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a b s t r a c t

The uniaxial tension behavior of polycrystalline thin films, in which all grain boundaries (GBs) are pen-
etrable by dislocations, is investigated by two-dimensional discrete dislocation dynamics (DDD) method
with a penetrable dislocation-GB interaction model. In order to study thickness effect on the tensile
strength of thin films with and without surface treatment, three types of thin films are comparatively
considered, including the thin films without surface treatment, with surface passivation layers (SPLs)
of nanometer thickness and with surface grain refinement zones (SGRZs) consisting of nano-sized grains.
Our results show that thickness effects and their underlying dislocation mechanisms are quite distinct
among different types of thin films. The thicker thin films without surface treatment are stronger than
the thinner ones; however, opposite thickness effects are captured in the thin films with SPLs or SGRZs.
Moreover, the underlying dislocation mechanisms of the same thickness effects of thin films with SPLs
and SGRZs are different. In the thin films with SPLs, the thickness effect is caused by the sharp increase
of dislocation density near the film-passivation interface, while it is mainly due to the sharp decrease of
dislocation density within the refined surface grains of the thin films with SGRZs. No matter in what type
of thin films, thickness effect gradually disappears when the number of grains in the thickness direction is
large enough. Our analysis reveals that general mechanism of those thickness effects lies in the compe-
tition between the exterior surface-constraint and interior GB-constraint on gliding dislocations.

� 2011 Published by Elsevier Ltd.
1. Introduction

With the startlingly rapid development of micro-technology,
especially in micro-forming and micro-manufacturing, the
ever-continuing miniaturization of various components/devices
becomes an unstoppable trend. Once the leading sizes of the
micro-components/devices decrease to the same order as the
intrinsic lengths of materials, size effects appear and the mechan-
ical behavior of small-sized materials remarkably deviates from
that of bulk counterparts. Generally speaking, the intrinsic lengths
of materials are usually at the micron or submicron scale (Arzt,
1998). For this reason, various thin films with micron/nanometer
thicknesses, which are widely used in many micro-electronic and
micro-electro-mechanical systems, commonly display strong size
effects. A thorough understanding of the size dependent plasticity
in thin films and its inherent mechanism is not only of academic
significance, but also of great urgency to the reliability design
and security assessment of various micro-electric and micro-
electro-mechanical systems.
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Recently, the micro-plasticity of thin films becomes an active
research field (Keller et al., in press; Lee et al., 2011; Liang et al.,
2009; Nicola et al., 2005b, 2006; Xiang et al., 2006; Xiang and
Vlassak, 2006) due to the increasing application of thin films in
micro-electric and micro-electro-mechanical systems. Different
from single crystalline thin films, there are usually several grains
in the thickness direction of polycrystalline thin films (Espinosa
et al., 2006, 2004). At least two characteristic lengths (i.e., grain
size and film thickness) strongly influence the tensile strength of
polycrystalline thin films. The effect of grain size is associated with
the interior grain boundary (GB)-constraint on dislocations (i.e.,
Hall–Petch effect); however, the thickness effect is mainly because
of the weak exterior surface-constraint on dislocations. Both ‘‘GB
engineering’’ method, i.e., manipulating GB structures or strength-
ening GBs in polycrystalline metals, and ‘‘surface engineering’’
method, i.e., refining surface grains or passivating surfaces of thin
films can obtain the desired high strength. Obviously, the former
method enhances the strengths of polycrystalline thin films by
strengthening their interior constraint; however, the latter stiffens
thin films by strengthening their exterior constraint. In recent
years, these two methods have been broadly used to increase the
strength of polycrystalline thin films (Geers et al., 2006; Nicola
et al., 2006; Xiang and Vlassak, 2006).
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In order to understand the size effect on the tensile strength of
polycrystalline thin films, massive efforts have been made in the
past two decades but some deep-seated questions still remain
open. For example, the polycrystalline thin films without surface
treatment usually display strong thickness effect when subjected
to pure tensile loading: thicker is stronger (Keller et al., in press;
Miyazaki et al., 1979; Raulea et al., 2001; Tsai et al., 2005). This
thickness effect is believed to be closely associated with the rela-
tively easy deformation of surface grains owing to the weak exte-
rior free surface-constraint. On the other hand, when thin films are
passivated with SPLs, the opposite thickness effect is observed:
thinner is stronger (Nicola et al., 2006; Xiang and Vlassak, 2006).
These two opposite thickness effects are mainly as a result of the
great difference between the surface-constraints of thin films. In
the thin films without surface treatment, the free surface-
constraint is much weaker than the interior GB-constraint and
the dislocations in surface grains could exit easily from the free
surfaces. As a result, the surface grains are much easier to deform
plastically than the interior grains. However, in the thin films with
SPLs, dislocations nucleated in the surface grains are blocked by
SPLs and accordingly the surface grains are relatively hard to
deform plastically. With the decrease of film thickness, the per-
centage of the surface grains in all grains increases and the sur-
face-constraint would make a more significant contribution to
the tensile strength of polycrystalline thin films. Hence, two oppo-
site thickness effects induced by different surface-constraints are
actually attributed to the competition between the exterior sur-
face-constraint and interior GB-constraint. According to this point
of view, besides surface passivation, other surface treatments, such
as surface grain refinement, may also significantly influence the
tensile strength of thin films and induce thickness effects. There-
fore, an accurate understanding of the thickness effects induced
by various surface micro-treatments is indispensable for the mi-
cro-manufacturing/processing of thin films.

In the past two decades, several computational tools have been
developed to understand the size dependent behavior of materials
at the micron/nanometer scale. Therein, discrete dislocation
dynamics (DDD) is believed to be one of the most efficient numer-
ical methods to capture the size dependent plasticity at the micron
scale (Akarapu et al., 2010; Deshpande et al., 2005; Guruprasad and
Benzerga, 2008; Kumar et al., 2009; Nicola et al., 2003, 2005a;
Ouyang et al., 2010; Shishvan et al., 2011; Tang et al., 2007). As
is well known, GBs act as main obstacles to the movements of dis-
locations in polycrystalline materials. The penetrability of GBs for
dislocations directly controls the micro-plasticity within grains
and thus influences the overall response of polycrystalline materi-
als to the applied loading (Kumar et al., 2010; Shen et al., 1986,
1988). However, in most of the existing DDD simulations of poly-
crystalline materials, GBs are usually treated as impenetrable
boundaries (Balint et al., 2008; Espinosa et al., 2006; Nicola et al.,
2006; Ouyang et al., 2008). This simple treatment overestimates
the constraint of GBs on the movements of dislocations and may
lead to inaccurate predication of size effects.

As is mentioned above, the mechanical behavior of polycrystal-
line thin films, although they are subjected to simple pure tension,
is very complicated, depending upon not only the film thickness
and grain size, but also the percentage of surface grains in total
grains and the size ratio of surface grains to interior grains. In
the complicated thickness dependent behavior, the competition
between the exterior surface-constraint and interior GB-constraint
plays a very important role (Bayley et al., 2007; Geers et al., 2007,
2006). Motivated by this background, we employ the two-dimen-
sional DDD framework of Van der Giessen and Needleman (1995)
to study the thickness dependent behavior of polycrystalline thin
films with penetrable GBs. Besides, the penetrable GB model ad-
vanced by Hou et al. (2009) and Li et al. (2009) is incorporated into
the DDD framework to take into account dislocation penetration
through GBs and dislocation emission from GBs. In this work, we
mainly investigate how the competition between the exterior sur-
face-constraint and interior GB-constraint influences the overall
tensile strength of polycrystalline thin films, with special focus
on the thickness effect. Considering the grain size effect (i.e.,
Hall–Petch relation) has been extensively studied heretofore, the
grain size in all polycrystalline thin films remains unchanged in
our computations to avoid the mutual interference between thick-
ness effect and grain size effect.

This paper is organized as follows. The computational models
and the adopted numerical methodology are introduced briefly in
Section 2. Section 3 provides the main results and in-depth discus-
sions. In Section 4, some concluding remarks end this paper.
2. Computational model and methodology

2.1. Computational model

Three types of thin films, including the thin films (a) without
surface treatment, (b) with SPLs of nanometer thickness and (c)
with surface grain refinement zones (SGRZs) consisting of nano-
sized grains, are selected to study thickness effect on the tensile
strength of thin films, as are sketched in Fig. 1. Only two-dimen-
sional polycrystalline thin films are considered in this work for
simplicity. Since thickness effects are the major topic in this paper,
the length of each film is kept constant, i.e., L = 4.5 lm. In order to
mimic the realistic geometrical details of grains in polycrystalline
thin films, the well-known Voronoi polygon is adopted to generate
all the grains, with the mean sizes of each grain in both the length
and thickness directions of films being approximately equal, de-
noted as d. In the films without surface treatment, all the mean
sizes of grains are approximately the same as shown in Fig. 1(a).
In the films with SPLs, two passivation layers, which are 10 nm
thick and comparable with the passivation layers adopted in the
experiment of Xiang et al. (2006), are perfectly bonded on the bot-
tom and top surfaces as shown in Fig. 1(b). In order to model sur-
face grain refinement, each surface grain whose mean size is the
same as that of the interior grains (about 0.25 lm) is further re-
fined into 16 smaller nano-sized grains as shown in Fig. 1(c). As
an approximation, the elastic behavior of all the grains and SPLs
is assumed to be isotropic (Espinosa et al., 2006; Nicola et al.,
2005a, 2006) with Young’s modulus E = 70 GPa and Poisson’s ratio
m = 0.33. The anisotropy of grains can be depicted by a certain num-
ber of slip systems with given spatial orientations. As we know,
FCC grain commonly has 12 possible slip systems, consisting of
four slip planes {1 1 1} and three slip directions h1 1 0i on each slip
plane. However, for the present 2D plane strain model, only two
slip systems with crossing angle of 60� are considered in each grain
for simplicity. Although the slip systems in each grain are ran-
domly orientated, the misorientation of slip systems between
two adjacent grains is especially limited within the range of
0–2Dh. Without loss of generality, the mean GB misorientation
Dh is typically set as 7.5�. Actually, there exist many potentially ac-
tive slip planes in each slip system. In the present computations,
the space between adjacent slip planes is typically set to be
150b, where b = 0.25 nm is the magnitude of the Burgers vector.

Because the deformation field within dislocation core is singu-
lar, those slip planes intersecting either of two ends of films are
not considered in the computational models to avoid numerical
complication. Only the Frank–Read dislocation nucleation mecha-
nism is simulated in the studied films. A quantity of dislocation
sources with the density of qsrc = 50 lm�2 are randomly dispersed
on those potentially active slip planes. The strength snuc of individ-
ual dislocation source is randomly assigned, following the



Fig. 1. Sketches of three types of polycrystalline thin films: (a) without surface treatment, (b) with SPLs and (c) with SGRZs.
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Gaussian distribution with mean 50 MPa and variance 10 MPa,
which are the same as the empirical values adopted by the previ-
ously published literature (Van der Giessen and Needleman, 1995).

In the computation, uniaxial tension is applied at two ends of
films with displacement control as follows:

DUx ¼
� _eDtL=2 at x ¼ 0
_eDtL=2 at x ¼ L

�
ð1Þ

where _e is the applied strain rate, L is the length of each film and Dt
(Dt = 0.5 ns) is the time step increment. In order to reduce compu-
tation cost, a relatively high strain rate of _e ¼ 2000 s�1 is adopted in
the computation, and all the films are tensioned to e = 1.0%.

The tensile stress r, which is the overall response of thin films
to the applied strain e, can be approximatively calculated by:

r ¼ 1
T

Z T

0
rxðL; yÞdy ð2Þ

where T is the thickness of each film.

2.2. Discrete dislocation dynamics (DDD) framework

At the beginning of DDD computation, the polycrystalline thin
film is assumed to be dislocation-free. With the increase of tensile
strain, two oppositely signed dislocations, with the critical distance
Lnuc = Eb/[4p(1 � m2)snuc], are nucleated at certain Frank–Read
source once the resolved shear stress acting on it exceeds the crit-
ical strength snuc and persists for a period of time tnuc = 10 ns (Van
der Giessen and Needleman, 1995). After N dislocations nucleated,
the Van der Giessen–Needleman’s superposition scheme should be
adopted to calculate the displacement, strain and stress fields
(u, e, r) in the film as follows:

u ¼ ~uþ û; e ¼ ~eþ ê; r ¼ ~rþ r̂ ð3Þ

In this scheme, the singular fields ð~Þ, which are associated with N
dislocations occupying their respective positions in the polycrystal-
line film, can be calculated by summing up the analytical fields of N
dislocations in an infinite solid. For the present boundary value
problem of the thin film, the image fields ð̂ Þ, which can be easily
solved with the linearly elastic finite element method (FEM), must
be superposed as supplemental fields in order to modify the contin-
ually changing boundary condition induced by the dynamical
evolvement of dislocation pattern in the film.

Under the joint action of the stress field
P

J–IrJ exerted by other
(N � 1) dislocations and the image stress field r̂, the Peach–Koeh-
ler force acting on the dislocation I can be calculated by (Van der
Giessen and Needleman, 1995)

f I ¼ mI �
X
J–I

rJ þ r̂

 !
� bI

; ð4Þ

where mI is the unit vector normal to the slip plane on which the
dislocation I locates and bI the Burgers vector of the dislocation I.
Driven by the Peach–Koehler force fI, the dislocation I glides with
the velocity vI = fI/B (Cleveringa et al., 1999), with the drag coeffi-
cient B usually set as 10�4 Pa s (Kubin et al., 1992). As suggested
by Cleveringa et al. (1999), a truncated dislocation velocity of
20 m/s is adopted in order to avoid the computational instability.
Two dislocations with opposite signs annihilate when they
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approach each other within the critical distance of La = 6b. Only the
skeleton of the 2D-DDD framework is briefly recalled here for the
convenience of readers. More details can be found elsewhere
(Cleveringa et al., 1999; Deshpande et al., 2005; Van der Giessen
and Needleman, 1995).

2.3. Dislocation-GB interaction model

In order to study the mechanical behavior of polycrystalline
materials with penetrable GBs, a 2D dislocation-GB interaction
model is proposed by Hou et al. (2009) and Li et al. (2009) and
has been further incorporated into the Van der Giessen–Needle-
man’s 2D-DDD framework. For the convenience of readers, the
two main scenarios involved in this model are briefly overviewed
in the following two subsections. More details about this model
can be found in the literatures (Hou et al., 2009; Li et al., 2009).

2.3.1. Dislocation penetration through GBs
Without loss of generality, two adjacent grains sharing GB l are

schematized in Fig. 2(a). Driven by the Peach–Koehler force fA, the
a

b

Fig. 2. Schematic of the dislocation-GB interaction model: (a) dislocation penetrating th
on GBs and on slip planes denote dislocation debris and perfect dislocations, respective
dislocation A glides towards the GB l on its own ship plane S1. Due
to the strong constraint from the GB l, the dislocation A is pinned in
front of the GB l. With the increase of applied loading, a growing
number of dislocations nucleate from their sources and then glide
towards the GB l and increasingly pile up at the rear of the head
dislocation A, rendering the stress concentration at the GB to con-
tinually increase. Once this concentrated stress exceeds the GB
strength spass:

spass ¼ ðEGBbA þ aGDb2Þ=b2
A ð5Þ

where EGB, a = 0.5 (Hull and Bacon, 2001) and G are the GB energy
density, material constant and shear modulus, respectively, the
head dislocation A penetrates through the GB l into the grain B
in the most energy-saving manner and synchronously leaves
dislocation debris with the Burgers vector Db = bA � bB on the GB
l (Shen et al., 1986, 1988). The GB energy density EGB, which is
closely related to the crystallographic misorientation dh between
grains A and B, can be simply expressed as (Hasson and Goux,
1971)
rough GB and (b) dislocation debris emitting a perfect dislocation. The ‘‘\’’ symbols
ly.



Fig. 3. Stress–strain response of the films without surface treatment with different
thicknesses.
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EGB ¼
kdh=h1; 0 6 dh < h1

k; h1 6 dh < h2

kðp=2� dhÞ=ðp=2� h2Þ; h2 6 dh < p=2

8><
>: ð6Þ

where h1 � p/9, h2 � 8p/9 and k � 0.6 J/m2 for polycrystalline alu-
minum (Hasson and Goux, 1971).

2.3.2. Dislocation emission from GBs
With the increase of the number of dislocation penetration

events, dislocation debris continually accumulates into large dislo-
cation debris DB on the GB l as illustrated in Fig. 2(b), rendering the
continual increase of the dislocation debris energy. In order to re-
lease the energy of dislocation debris, a new perfect dislocation be

is emitted from DB, leaving new dislocation debris Db0 = DB � be

on the GB l. Whether or not the dislocation debris DB can success-
fully emit a perfect dislocation and which slip plane is chosen by
the dislocation be as its outgoing slip plane depend on the follow-
ing three criteria: (1) the magnitude of DB must be greater than or
equal to that of one perfect dislocation; (2) dislocation emission
must be energetically favorable; (3) if more than one slip plane sat-
isfy both the criteria (1) and (2), the slip plane, on which the re-
solved shear stress is the highest, is usually selected by the
dislocation be as its outgoing slip plane.
Fig. 4. Variations of the tensile strengths at different strains with T/d for thin films
without surface treatment.
3. Results and discussion

In this section, the thickness dependent behavior of polycrystal-
line thin films is computationally studied, with focus on the
competition between the exterior surface-constraint and interior
GB-constraint. Firstly, the thickness effect on the tensile strength
of polycrystalline thin films without surface treatment and its
intrinsic dislocation mechanism attract our special attention. For
the sake of comparison, the influence of two kinds of surface treat-
ments on the thickness effect is also discussed, including surface
passivation and surface grain refinement.

In all computations, in order to mimic the micro-structures of
polycrystals as close as possible, we randomly assigned the loca-
tions of grain seeds in Voronio’s method, the orientations of slip
systems in each grain, as well as the strengths and locations of dis-
location sources. To reduce the influence of random factors as
much as possible, we repeat all the following computations three
times with different random assignments, and plot all the curves
with the arithmetic average of these repeatedly computed results.
The error bars are not plotted in the following figures for the sake
of clarity.

3.1. Thickness effect of polycrystalline thin films without surface
treatment

For the convenience of comparison, six thin films with different
thicknesses, i.e., 0.25 lm, 0.5 lm, 0.75 lm, 1.0 lm, 1.25 lm and
1.5 lm, are studied, respectively. The mean grain size of all films
is assumed to remain unchanged (i.e., d = 0.25 lm) to avoid the
disturbance from the grain size effect. There are 18 grains in the
length direction and about 1–6 grains in the thickness direction
of films, depending on the film thickness.

Fig. 3 plots the stress–strain curves of six films with different
thicknesses. It can be easily seen from Fig. 3 that with the increase
of film thickness, the tensile strength remarkably increases, espe-
cially when the film thickness T is not larger than 1.0 lm or the
number of grains in the thickness direction (T/d) is not more than
4. Once the film thickness T is larger than 1.0 lm or T/d > 4, the
thickness effect on the stress–strain response becomes weak or
even negligible. One the other hand, when the number of grains
in the thickness direction is 1 or 2 and thus all grains are surface
grains, the strain hardening rate (dr/de) is very low. Once the num-
ber of grains in the thickness direction is more than 2, some of
which are interior grains, the strain hardening rate becomes high.
This means that there is a great change in the strain hardening
mechanism when the interior grains appear, which may originate
directly from the GB-constraint of interior grains on gliding dislo-
cations. Moreover, Fig. 4 plots the variations of the tensile
strengths at different strains (i.e., 0.2%, 0.6% and 1.0%) with T/d.
Two distinct features could be seen from Fig. 4: (I) the thickness
effect on the tensile strength at the strain of 0.2% is weak or even
negligible; (II) with the increase of applied strain, the thickness
effect on the tensile strengths (such as r0.6% or r1.0%) is strong when
T/d 6 4 but almost disappears when T/d > 4. Obviously, there exists
a critical grain number (T/d � 4) in the thickness direction, below
which the thickness effect is strong but above which the thickness
effect gradually becomes weak or even disappears. This critical
grain number (T/d � 4), which seems to be independent of the
materials, thicknesses and grain sizes of thin films, was also exper-
imentally observed by several groups (Geers et al., 2006; Keller
et al., in press; Miyazaki et al., 1979). These interesting thickness



Fig. 5. Through-thickness distribution of qs at e = 0.2% in the films with different
thicknesses: (a) T = 0.25, 0.50, 0.75 lm and (b) T = 1.00, 1.25, 1.50 lm.
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effects can be briefly explained as follows. When the number of
grains in the thickness direction is only 1 or 2, nucleated disloca-
tions in all surface grains can easily glide out from the film sur-
faces. Accordingly, the overall tensile stress of thin film is low.
When the grain number increases to 3 or 4, interior grains appear
in the polycrystalline films. The interior grains are harder than the
surface grains because the interior GB-constraint is stronger than
the exterior free surface-constraint, rendering the increase of over-
all tensile strength with increasing film thickness. Obviously, the
thickness effect of ‘‘thicker is stronger’’ is due to the competition
between the exterior surface-induced weakening and interior
GB-induced strengthening (Geers et al., 2006). If the number of
interior grains increases further, the interior GB-induced strength-
ening gradually exceeds the exterior surface-induced weakening,
so the thickness effect gradually disappears. The present computa-
tional results are in qualitative agreement with the existing exper-
imental results (Geers et al., 2006; Keller et al., in press; Miyazaki
et al., 1979). It is worth specially noting that the present thickness
effect (i.e., ‘‘thicker is stronger’’) is reasonable only when the grain
size remains unchanged. If the grain size decreases with decreasing
film thickness, the interior GB-induced strengthening effect (i.e.,
grain size effect or Hall–Petch effect) dominates the stress–strain
response of polycrystalline thin films; maybe an opposite thickness
effect arises (Xiang and Vlassak, 2006).

To further explain the underlying dislocation mechanism be-
hind the thickness effect displayed in Figs. 3 and 4, all films with
different thicknesses are averagely subdivided into 30 sheets in
the thickness direction and the average dislocation density in each
sheet is denoted as qs. The through-thickness distributions of qs in
six films at the strain of 0.2% are plotted in Fig. 5. All the films are
still at or just beyond the initial yield stage at this low strain level,
and only a few dislocation sources could nucleate dislocations due
to the lower resolved shear stresses acting on them. Consequently,
the dislocation densities in both surface grains and interior grains
are very low as shown in Fig. 5. Since the applied stress and the dis-
location density are low, the Peach–Koehler force acting on dislo-
cations and thus the dislocation velocity are also low. Only a few
dislocations could successfully penetrate through GBs or exit from
the surfaces, and therefore most of them still glide within their
own grains. In other words, the dislocation density difference be-
tween the surface grains and interior grains is small at lower strain,
as can be seen in Fig. 5, thereby the contribution of the surface
grains to the overall tensile strength is almost the same as that
of the interior grains. As a result, negligible thickness effect is ob-
served in Figs. 3 and 4 at the strain of 0.2%.

The through-thickness distribution of qs at e = 1.0% is plotted in
Fig. 6. The dislocation pattern and contour of tensile stress rx at
e = 1.0% are given in Fig. 7. It is clear that there are great differences
in the dislocation pattern and stress distribution of six films with
different thicknesses. In the thinnest 2 films with T = 0.25 lm
and T = 0.5 lm, where there is only 1 or 2 grains in the thickness
direction, only a few dislocations stay in these surface grains. This
is believed to be associated with easy exit of nucleated dislocations
from the free surfaces of thin films due to the weak surface-
constraint. In the 2 films with middle thicknesses of 0.75 lm and
1.0 lm, there exist 3 or 4 grains in the thickness direction and
about one-third or half are interior grains. Because the remarkable
difference between the exterior free surface-constraint and interior
GB-constraint on gliding dislocations, those dislocations in surface
grains are easy to exit but those in interior grains are hampered by
GBs; thus the dislocation density and tensile stress rx in interior
grains are much higher than those in surface grains, as shown in
Figs. 6(a) and 7(c) and (d). Compared with the weak exterior free
surface-constraint, the strong interior GB-constraint contributes
much to the overall tensile strength. This follows that in the poly-
crystalline films containing 3 or 4 grains in the thickness direction,
thickness effect mainly originates from the competition between
weakening effect induced by exterior free surface-constraint and
strengthening effect induced by interior GB-constraint (Geers
et al., 2006). With the increase of film thickness, the percentage
of interior grains in total grains increases and therefore the
strengthening effect resulting from interior GB-constraint en-
hances, displaying ‘‘thicker is stronger’’. Further, when the film
thickness is larger than 1.0 lm with more than 4 grains in the
thickness direction, the interior grains are in the majority. Figs. 6
and 7(e) and (f) show clearly that, in these thicker films, the dislo-
cation density and tensile stress rx within the interior region are
much higher than those in the region near surfaces, and the high
stress region is greatly larger than the low stress region. It is easy
to understand that, in thicker films, the strengthening effect
induced by the interior GB-constraint substantially prevails against
the weakening effect induced by the exterior free surface-
constraint and dominates the overall tensile strength. In other
words, for the thicker film, its overall tensile strength is mainly
dominated by the interior penetrable GB-constraint, which de-
pends on grain size rather than film thickness. In all our computa-
tions, the grain size always remains unchanged; accordingly, the
thickness effect gradually vanishes when T/d > 4, as shown Figs. 3
and 4.



Fig. 6. Through-thickness distribution of qs at e = 1.0% in the films with different
thicknesses: (a) T = 0.25, 0.50, 0.75, 1.00 lm and (b) T = 1.25, 1.50 lm.
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3.2. Thickness effect of polycrystalline thin films with SPLs

In order to further discuss the key role of the competition be-
tween exterior surface-constraint and interior GB-constraint in
the thickness effect, in this subsection, the tensile behavior of thin
films with SPLs is studied. Two passivation layers of 10 nm thick-
ness, which are impenetrable by dislocations, are perfectly bonded
to the bottom and top surfaces of films, as illustrated in Fig. 1(b).
For simplification, the SPLs are assumed to be the same as the films
in material parameters. The thickness and mean grain size of six
films considered in this subsection are the same as those in Section
3.1 for the sake of comparison.

The stress–strain curves of polycrystalline thin films with SPLs
are plotted in Fig. 8. We can see that there is strong thickness effect
on the stress–strain curves, especially at larger strain. However,
different from the thickness effect of films without surface treat-
ment, the tensile strength of films with SPLs increases with
decreasing film thickness, i.e., ‘‘thinner is stronger’’. At the lower
strain, the thickness effect is weak or even negligible and similar
to that of films without surface treatment.

In Fig. 9, the variations of the tensile strengths at different
strains with T/d for the thin films with and without SPLs are plotted
together for the purpose of comparison. For passivated thin films,
careful comparison between our computations and Xiang et al.’s
experiments (2006) reveals both qualitative agreement and quan-
titative difference. Both our computations and their experiments
show the tensile strength of thin films with SPLs decreases with
the increase of T/d; however, there is visible difference in quantity
between them. This is mainly because different material parame-
ters and micro-structures are chosen in two works. In addition,
we can see from Fig. 9 that, at the low strain of 0.2%, there is insig-
nificant difference between the tensile strengths of the passivated
and unpassivated films. At the strain of 0.2%, few dislocations exit
from the free surfaces in the unpassivated films or are blocked by
the SPLs in the passivated films, so the influences of free surfaces
and SPLs on the tensile strength are insignificant in fact. With
the increase of applied strain, opposite thickness effects could be
clearly seen in Fig. 9 for the passivated and unpassivated films.
When T/d increases and T/d 6 4, the overall tensile strength at lar-
ger strain (such as e = 0.6% or e = 1.0%) increases for the unpassivat-
ed films but decreases for the passivated films. Once T/d > 4, both
opposite thickness effects gradually vanish. Why do opposite
thickness effects arise in passivated and unpassivated films? In
order to answer this interesting question, the through-thickness
distribution of qs at e = 1.0% in six passivated films with different
thicknesses is showed in Fig. 10. It can be easily seen that disloca-
tion density sharply increases near the film-passivation interfaces
due to the strong SPL-constraint on gliding dislocations, which is
distinctly different from that in the unpassivated films where dis-
location density sharply decreases near the surfaces because of the
weak surface-constraint as shown in Fig. 6. If we make a careful
comparison between Figs. 6 and 10(a), it can be found that, the
magnitude of the dislocation densities in the interior grains of
the passivated and unpassivated films are about the same, i.e.,
about 250 lm�2. This is mainly because all GB misorientation is as-
signed with the same method and thus all GB strengths are almost
the same. It is clear that above mentioned opposite thickness
effects mainly arise from the opposite dislocation density gradients
near the passivated surfaces and unpassivated surfaces. The varia-
tion of qs with the distance dp from the bottom film-passivation
interface is especially magnified in Fig. 10(b). We can find that in
the region near the film-passivation interface, there is a boundary
layer, within which the dislocation density sharply increases and is
much higher than that in the interior region of film. This boundary
layer thickness is about 75 nm and independent of film thickness,
showing good agreement with the strain gradient plasticity predic-
tion and experiment (Nicola et al., 2006; Xiang and Vlassak, 2006).
As is well known, plastic strain mainly comes of the movements of
dislocations. Within these boundary layers, the plastic strain is dif-
ficult to develop due to the severe dislocation pileup; as a result,
the stress is high there in order to accommodate the applied tensile
strain, as displayed in Fig. 11. Accordingly, in the passivated films,
the exterior passivated surface-constraint induces strengthening to
the overall tensile strength but the interior GB-constraint acts as
relative weakening. When the film thickness increases but
T/d 6 4, the percentage of boundary layers decreases because their
thicknesses are independent of the film thickness; thereby the
strengthening effect induced by the boundary layers decreases
and the weakening effect by relatively softer interior GB-con-
straints increases. So it is not surprising that the thicker film is
weaker. With the film thickness increasing further and T/d > 4,
the interior GB-constraint substantially prevails against the exte-
rior passivated surface-constraint; as a result, the overall strength
of thin films is mainly dominated by those interior grains and the
thickness effect gradually vanishes.

In order to highlight the contribution of GB characterization, the
overall tensile strengths of the passivated-films with impenetrable
GBs and penetrable GBs are plotted in Fig. 12. It is clear that strong



Fig. 7. Dislocation pattern and contour of tensile stress rx at e = 1.0% in the films with different thicknesses: (a) T = 0.25 lm, (b) T = 0.50 lm, (c) T = 0.75 lm, (d) T = 1.00 lm,
(e) T = 1.25 lm and (f) T = 1.50 lm. The symbols ‘‘\’’ represent dislocations.
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Fig. 8. Stress–strain response of the films with SPLs with different thicknesses.

Fig. 9. Variations of the tensile strengths at different strains with T/d for passivated
and unpassivated films. The experiment curve is the variation of the tensile strength
at e = 0.6% for films with SPLs (Xiang and Vlassak, 2006).

Fig. 10. (a) Through-thickness distribution of qs at e = 1.0% and (b) distribution of qs

at e = 1.0% near the bottom film-passivation interface.
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thickness effect on the tensile strengths r0.6% and r1.0% is captured
by the present penetrable GB model, but negligible thickness effect
is predicted by the impenetrable GB model. This is mainly because
the treatment of impenetrable GBs overestimates the GB-
constraint on dislocations in grains; so all dislocations in interior
grains are blocked by GBs. In this situation, the constraint
strengths of SPLs and interior GBs are about at the same level. As
we pointed out above, the thickness effect mainly arises from the
competition between the exterior surface-constraint and interior
GB-constraint. Since this competition does not exist in the sur-
face-passivated polycrystalline thin films containing impenetrable
GBs, it is not surprising that negligible thickness effect is predicted.
3.3. Thickness effect of polycrystalline thin films with SGRZs

In the actual application of thin films, in addition to surface pas-
sivation, surface grain refinement is also a popular method to en-
hance the strength of films. In order to understand the thickness
effect of polycrystalline thin films with SGRZs, in this subsection,
four films with thickness of 0.75 lm, 1.0 lm, 1.25 lm and 1.5 lm
are comparatively investigated. To simulate the surface grain
refinement, the mean size of all interior grains is still 0.25 lm,
but each surface grain is roughly subdivided into 16 nano-sized
grains with the mean size of about 60 nm as shown in Fig. 1(c).

The stress–strain curves of polycrystalline thin films with SGRZs
are plotted in Fig. 13. It is clear that the overall tensile strength of
thin films decreases with increasing film thickness, displaying
‘‘thinner is stronger’’. Seemingly, the thickness effect of the films
with SGRZs is the same as that of the films with SPLs. However,
the underlying dislocation mechanisms behind them are different.
This can be clearly seen from Fig. 14, where the through-thickness
distribution of qs at e = 1.0% is plotted. In the SGRZs, those refined
grains are so small (about 60 nm) that dislocations are difficult to
nucleate; to accommodate the applied strain, the stress achieved
there is higher than that in those interior grains, as shown in
Fig. 15. In the thinner films, the higher stress region within SGRZs
makes a chief contribution to the overall tensile strength. With the
increase of film thickness, the percentage of SGRZs decreases, lead-
ing to the thickness effect of ‘‘thinner is stronger’’ as shown in
Fig. 13. If the film thickness increases further and becomes large
enough, the contribution of the low stress region in interior grains



Fig. 11. Dislocation pattern and contour of tensile stress rx at e = 1.0% in the films with different thicknesses: (a) T = 0.50 lm, (b) T = 1.00 lm and (c) T = 1.50 lm. The symbols
‘‘\’’ represent dislocations.

Fig. 12. Variations of the tensile strengths at different strains with T/d for
passivated films with penetrable GBs and impenetrable GBs.

Fig. 13. Stress–strain response of the films with SGRZs with different thicknesses.
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would prevail against that of the high stress region within SGRZs;
as a result, the thickness effect would gradually vanish.

In fact, the competition between weakening and strengthening
also exists in the films with SGRZs. The refined surface grains play a
relative strengthening role in the overall tensile strength and the
interior grains act a relative weakening part. With the increase of
film thickness, the relative weakening within the interior region
gradually exceeds the relative strengthening in the surface region,
which is the same as the process of films with SPLs but opposite to
that of films without surface treatment. According to this view-
point of the competition between weakening and strengthening



Fig. 14. Through-thickness distribution of qs at e = 1.0%.
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(actually the competition between exterior surface-constraint and
interior GB-constraint), different thickness effects displayed in dif-
ferent kinds of thin films mainly depend on different spatial distri-
butions of the weakening zone and strengthening zone in the
Fig. 15. Dislocation pattern and contour of tensile stress rx at e = 1.0% in the films with di
‘‘\’’ represent dislocations.
thickness direction of films. If the exterior surface-constraint is
weaker than the interior GB-constraint, such as in the films with-
out surface treatment, the exterior free surface-constraint acts as
weakening and the interior GB-constraint does as strengthening,
so the thickness effect of ‘‘thicker is stronger’’ is displayed. Oppo-
sitely, in the films with SPLs and SGRZs, the exterior surface-
constraints induced by SPLs and SGRZs are much stronger than
the interior GB-constraints. The opposite spatial distributions of
the strengthening zone and relative weakening zone in the thick-
ness direction of thin films with surface treatments result in the
opposite thickness effect of ‘‘thinner is stronger’’. No matter in
what type of thin films, when the number of grains in the thickness
direction is large enough, the interior GB-constraint would prevail
against the exterior surface-constraint and thickness effects
disappear.
4. Concluding remarks

Using the two-dimensional DDD framework which was pro-
posed by Van der Giessen and Needleman (1995) and further ex-
tended by Li et al. (2009) with incorporation of the penetrable
dislocation-GB interaction model, we studied the thickness effect
on the tensile strength of polycrystalline thin films, with a special
emphasis on the competition between the exterior surface-
constraint and interior GB-constraint. Three kinds of polycrystal-
line thin films were considered, including the thin films (i) without
fferent thicknesses: (a) T = 0.75 lm, (b) T = 1.00 lm and (c) T = 1.50 lm. The symbols
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surface treatment, (ii) with SPLs and (iii) with SGRZs. From our
computations, some conclusions can be drawn:

� In the thin films without surface treatment, there exists strong
thickness effect on the overall tensile strength of thin films, i.e.,
thicker is stronger. The main reason inducing this thickness
effect is the competition between the exterior surface-con-
straint and interior GB-constraint on gliding dislocations. As
we know, the free surface-constraint on dislocations is much
weaker than the interior GB-constraint even though the GBs
are penetrable by dislocations. Consequently, the free surface-
constraint induces weakening effect and the tensile stress in
surface grains is low. On the contrary, the interior GB-constraint
induces strengthening effect and the tensile stress in interior
grains is high. When the number of grains in the thickness
direction is small, i.e., 1 or 2, surface grains are in the majority
and the weakening induced by free surface-constraint domi-
nates the overall tensile strength. With the increase of the num-
ber of grains in the thickness direction, the percentage of
interior grains in total grains increases, so the strengthening
induced by interior GB-constraint makes an increasing contri-
bution to the overall tensile strength, displaying the thickness
effect of ‘‘thicker is stronger’’. When the number of grains in
the thickness direction becomes large enough, the strengthen-
ing substantially prevails against the weakening and thus this
thickness effect vanishes. In addition, the critical grain number
in the thickness direction, above which no thickness effect
occurs any more, is about 4 according to our computations.
� In the polycrystalline thin films with SPLs, the tensile strength

displays the opposite thickness effect, i.e., thinner is stronger.
The main reason behind this thickness effect is also the compe-
tition between the surface-constraint and interior constraint on
gliding dislocations. Only the passivated surface-constraint
plays a strengthening role while the interior GB-constraint does
a relative weakening one, which is opposite to the thin films
without surface treatment. Therefore, the opposite spatial dis-
tributions of the strengthening zone and the relative weakening
zone in the thickness direction yields this opposite thickness
effect.
� In the thin films with SGRZs, the thickness effect on the tensile

strength is similar to that in the thin films with SPLs, i.e., thinner
is stronger. However, the underlying dislocation mechanisms in
those two cases are different. In the films with SPLs, the disloca-
tion density within boundary layers near the film-passivation
interfaces sharply increases due to the strong constraint of pas-
sivated surfaces. However, in the films with SGRZs, the disloca-
tion density within the SGRZs sharply decreases because of the
reduction of surface grain size to nanometer scale. As is well
known, plastic strain mainly comes of the movements of dislo-
cations. In the films with SPLs, the dislocations within boundary
layers are difficult to glide and consequently the plastic strain is
low there. On the other hand, in the films with SGRZs, disloca-
tions are difficult to nucleate and glide within SGRZs and thus
the plastic strain is also low there. As a result, the tensile stress
within both the boundary layers and SGRZs is high. It is not dif-
ficult to understand that the passivated surface-constraint and
refined surface grain constraint induce the same effect, i.e.,
the strengthening effect. Hence, with the increase of film thick-
ness, the same spatial distributions of the hardening zone and
the relative weakening zone in the thickness direction result
in the same thickness effect, i.e., thinner is stronger.

It should be pointed out that, there are two characteristic sizes
in polycrystalline thin films, i.e., grain size d and film thickness T.
The effect of grain size d on the strength of polycrystalline films
(i.e., Hall–Petch effect) originates from the constraint of GBs on dis-
locations and the effect of film thickness T (i.e., thickness effect)
mainly arises from the competition between the interior GB-con-
straint and exterior surface-constraint. In this contribution, only
the thickness effect is paid a special attention to but the grain size
effect is ignored by keeping d unchanged. In addition, only two-
dimensional plane strain discrete dislocation dynamics method is
employed in this paper for simplicity. Although some important
three-dimensional dislocation mechanisms are ignored, some
interesting results in good agreement with the existing experi-
ments can still be captured by present computations. These results
are helpful for us to understand the thickness effect on the tensile
strength of polycrystalline thin films and the associated dislocation
mechanisms.
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