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Abstract

It is shown that the general approximation property of feed-forward multilayer perceptron

networks can be achieved in networks where the number of nodes in each layer is bounded,

but the number of layers grows to infinity. This is the case provided the node function is twice

continuously differentiable and not linear.
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1. Introduction and statement of results

The purpose of this note is to show that a multilayer perceptron (MLP) neural
network with at most d þ d 0 þ 2 nodes in each layer can approximate an arbitrary

continuous Rd 0
-valued function defined on Rd provided the node function is twice

continuously differentiable and not linear. The standard way of proving that a given
continuous function can be approximated by an MLP-network is to use one hidden
layer and then consider the span of the ridge functions sð/w; xS� tÞ; see e.g.
[1,3,6,8], and in particular the survey [7] as well as the references mentioned there.
But in this case the number of nodes in the hidden layer grows as one tries to achieve
better and better approximations. Furthermore, one has to assume that the node
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function is not a polynomial, because otherwise the output could only be a
polynomial of at most the same degree as the node function.

In [5] it is shown that if one chooses a special node function then one obtains the
approximation property for a network with two hidden layers and a fixed number of
nodes in both layers. But since the proof is based on Kolmogorov Superposition
Theorem (see e.g. [4]), the node function is rather pathological, although it can be
chosen to be strictly increasing and real analytic.

Here we consider the case where one is given an arbitrary twice differentiable node
function which is not linear and one wants to restrict the number of nodes in each
layer, but one is willing to let the number of layers grow to infinity.

In [2] a related result is established, but there no restrictions are placed on the
number of nodes in the hidden layers and hence it suffices to consider arbitrary
continuous nonlinear node functions.

Apparently, not very much work has been done on the problem of
what advantages, if any, there are in having several layers. Clearly the
smaller the number of nodes needed, the better, but the difficulty is to
evaluate the performance of a network structure. In [9] the authors conclude
that network with two hidden layers (L ¼ 3 in the notation below) is superior
to a network with one hidden layer (with L ¼ 2) whereas in [10] no such difference is
found.

To simplify the statement of our result and to fix some notation we formally state
what we mean by a multilayer perceptron network with at most k nodes in each
layer. Here we assume (although it is, of course, not essential for these networks in
general), that the node functions are the same at all nodes except that the output
layer has a linear node function.

Definition 1. Let s :R-R and suppose that d; d 0 and kX1: Then one says that

fAMLPðd; d 0; s; k;LÞ if and only if f :Rd-Rd 0
is such that there are (weight)

matrices W1ARk�d ; WjARk�k; 1ojoL; WLARd 0�k and (threshold) vectors

tjARk�1; 1pjoL and tLARd 0;1 so that for every xARd one has fðxÞ ¼ aL when

the vectors aj (and bj) are defined by

b0 ¼ x;

aj ¼ Wjbj�1 � tj ; 1pjpL;

bj ¼ sðajÞ; 1pjoL: ð1Þ

Here the expression sðajÞ is the vector obtained by applying the function s to each

component of the vector aj: The definition above is written so that each hidden layer

has exactly k nodes, but by choosing some of the weights equal to zero, the effective
number of nodes could be less than k:

When considering approximation properties it suffices, in principle, to consider
the case of real-valued functions, i.e., d 0 ¼ 1; but since we want to have a simple
upper bound on the number of nodes, we treat the general case.
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We can use the following metric in the space CðRd ;Rd 0 Þ of continuous functions

on Rd :

dðf; gÞ ¼
XN
j¼1

2�j
supjxjpj jfðxÞ � gðxÞj

1þ supjxjpjjfðxÞ � gðxÞj: ð2Þ

It is easy to see that convergence in this metric is the same as uniform convergence on

compact sets and clearly the choice of norms j 	 j in Rd and Rd 0
is of no consequence.

Now we can state our result:

Theorem 2. Assume that d; d 0
X1 and that sACðR;RÞ is twice continuously

differentiable in the neighbourhood of a point t
AR and s00ðt
Þa0: Then the setS
LX1 MLPðd; d 0; s; d þ d 0 þ 2;LÞ (see Definition 1) is dense in CðRd ;Rd 0 Þ:

2. Proof of Theorem 2

Since s is assumed to be twice continuously differentiable in a neighbourhood of
t
 we may, without loss of generality, assume that s0ðt
Þa0 in addition to the
assumption that s00ðt
Þa0:

Since every continuous scalar function can be approximated with arbitrary
precision on compact sets by polynomials, the space of (vector) polynomials is dense

in CðRd ;Rd 0 Þ with the metric defined in (2). Thus, we can conclude that it suffices to
show that every polynomial can be approximated with arbitrary precision on every

bounded set of Rd :
Let T40 and eAð0; 1Þ be arbitrary. We will construct an MLP-network using one

of two slightly different constructions each time a layer is added.
Suppose p1; p2;y; pd 0 and q are some real-valued polynomials in d variables.

Assume that there exists an MLP-network with d inputs, L layers, d þ d 0 þ 2 nodes
at each layer (including the output layer), i.e., a function fAMLPðd; d þ d 0 þ
2; s; d þ d 0 þ 2;LÞ such that if the inputs are x ¼ ðxð1Þ;y; xðdÞÞ and the output
y ¼ fðxÞ then we have when jxjpT ;

jyð jÞ � xð jÞjpLe; j ¼ 1;y; d;

jyðd þ kÞ � pkðxÞjpBLe; k ¼ 1;y; d 0;

jyðd þ d 0 þ 1Þ � qðxÞjpCLe;

yðd þ d 0 þ 2Þ ¼ 0: ð3Þ

To get the process started, we take L ¼ 0; add d 0 þ 2 zeroes to the input layer and
thus take p1 ¼ ? ¼ pd 0 ¼ q ¼ 0; but we leave the details of this construction to the
reader.

In the first alternative we want, assuming some numbers c1; c2;y; cd 0 are given, to
construct a network with L þ 1 layers, that is a function gAMLPðd; d þ d 0 þ
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2; s; d þ d 0 þ 2;L þ 1Þ such that if z ¼ gðxÞ and jxjpT ; then

jzð jÞ � xð jÞjpðL þ 1Þe; j ¼ 1;y; d;

jzðd þ kÞ � pkðxÞ � ckqðxÞjp BL þ max
1pkpd 0

jckjCL þ 1

� �
e; k ¼ 1;y; d 0;

jzðd þ d 0 þ 1Þ � 1j ¼ 0;

zðd þ d 0 þ 2Þ ¼ 0: ð4Þ

In the second alternative we want, assuming m is one of the numbers 1; 2;y; d; to
construct a network with L þ 1 layers, that is a function gAMLPðd; d þ d 0 þ
2; s; d þ d 0 þ 2;L þ 1Þ such that if z ¼ gðxÞ and jxjpT ; then

jzð jÞ � xð jÞjpðL þ 1Þe; j ¼ 1;y; d;

jzðd þ kÞ � pkðxÞjpðBL þ 1Þe; k ¼ 1;y; d 0;

jzðd þ d 0 þ 1Þ � xðmÞqðxÞjpðCLðT þ LÞ þ L maxjxjpT jqðxÞj þ 1Þe;

zðd þ d 0 þ 2Þ ¼ 0: ð5Þ

In both cases we have to take the network defining the function f; modify the
matrix WL and the vector tL in a way that will be described below and add a new
layer.

First, we note that for the output terms that one wants to be unchanged we can use
the following estimate when Z40:

1

Zs0ðt
Þ
ðsðZa þ t
Þ � sðt
ÞÞ � a

����
����psupjs�t
jpZjajjs00ðsÞjZa2

2js0ðt
Þj
: ð6Þ

For the first case we let Z40 and define a ðd þ d 0 þ 2Þ � ðd þ d 0 þ 2Þ matrix VL that
will be used to modify WL:

VLði; jÞ ¼
Z if 1pi ¼ jpd þ d 0 þ 1;

0 otherwise:

(

We take rL to be a ðd þ d 0 þ 2Þ � 1 matrix with each element equal to �t
: Next, we

replace the matrix WL by the new weight matrix W̃L ¼ VLWL and the new threshold
vector will be *tL ¼ VLtL þ rL:

The next weight matrix WLþ1 is defined by

WLþ1ði; jÞ ¼

1

Zs0ðt
Þ
if 1pi ¼ jpd þ d 0;

ck

Zs0ðt
Þ
if i ¼ d þ k; j ¼ 1þ d þ d 0; 1pkpd 0;

0 otherwise:

8>>>>><
>>>>>:
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Similarly, the next threshold vector tLþ1 is defined by

tLþ1ðiÞ ¼

sðt
Þ
Zs0ðt
Þ

if 1pipd;

ð1þ ckÞ
sðt
Þ
Zs0ðt
Þ

if i ¼ d þ k; 1pkpd 0;

�1 if i ¼ d þ d 0 þ 1;

0 if i ¼ d þ d 0 þ 2:

8>>>>>>>><
>>>>>>>>:

With these definitions we see that

zð jÞ ¼ sðZyð jÞ þ t
Þ � sðt
Þ
Zs0ðt
Þ

; j ¼ 1;y; d;

zðd þ kÞ ¼ sðZyðd þ kÞ þ t
Þ � sðt
Þ
Zs0ðt
Þ

þ ck

sðZyðd þ d 0 þ 1Þ þ t
Þ � sðt
Þ
Zs0ðt
Þ

; k ¼ 1;y; d 0;

zðd þ d 0 þ 1Þ ¼ 1;

zðd þ d 0 þ 2Þ ¼ 0:

Thus we conclude from (3) and (6) that if Z is sufficiently small, then (4) holds (when
jxjpT).

In the second case we proceed in the same manner and we shall again utilize (6).
But in order to get an approximation for the term xðmÞqðxÞ we must also use the
observation that

sðZa þ Zb þ t
Þ � sðZa þ t
Þ � sðZb þ t
Þ þ sðt
Þ
Z2s00ðt
Þ

� ab

����
����

p
jajjbj
s00ðt
Þ

sup
jsjpZjajþZjbj

js00ðs þ t
Þ � s00ðt
Þj: ð7Þ

In order to get the modified network in this case we define a matrix used to modify
WL:

VLði; jÞ ¼
Z if 1pi ¼ jpd þ d 0 þ 1;

Z if i ¼ d þ d 0 þ 2; j ¼ m or j ¼ d þ d 0 þ 1;

0 otherwise:

8><
>:

Furthermore, we choose rLð jÞ ¼ �t
 for all j ¼ 1;y; d þ d 0 þ 2: Again we replace

the old weight matrix WL by a new one, W̃L ¼ VLWL and the new threshold vector
will be *tL ¼ VLtL þ rL:
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For the output layer we define the weight matrix as follows:

WLþ1ði; jÞ ¼

1

Zs0ðt
Þ
if 1pi ¼ jpd þ d 0;

1

Z2s00ðt
Þ
if i ¼ d þ d 0 þ 1; j ¼ d þ d 0 þ 2;

� 1

Z2s00ðt
Þ
if i ¼ d þ d 0 þ 1; j ¼ m or j ¼ d þ d 0 þ 1;

0 otherwise:

8>>>>>>>>>><
>>>>>>>>>>:

For the threshold vector we take

tLþ1ð jÞ ¼

sðt
Þ
Zs0ðt
Þ

if j ¼ 1;y; d þ d 0;

� sðt
Þ
Z2s00ðt
Þ

if j ¼ d þ d 0 þ 1;

0 if j ¼ d þ d 0 þ 2:

8>>>>><
>>>>>:

We conclude that with these definitions we have

zð jÞ ¼ sðZyð jÞ þ t
Þ � sðt
Þ
Zs0ðt
Þ

; j ¼ 1;y; d þ d 0;

zðd þ d 0 þ 1Þ ¼ 1

Z2s00ðt
Þ
ðsðZyðd þ d 0 þ 1Þ þ ZyðmÞ þ t
Þ

� sðZyðd þ d 0 þ 1Þ þ t
Þ � sðZyðmÞ þ t
Þ þ sðt
ÞÞ;

zðd þ d 0 þ 2Þ ¼ 0:

In this case we see that if Z is sufficiently small, then by (3), (6), and by (7) we get (5)
(when we use the assumption that eo1).

Now the procedure works so that we start out with a step of the first type, then we

build up (an approximation of) a monomial
Qd

i¼1 xðiÞai using
Pd

i¼1 ai steps of the

second type, and this monomial is then added to the polynomials pk; k ¼ 1;y; d 0 in
a step of the first type. Then the procedure is repeated for the next monomial until
the polynomials (or more precisely, their approximations) are completed. (Clearly, it
is not necessary to proceed in exactly this way, but the two steps could be combined.)
At this point the last weight matrix and threshold vector must be modified so that the
only outputs of the network are approximations of the desired polynomials, that is
one should only keep the components numbered d þ 1; d þ 2;y; d þ d 0 in the
output vector. We see that the errors in the approximations are then some constant,
that only depends on the polynomials and T times e and by choosing e sufficiently
small we get the desired conclusion and the proof is completed.
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