as small as possible
and satisfies

P{Y ∈ I (X)} ≈ 1 − �.
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To construct such a confidence interval we choose the smallest value un(x) ∈ R such that∑
y∈N0,y �un(x)

P̂n{Y = y|X = x}�1 − �, (11)

and set In(x) = [0, un(x)]. From Theorem 1, we have the following result

Corollary 1. Under the assumptions of Theorem 1 we have

lim inf
n→∞ P{Y ∈ In(X)|Dn}�1 − � a.s.

Proof. By (11) we have

P{Y ∈ In(X)|Dn}
=
∫ ∑

y∈In(x)∩N0

P{Y = y|X = x} PX(dx)

�1 − � −
∣∣∣∣∣∣
∫ ∑

y∈In(x)∩N0

P̂n{Y = y|X = x} PX(dx)

−
∫ ∑

y∈In(x)∩N0

P{Y = y|X = x} PX(dx)

∣∣∣∣∣∣ .
Because of∣∣∣∣∣∣

∫ ∑
y∈In(x)∩N0

P̂n{Y = y|X = x} PX(dx) −
∫ ∑

y∈In(x)∩N0

P{Y = y|X = x} PX(dx)

∣∣∣∣∣∣
�
∫

sup
A⊆N0

∣∣∣∣∣∣
∑
y∈A

P̂n{Y = y|X = x} −
∑
y∈A

P{Y = y|X = x}
∣∣∣∣∣∣PX(dx),

(10) and Theorem 1 yield the assertion. �

Next we investigate whether the length un(X) of the confidence interval In(X) converges to
the optimal length u(X), where for x ∈ Rd we define u(x) as the smallest natural number which
satisfies ∑

y∈N0,y �u(x)

P{Y = y|X = x}�1 − �.

If the case∑
y∈N0,y �u(x)

P{Y = y|X = x} = 1 − �

occurs, a very small error in the estimate of m(x) may result in |un(x) − u(x)|�1. Therefore,
in general we cannot expect that un(X) converges to u(X). Instead we show below, that the
probability that un(X) deviates from u(X) by more than one converges to zero.
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Corollary 2. Under the assumptions of Theorem 1 we have

P {|un(X) − u(X)| > 1} → 0 (n → ∞).

Proof. Set

P̂n{Y = y|X} = mn(X)y

y! · e−mn(X) and P{Y = y|X} = m(X)y

y! · e−m(X).

Since m is bounded away from zero and infinity on [0, 1]d we can conclude that u(x) is bounded
and that

P{Y = y|X = x} > c1 for y�u(x) + 1

for some constant c1 > 0. Assume that |un(x) − u(x)| > 1. In case un(x) > u(x) + 1 we have∑
y∈N0,y �u(x)+1

P̂n{Y = y|X = x} −
∑

y∈N0,y �u(x)+1

P{Y = y|X = x}

�(1 − �) −
∑

y∈N0,y �u(x)

P{Y = y|X = x} − P{Y = u(x) + 1|X = x}

�(1 − �) − (1 − �) − c1 = −c1.

In case u(x) > un(x) + 1 we have u(x) − 2�un(x) which implies∑
y∈N0,y �u(x)−2

P̂n{Y = y|X = x} −
∑

y∈N0,y �u(x)−2

P{Y = y|X = x}

�(1 − �) −
∑

y∈N0,y �u(x)−1

P{Y = y|X = x} + P{Y = u(x) − 1|X = x}

�(1 − �) − (1 − �) + c1 = c1.

From this we conclude that

|un(X) − u(X)| > 1

implies

max
k∈{u(X)−2,u(X)+1}

∣∣∣∣∣∣
∑

y∈N0,y �k

P̂n{Y = y|X} −
∑

y∈N0,y �k

P{Y = y|X}
∣∣∣∣∣∣ > c1.

From this we get by Markov inequality

P{|un(X) − u(X)| > 1} � P

⎧⎨⎩ sup
A⊆N0

∣∣∣∣∣∣
∑
y∈A

P̂n{Y = y|X} −
∑
y∈A

P{Y = y|X}
∣∣∣∣∣∣ > c1

⎫⎬⎭
� 2 · E sup

A⊆N0

∣∣∣∣∣∣
∑
y∈A

P̂n{Y = y|X} −
∑
y∈A

P{Y = y|X}
∣∣∣∣∣∣
/

2c1.

By (10), dominated convergence theorem and Theorem 1 we have

2 · E sup
A⊆N0

∣∣∣∣∣∣
∑
y∈A

P̂n{Y = y|X} −
∑
y∈A

P{Y = y|X}
∣∣∣∣∣∣
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= E
∞∑

y=0

∣∣̂Pn{Y = y|X} − P{Y = y|X}∣∣
= E

∞∑
y=0

∫ ∣∣̂Pn{Y = y|X = x} − P{Y = y|X = x}∣∣PX(dx)

→ 0 (n → ∞),

which implies the assertion. �

Remark 1. We would like to stress that in the above results there is no assumption on the distri-
bution of X besides X ∈ [0, 1]d a.s. In particular X is not required to have a density with respect
to the Lebesgue–Borel measure. We can handle the case of unbounded X using truncation.

Remark 2. It was suggested by the referee that is possible to weaken with considerable effort
condition (9) to nhd

n/(log n)M → ∞ for some M > 0 by making use of localization property of
the function K( ·−x

hn
), x ∈ [0, 1]d , by a properly chosen discretization of [0, 1]d . Similar approach

has been applied by Einmahl and Mason [9] to study uniform consistency of kernel estimators.

Remark 3. If we assume that the regression function is bounded by some constant L and that we
know this bound (this assumption is not required in the results above), we can construct a strong
pointwise consistent estimate mn(x) of m, i.e., an estimate which satisfies for PX-almost all x,

mn(x) → m(x) a.s.,

which is bounded by L, too (the last property can be ensured by truncation of the estimate). Since
the function f (z) = zy ·e−z is Lipschitz continuous on [0, L] with Lipschitz constant (y+1) ·Ly ,
this pointwise consistency implies∫ ∞∑

y=0

∣∣∣∣mn(x)y

y! · e−mn(x) − m(x)y

y! · e−m(x)

∣∣∣∣PX(dx) → 0 a.s.

Therefore, for truncated versions of estimates which are strong universal pointwise consistent,
the result of Theorem 1 does hold, too, provided a bound on the supremum norm of the regression
function is known a priori. Various strong universal pointwise consistent estimates have been
constructed in [1,2,21,35]. For related universal consistency result see, e.g., [32,31,8,13,14,25,19].

In view of this, the main new results in Theorem 1 are, that firstly the bound on m does not
have to be known in advance, and secondly the consistency result in Theorem 1 holds also for the
localized maximum likelihood estimate which has not been considered in the papers above, but
which seems to be especially suitable in the context of this paper where the main aim is not the
estimation of the regression function but estimation of P{Y = y|X = x}.

Remark 4. In the paper we only consider the prediction intervals of the shape I (X) = [0, u(X)].
It is possible to extend the paper to intervals I (X) = [u1(X), u2(X)] of the smallest length.

Remark 5. In order to investigate the behavior of the estimate in practice we provide the results
of Monte-Carlo experiments. Take degree M = 0. This implies that our estimate is the Nadaraya–
Watson estimate with the naive kernel. Let m(x) = sin(2�x)+2 and assume that X is uniform on
[0, 1]. In the simulations we used sample size of 100, 200, 400 and the bandwidth h = 0.1, 0.07,
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Fig. 1. Boxplots of the integrated L1 errors of the estimates of m for sample sizes 100, 200, 400.

0.05 (approximately const ∗ 1/
√

(n)). Each simulation was repeated 100 times, we calculated for
these 100 times the corresponding integrated L1 distance, and we produced three box plots of the
estimate corresponding to the three sample sizes. The results are shown in Fig. 1.

4. Outline of the proof of Theorem 1

In the proof of Theorem 1 we approximate the integrated distance between the estimated and
the true conditional Poisson distribution by the integrated Hellinger distance∫ ∞∑

y=0

(√
P̂n{Y = y|X = x} −√P{Y = y|X = x}

)2

PX(dx) (12)

between the two conditional distributions and we show that it converges to zero almost surely.
Then we bound this integrated Hellinger distance from above by some constant times

−E

{
log

P̂n{Y |X} + P{Y |X}
2P{Y |X}

∣∣∣∣∣Dn

}
,

where

P̂n{Y |X} = mn(X)Y

Y ! · e−mn(X) and P{Y |X} = m(X)Y

Y ! · e−m(X).

Next, we take advantage of Lipschitz continuity of m to approximate (12) by an expected value
of the smoothed conditional expectation

−
∫ E

{
log

P̂n{Y |X} + P{Y |X = x}
2P{Y |X = x} · K

(
x − X

hn

)∣∣∣∣Dn

}

EK

(
x − X

hn

) PX(dx),

where

P̂n{Y |X} = ĝx(X)Y

Y ! · e−ĝx (X) and P{Y |X = x} = m(x)Y

Y ! · e−m(x).
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We then approximate the nominator in the integral above by its empirical version and relate it
to the estimate. We note that by definition of the estimate and concavity of the log-function, the
empirical version of the nominator above

1

n

n∑
i=1

log

⎛⎜⎜⎝
ĝx(Xi)

Yi

Yi ! · e−ĝx (Xi) + m(x)Yi

Yi ! · e−m(x)

2
m(x)Yi

Yi ! · e−m(x)

⎞⎟⎟⎠ · K

(
x − Xi

hn

)

is always nonnegative. Therefore, it suffices to show that the difference between the nominator
above and its empirical version is asymptotically small, which we prove by using results of
empirical process theory.

5. Proofs

Proof of Theorem 1. In the first step of the proof we observe that∫ ∞∑
y=0

∣∣̂Pn{Y = y|X = x} − P{Y = y|X = x}∣∣PX(dx) → 0 a.s. (13)

follows from∫ ∞∑
y=0

(√
P̂n{Y = y|X = x} −√P{Y = y|X = x}

)2

PX(dx) → 0 a.s. (14)

For the sake of completeness we repeat the proof of this well-known fact (cf., e.g., [7]). Observe
that for a, b > 0

|a − b| =
∣∣∣√a − √

b

∣∣∣ · ∣∣∣√a + √
b

∣∣∣ � (√a − √
b
)2 + 2

√
b ·
∣∣∣√a − √

b

∣∣∣
and conclude from this and the Cauchy–Schwarz inequality∫ ∞∑

y=0

∣∣̂Pn{Y = y|X = x} − P{Y = y|X = x}∣∣PX(dx)

�
∫ ∞∑

y=0

(√
P̂n{Y = y|X = x} −√P{Y = y|X = x}

)2

PX(dx)

+ 2 ·
∫ ∞∑

y=0

√
P{Y=y|X=x} ·

∣∣∣∣√P̂n{Y=y|X=x}−√P{Y=y|X=x}
∣∣∣∣PX(dx)

�
∫ ∞∑

y=0

(√
P̂n{Y = y|X = x} −√P{Y = y|X = x}

)2

PX(dx)

+ 2 ·
∫ √√√√ ∞∑

y=0

P{Y = y|X = x}

×
√√√√ ∞∑

y=0

(√
P̂n{Y = y|X = x} −√P{Y = y|X = x}

)2

PX(dx).



1082 M. Kohler, A. Krzyżak / Journal of Multivariate Analysis 98 (2007) 1072–1094

With √√√√ ∞∑
y=0

P{Y = y|X = x} = √
1 = 1

and ∫ √√√√ ∞∑
y=0

(√
P̂n{Y = y|X = x} −√P{Y = y|X = x}

)2

PX(dx)

�1 ·
√√√√∫ ∞∑

y=0

(√
P̂n{Y = y|X = x} −√P{Y = y|X = x}

)2

PX(dx)

(which follows from another application of the Cauchy–Schwarz inequality) the assertion of the
first step follows.

In the second step of the proof we show∫ ∞∑
y=0

(√
P̂n{Y = y|X = x} −√P{Y = y|X = x}

)2

PX(dx)

� − 16 · E

{
log

(
P̂n{Y |X} + P{Y |X}

2P{Y |X}

)∣∣∣∣∣Dn

}
, (15)

where

P̂n{Y |X} = mn(X)Y

Y ! · e−mn(X) and P{Y |X} = m(X)Y

Y ! · e−m(X).

Lemma 4.2 in [33] yields
∞∑

y=0

(√
P̂n{Y = y|X = x} −√P{Y = y|X = x}

)2

�16 ·
∞∑

y=0

⎛⎝√ P̂n{Y = y|X = x} + P{Y = y|X = x}
2

−√P{Y = y|X = x}
⎞⎠2

. (16)

The rest of the proof mimics the proof of Lemma 1.3 in [33]. Define

a(x, y) = P̂n{Y = y|X = x} + P{Y = y|X = x}
2

and

b(x, y) = P{Y = y|X = x}.
Inequality 1

2 log u�√
u − 1 implies

1

2
log

a(x, y)

b(x, y)
�
√

a(x, y)

b(x, y)
− 1
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or equivalently

1

2
log

b(x, y)

a(x, y)
�1 −

√
a(x, y)

b(x, y)
.

Hence

1

2

∞∑
y=0

b(x, y) log
b(x, y)

a(x, y)
� 1 −

∞∑
y=0

√
a(x, y)

b(x, y)
b(x, y)

= 1 −
∞∑

y=0

√
a(x, y)b(x, y)

= 1

2

∞∑
y=0

a(x, y) + 1

2

∞∑
y=0

b(x, y) −
∞∑

y=0

√
a(x, y)b(x, y)

= 1

2

∞∑
y=0

(√
a(x, y) −√b(x, y)

)2
.

Thus we get

∞∑
y=0

(√
a(x, y) −√a(x, y)

)2
� −

∞∑
y=0

b(x, y) log
a(x, y)

b(x, y)
.

Using the definitions of a(x, y) and b(x, y) and inequality (16) we get

∞∑
y=0

(√
P̂n{Y = y|X = x} −√P{Y = y|X = x}

)2

� − 16 · EDn

{
log

(
P̂n{Y |X} + P{Y |X}

2 · P{Y |X}

)∣∣∣∣∣X = x

}
,

where in EDn
{·|X = x} we take the expectation only with respect to Y for fixed X = x and fixed

Dn. By integrating this inequality with respect to PX we get (15).
In the third step of the proof we show

E

{
log

(
P̂n{Y |X} + P{Y |X}

2 · P{Y |X}

)∣∣∣∣∣Dn

}

−
∫ E

{
log

(
P̂n{Y |X} + P{Y |X = x}

2 · P{Y |X = x}

)
· K

(
x − X

hn

)∣∣∣∣∣Dn

}

EK

(
x − X

hn

) PX(dx)

→ 0 a.s., (17)
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where

P̂n{Y |X} = ĝ(X)Y

Y ! · e−ĝ(X) and P{Y |X = x} = m(x)Y

Y ! · e−m(x).

The first expectation on the left-hand side of (17) can be written as∫
EDn

{
log

(
P̂n{Y |X} + P{Y |X}

2 · P{Y |X}

)∣∣∣∣∣X = x

}
PX(dx)

=
∫ ∞∑

y=0

log

(
P̂n{Y = y|X = x} + P{Y = y|X = x}

2P{Y = y|X = x}

)
P{Y = y|X = x}PX(dx)

=
∫

�n(x)PX(dx).

Furthermore,

E

{
log

(
P̂n{Y |X} + P{Y |X = x}

2 · P{Y |X = x}

)
· K

(
x − X

hn

)∣∣∣∣Dn

}

EK

(
x − X

hn

)

=
∫

�n,x(u) · K

(
x − u

hn

)
PX(du)

∫
K

(
x − u

hn

)
PX(du)

,

where

�n,x(u) = EDn

{
log

(
P̂n{Y |X} + P{Y |X = x}

2 · P{Y |X = x}

)∣∣∣∣∣X = u

}

=
∞∑

y=0

log

⎛⎜⎜⎝
ĝ(u)y

y! · e−ĝ(u) + m(x)y

y! · e−m(x)

2
m(x)y

y! · e−m(x)

⎞⎟⎟⎠ · m(u)y

y! · e−m(u).

Because of mn(x) = ĝ(x) we have

�n,x(x) = �n(x).

We will show in Lemma 1 below that there exists cn > 0 with

cnhn → 0 (n → ∞)

such that for all x, u, v ∈ [0, 1]d

|�n,x(u) − �n,x(v)|�cn · ‖u − v‖,
(i.e., such that �n,x is Lipschitz continuous with Lipschitz constant cn independent of x). We use
Lipschitz continuity here to avoid making assumptions on the existence of a density of X. Using
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this, we can bound the absolute value of the left-hand side of (17) by∣∣∣∣∣∣∣∣
∫

�n,x(x)PX(dx) −
∫ ∫ �n,x(u) · K

(
x − u

hn

)
PX(du)

∫
K

(
x − u

hn

)
PX(du)

PX(dx)

∣∣∣∣∣∣∣∣
�
∫ ∫ |�n,x(x) − �n,x(u)| · K

(
x − u

hn

)
PX(du)

∫
K

(
x − u

hn

)
PX(du)

PX(dx)

�cn · R · hn → 0 (n → ∞),

where we have used in the first inequality that the set of all x with∫
K

(
x − u

hn

)
PX(du) = 0

has PX-measure zero (for a related argument see, e.g., the last step in the proof of Lemma 24.5 in
[12]), and where the second inequality follows from K((x − u)/hn) = 0 for ‖x − u‖ > R · hn.

In the fourth step of the proof we show

1

n

n∑
i=1

log

⎛⎜⎜⎝
ĝ(Xi)

Yi

Yi ! · e−ĝ(Xi) + m(x)Yi

Yi ! · e−m(x)

2
m(x)Yi

Yi ! · e−m(x)

⎞⎟⎟⎠ · K

(
x − Xi

hn

)
�0 (18)

for n sufficiently large (i.e., whenever log(�n)/(M + 1)d � log(‖m‖∞), where ‖m‖∞ is the
supremum norm of m) and all x ∈ [0, 1]d .

Let n be such that log(�n)/(M + 1)d � log(‖m‖∞). By concavity of the log-function we have

log
a + b

2b
= log

(
1

2
· a

b
+ 1

2
· 1

)
� 1

2
· log

a

b
+ 1

2
· log 1 = 1

2
· log

a

b

for all a, b > 0, which implies

1

n

n∑
i=1

log

⎛⎜⎜⎝
ĝ(Xi)

Yi

Yi ! · e−ĝ(Xi) + m(x)Yi

Yi ! · e−m(x)

2
m(x)Yi

Yi ! · e−m(x)

⎞⎟⎟⎠ · K

(
x − Xi

hn

)

� 1

2
· 1

n

n∑
i=1

log

⎛⎜⎜⎝
ĝ(Xi)

Yi

Yi ! · e−ĝ(Xi)

m(x)Yi

Yi ! · e−m(x)

⎞⎟⎟⎠ · K

(
x − Xi

hn

)

= 1

2
·
(

1

n

n∑
i=1

log

(
ĝ(Xi)

Yi

Yi ! · e−ĝ(Xi)

)
· K

(
x − Xi

hn

)
−1

n

n∑
i=1

log

(
m(x)Yi

Yi ! · e−m(x)

)
· K

(
x − Xi

hn

))
�0

by definition of ĝ. This proves (18).
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In the fifth step of the proof we set

P̂n{Yi |Xi} = ĝ(Xi)
Yi

Yi ! · e−ĝ(Xi) and P{Yi |Xi = x} = m(x)Yi

Yi ! · e−m(x),

and show that

An := 1

hd
n

· sup
x∈[0,1]d

∣∣∣∣∣1n
n∑

i=1

log

(
P̂n{Yi |Xi} + P{Yi |Xi = x}

2 · P{Yi |Xi = x}

)
· K

(
x − Xi

hn

)

−E

{
log

(
P̂n{Y |X} + P{Y |X = x}

2 · P{Y |X = x}

)
· K

(
x − X

hn

)∣∣∣∣∣Dn

}∣∣∣∣∣→ 0 a.s. (19)

implies the assertion.
From step 2 we conclude

0 �
∫ ∞∑

y=0

(√
P̂n{Y = y|X = x} −√P{Y = y|X = x}

)2

PX(dx)

� −16 · (Bn − Cn) − 16 · Cn,

where

Bn = E

{
log

(
P̂n{Y |X} + P{Y |X}

2P{Y |X}

)∣∣∣∣∣Dn

}
and

Cn =
∫ E

{
log

(
P̂n{Y |X} + P{Y |X = x}

2 · P{Y |X = x}

)
· K

(
x − X

hn

)∣∣∣∣Dn

}

EK

(
x − X

hn

) PX(dx).

By step 3 we have

Bn − Cn → 0 a.s.

so by step 1 the assertion of Theorem 1 follows from

lim sup
n→∞

(−Cn)�0 a.s. (20)

Set

Dn =
∫ 1

n

∑n
i=1 log

(
P̂n{Yi |Xi} + P{Yi |Xi = x}

2 · P{Yi |Xi = x}

)
· K

(
x − Xi

hn

)
EK

(
x − X

hn

) PX(dx).

In step 4 we have shown

Dn �0,
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so

−Cn = (Dn − Cn) − Dn �(Dn − Cn)

and (20) follows from

Dn − Cn → 0 a.s.

But this in turn is implied by (19), since

|Dn − Cn|�An ·
∫

1

E
{

1

hd
n

· K

(
x − X

hn

)}PX(dx)

and ∫
1

E
{

1

hd
n

· K

(
x − X

hn

)}PX(dx) < ∞

by Lemma 3.1(b) in [18].
In the sixth (and final) step of the proof we apply the results of empirical process theory to show

(19). Let Hn be the set of all functions

h : Rd × N0 → R

which satisfy

h(x, y) = log

⎛⎜⎜⎝
g(x)y

y! · e−g(x) + �y

y! · e−�

2 · �y

y! · e−�

⎞⎟⎟⎠ · K

(
u − x

hn

)

for some g ∈ GM,�n
, u ∈ Rd and � ∈ [c2, c3], where c2 = minx∈[0,1]d m(x) > 0 and c3 =

maxx∈[0,1]d m(x) < ∞. Let kn = �log n� be the smallest integer greater than or equal to log n.
Then

An � 1

hd
n

· sup
h∈Hn

∣∣∣∣∣1n
n∑

i=1

h(Xi, Yi) − Eh(X, Y )

∣∣∣∣∣ �
3∑

i=1

Ti,n,

where

T1,n = 1

hd
n

· sup
h∈Hn

∣∣∣∣∣1n
n∑

i=1

h(Xi, Yi) · 1{Yi �kn} − E
{
h(X, Y )1{Y �kn}

}∣∣∣∣∣ ,
T2,n = 1

hd
n

· 1

n

n∑
i=1

sup
h∈Hn

|h(Xi, Yi)| · 1{Yi>kn}

and

T3,n = 1

hd
n

· E

{
sup

h∈Hn

|h(X, Y )|1{Y>kn}

}
.
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Notice that

|h(x, y)| � B · log

(
2 · max

{(
1

2

)
·
(

g(x)

�

)y

e−g(x)+�,
1

2

})
� B · |y · log(g(x)/�) − g(x) + �|
� B · (y · log(�n/c2) + c3 + �n

)
�c4 · y · log n (21)

for x ∈ [0, 1]d , y ∈ N and h ∈ Hn, cf. (7)–(9). By Markov’s inequality we then get, for an
arbitrary � > 0, for all large n

P
{
T2,n > �

}
= P

⎧⎨⎩
∞∑

k=kn+1

n∑
i=1

sup
h∈Hn

|h(Xi, Yi)| · 1{Yi=k} > n · hd
n · �

⎫⎬⎭
�

E
{∑∞

k=kn+1
∑n

i=1 suph∈Hn
|h(Xi, Yi)| · 1{Yi=k}

}
n · hd

n · �

�
n ·∑∞

k=kn+1 c4 · k · log n · supx∈[0,1]d
m(x)k

k! · e−m(x)

n · hd
n · �

� c4 log n

hd
n · �

· c3 · e−c2 ·
∞∑

k=kn+1

c
kn

3

kn! · c
k−1−kn

3

(k − 1 − kn)!

= c5 log n

hd
n · �

· c
kn

3

kn!

� c5 log n

hd
n · �

· c
kn

3 ·
(

kn

2

)− kn
2

� c5

�
· exp

(
log

log n

hd
n

+ kn · log c3 − kn

2
· log

kn

2

)
.

Since

log
log n

hd
n

log(n) · log(log n)
→ 0 (n → ∞),

the last term is summable for each � > 0. Application of the Borel–Cantelli lemma yields

T2,n → 0 a.s.

Similarly we get

T3,n = 1

hd
n

∞∑
k=kn+1

E

{
sup

h∈Hn

|h(X, Y )| · 1{Y=k}

}

� c6 log n

hd
n

·
∞∑

k=kn+1

k · sup
x∈[0,1]d

m(x)k

k! · e−m(x)

� c7
log n

hd
n

· c
kn

8

kn! → 0 (n → ∞).
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So it remains to show

T1,n → 0 a.s. (22)

To do this, we apply Theorem 9.1 in [12] and Lemma 2 below. From these we get for an arbitrary
� > 0

P
{
T1,n > �

}
�8 ·

(
c9

�kn
n · kn

hd
n · �

)c10

· exp

(
− n · �2 · h2d

n

c11 · k2
n · (log n)2

)
.

By the assumptions of Theorem 1 we have

n · hd
n → ∞ (n → ∞) and

�n

n
→ 0 (n → ∞).

Indeed, (7) and (8) imply nhn exp(c�n)
�5

n

n
→ 0 and thus �5

n

n
→ 0 because nhn exp(c�n) → 0.

This yields �n

n
→ 0. Using this we get

P
{
T1,n > �

}
�c12 · exp

(
c13 · kn · log n − c14

n · h2d
n · �2

log(n)4

)
.

Because of

n · h2d
n

log(n)6 → ∞ (n → ∞)

the right-hand side above is summable for each � > 0. Application of the Borel–Cantelli lemma
yields (22). The proof of Theorem 1 is complete. �

Lemma 1. Let �n,x be defined as in the third step of the proof of Theorem 1 and assume that the
assumptions of Theorem 1 are satisfied. Then there exists cn > 0 with

cnhn → 0 (n → ∞)

such that for all x, u, v ∈ [0, 1]d ,

|�n,x(u) − �n,x(v)|�cn · ‖u − v‖.

Proof. The functions in GM,�n
are bounded in absolute value by �n and are Lipschitz continuous

on [0, 1]d with Lipschitz constant bounded by

c15 · �n log �n

for some constant c15 depending on M . In addition, the function f (z) = zk · e−z satisfies

|f ′(z)|�(k + 1) · �k
n for z ∈ [0, �n],

from which we can conclude that the function

u �→ ĝ(u)ke−ĝ(u) + m(x)ke−m(x)

2m(x)ke−m(x)
= ĝ(u)ke−ĝ(u)

2m(x)ke−m(x)
+ 1

2
(23)

is Lipschitz continuous on [0, 1]d with Lipschitz constant bounded by

c16(k + 1)�k+1
n log �n · 1

ck
2

,
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where c2 = minx∈[0,1]d m(x). Here we have used that m is bounded away from zero and infinity
on [0, 1]d (since it is Lipschitz continuous and always greater than zero).

The function in (23) is always greater than or equal to 0.5. In this range the derivative of the log-
function is bounded, and since with f1 and f2 also f1 · f2 is Lipschitz continuous with Lipschitz
constant bounded by

(‖f1‖∞ + ‖f2‖∞) · (cLip(f1) + cLip(f2)),

we can conclude that

u �→ log

(
ĝ(u)ke−ĝ(u) + m(x)ke−m(x)

2m(x)ke−m(x)

)
· m(u)ke−m(u)

is on [0, 1]d continuous with Lipschitz constant bounded by

c17(k · log �n + �n + ck
18) ·
(

(k + 1) · �k+2
n · 1

ck
2

+ (k + 1) · ck
19

)
�c20(k + 1)2�k+3

n · 1

ck
2

.

From this we conclude that�n,x is on [0, 1]d Lipschitz continuous with Lipschitz constant bounded
by

cn =
∞∑

k=0

c20(k + 1)2�k+3
n

ck
2k! �c21�

5
ne

�n/c2 .

With (8) we get the assertion. �

To formulate our next lemma we need the notion of covering numbers. Let x1, . . . , , xn ∈ Rd

and set xn
1 = (x1, . . . , xn). Define the distance d1(f, g) between f, g : Rd → R by

d1(f, g) = 1

n

n∑
i=1

|f (xi) − g(xi)|.

Let F be a set of functions f : Rd → R. An �-cover of F (w.r.t. the distance d1) is a set of
functions f1, . . . , fk : Rd → R with the property

min
1� j �k

d1(f, fj ) < � for all f ∈ F .

Let N (�, F, xn
1 ) denote the size k of the smallest �-cover of F w.r.t. the distance d1, and set

N (�, F, xn
1 ) = ∞ if there does not exist any �-cover of F of finite size.

Lemma 2. Assume that the assumptions of Theorem 1 are satisfied. Set kn = �log n� and let
Hn,1 be the set of all functions h : Rd × N0 → R which satisfy

h(x, y) = log

⎛⎜⎜⎝
g(x)y

y! · e−g(x) + �y

y! · e−�

2 · �y

y! · e−�

⎞⎟⎟⎠ · K

(
u − x

hn

)
· 1{y �kn} (x ∈ Rd , y ∈ N0)
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for some g ∈ GM,�n
, u ∈ [0, 1]d and � ∈ [c2, c3]. Then we have for any (x, y)n1 ∈ (Rd × N0)

n

and any � > 0

N
(

hd
n�

8
, Hn,1, (x, y)n1

)
�
(

c22
�kn

n · kn

hd
n · �

)c23

for some constants c22, c23 ∈ R.

Proof. Let Hn,2 be the set of all functions hn,2 : Rd × N0 → R which satisfy

hn,2(x, y) = K

(
u − x

hn

)
= K̃

(‖u − x‖
hn

)
(x ∈ Rd , y ∈ N0)

for some u ∈ [0, 1]d , and let Hn,3 be the set of all functions hn,3 : Rd × N0 → R which satisfy

hn,3(x, y) = log

⎛⎜⎜⎝
g(x)y

y! · e−g(x) + �y

y! · e−�

2 · �y

y! · e−�

⎞⎟⎟⎠ · 1{y �kn} (x ∈ Rd , y ∈ N0)

for some g ∈ GM,�n
and � ∈ [c2, c3]. The functions in Hn,2 and Hn,3 are bounded in absolute

value by B and c4 · kn · log n (cf. (21)) for n sufficiently large, resp. By Lemma 16.5 in [12] we
have

N
(

hd
n�

8
, Hn,1, (x, y)n1

)
� N

(
hd

n�

16 · c4 · kn · log n
, Hn,2, (x, y)n1

)
· N
(

hd
n�

16B
, Hn,3, (x, y)n1

)
.

Next we generalize the results of the eighth step in the proof of Theorem 2.1 in [18]. Since K̃ is
of bounded variation it can be written as the difference of two monotone decreasing functions:
K̃ = K̃1−K̃2 (see Corollary 2.7 of [37]). Let G be the collection of functions ‖u−x‖

h
parameterized

by u ∈ Rd and h ∈ R. Also, let H(i)
n,2 = {K̃i(g(·)) : g ∈ G} (i = 1, 2). Clearly Hn,2 = {K̃(g(·)) :

g ∈ G}. By Lemma 16.4 of [12] we have

N (	, Hn,2, (x, y)n1)�N (	/2, H(1)
n,2, (x, y)n1)N (	/2, H(2)

n,2, (x, y)n1), (24)

	 > 0 because Hn,2 ⊂ {f1 − f2 : f1 ∈ H(1)
n,2, f2 ∈ H(2)

n,2}. Since G spans a (d + 1)-dimensional
vector space, by Theorem 9.5 of [12] (see also [34]) the collection of sets

G+ = {{(x, t) : g(x) − t �0} : g ∈ G}
has VC dimension VG+ �d + 1. Since K̃i is monotone, it follows from Lemma 16.3 of [12]
that VH(i)+

n,2
�d + 1. Let Vi be the total variations of K̃i (i = 1, 2). Then V = V1 + V2 and

0�K̃i(x)�Vi , x ∈ R (i = 1, 2). Since 0�f (x)�V for all f ∈ Hn,2 and x, Theorem 9.4 of
[12] and (24) imply

N (	, Hn,2, (x, y)n1) � 3

(
2eV

	
log

(
3eV

	

))VH(1)+
n,2 · 3

(
2eV

	
log

(
3eV

	

))VH(2)+
n,2

� 9

(
3eV

	

)VH(1)+
n,2

+VH(2)+
n,2
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or

N
(

hd
n�

16c4 · kn · log n
, Hn,2, (x, y)n1

)
�
(

c24kn log n

hd
n�

)2(d+1)

.

Let y�kn and consider the function

�(u, v) = log

⎛⎜⎜⎝
uy

y! e
−u + vy

y! e
−v

2
vy

y! e
−v

⎞⎟⎟⎠
= log

(
1

2
· uy · v−y · ev−u + 1

2

)
(u ∈ [1/�n, �n], v ∈ [c2, c3]).

The partial derivatives of the function inside the log-function are for y�kn bounded in absolute
value by c25 · kn · �2kn

n . Since the log-function is on [ 1
2 , ∞) Lipschitz continuous with Lipschitz

constant 2, we can conclude that � is for y�kn on [1/�n, �n] × [c2, c3] Lipschitz continuous
with Lipschitz constant c26 · kn · �2kn

n . By Lemma 16.4 of [12] which provides the bound on the
covering number for the sums of families of bounded functions we get

N
(

hd
n�

16B
, Hn,3, (x, y)n1

)
� N

(
hd

n�

c27 · kn · �2kn
n

, Hn,4, (x, y)n1

)

· N
(

hd
n�

c27 · kn · �2kn
n

, Hn,5, (x, y)n1

)
,

where Hn,4 and Hn,5 are the sets of all functions

hn,4(x, y) = g(x)y

y! · e−g(x) (x ∈ Rd , y ∈ N0)

with g ∈ GM,�n
, and

hn,5(x, y) = �y

y! · e−� (x ∈ Rd , y ∈ N0)

with � ∈ [c2, c3], resp., and we can assume w.l.o.g. (x, y)n1 ∈ (Rd × {0, 1, . . . , kn})n in the
covering numbers on the right-hand side.

It is easy to see that for y�kn the derivative of 
(z) = zye−z/(y!) is on [0, �n] bounded in
absolute value by some constant times kn�

kn
n , which implies

N
(

hd
n�

c27 · kn · �2kn
n

, Hn,4, (x, y)n1

)
� N

(
hd

n�

c28 · k2
n · �3kn

n

, GM,�n
, (x, y)n1

)

�
(

c29�n

hd
n�/(k2

n · �3kn
n )

)2(M+1)d+2

,

where the last inequality followed from monotonicity of the exponential function and Lemma 9.2,
Theorems 9.4, 9.5 and Lemma 16.3 in [12].
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Similarly we get

N
(

hd
n�

c27 · kn · �2kn
n

, Hn,5, (x, y)n1

)
� c30

hd
n�/(k2

n · �3kn
n )

Putting together the above results we get the assertion. �
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1094 M. Kohler, A. Krzyżak / Journal of Multivariate Analysis 98 (2007) 1072–1094

[22] P.J. La Riviere, X. Pan, Nonparametric regression sinogram smoothing using a roughness-penalized Poisson
likelihood of objective function, IEEE Trans. Med. Imaging 19 (2000) 773–786.

[23] L. Le Cam, On the assumptions used to prove asymptotic normality of maximum likelihood estimates, Ann. Math.
Statist. 41 (1970) 802–828.

[24] L. Le Cam, Convergence of estimates under dimensionality restrictions, Ann. Statist. 1 (1973) 38–53.
[25] G. Lugosi, K. Zeger, Nonparametric estimation via empirical risk minimization, IEEE Trans. Inform. Theory 41

(1995) 677–687.
[26] P. McCullagh, J.A. Nelder, Generalized Linear Models. Monographs on Statistics and Applied Probability, Chapman

& Hall, London, 1983.
[27] E.A. Nadaraya, On estimating regression, Theory Probab. Appl. 9 (1964) 141–142.
[28] R.D. Nowak, E.D. Kolaczyk, A statistical multiscale framework for Poisson inverse problems, IEEE Trans. Inform.

Theory 46 (2000) 1811–1825.
[29] F. O’Sullivan, B.S. Yandell, W.J. Raynon Jr., Automatic smoothing of regression functions in generalized linear

models, J. Amer. Statist. Assoc. 81 (1986) 96–103.
[30] Y. Pawitan, F. O’Sullivan, Data-dependent bandwidth selection for emission computed tomography reconstruction,

IEEE Trans. Med. Imaging 12 (2) (1993) 167–172.
[31] C. Spiegelman, J. Sacks, Consistent window estimation in nonparametric regression, Ann. Statist. 8 (1980)

240–246.
[32] C.J. Stone, Consistent nonparametric regression, Ann. Statist. 5 (1977) 595–645.
[33] S. van de Geer, Empirical Processes in M-estimation, Cambridge University Press, Cambridge, MA, 2000.
[34] A.W. van der Vaart, J.A. Wellner, Weak Convergence and Empirical Processes, Springer, New York, 1996.
[35] H. Walk, Strong universal pointwise consistency of recursive regression estimates, Ann. Inst. Statist. Math. 53 (2001)

691–707.
[36] G.S. Watson, Smooth regression analysis, Sankhya Ser. A 26 (1964) 359–372.
[37] R.L. Wheeden, A. Zygmund, Measure and Integral, Marcel Dekker, New York, 1977.
[38] M. Yuan, Automatic smoothing for Poisson regression, Commun. Statist. Theory Methods 34 (2005) 603–617.


