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We discuss a gauge-invariant prescription to take the mean-field approximation self-consistently in the
PNJL model (Nambu–Jona-Lasinio model with the Polyakov loop). We first address the problem of non-
vanishing color density in normal quark matter, which is an artifact arising from gauge-fixed treatment of
the Polyakov loop mean-fields. We then confirm that the gauge average incorporated in our prescription
resolves this problem and ensures color neutrality. We point out that the proposed method has an
advantage in computing the expectation value of any function of the Polyakov loop matrix. We discuss
the Casimir scaling as an immediate application of the method.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

The interplay between the QCD phase transitions of chiral
restoration and color deconfinement at finite temperature and/or
density has been attracting much interest recently. There are a
lot of attempts to describe confinement-deconfinement physics by
means of effective models in terms of the Polyakov loop [1–22].
One successful approach that can describe both the chiral and
deconfinement transitions (crossovers) is the Polyakov-loop aug-
mented Nambu–Jona-Lasinio (PNJL) model. This model accommo-
dates self-consistent treatment for two approximate order parame-
ters; the Polyakov loop L for deconfinement and the chiral conden-
sate 〈ψ̄ψ〉 for chiral restoration. Here the former works as an exact
order parameter in the quenched limit (i.e. mq → ∞), while the
latter is exact in the chiral limit (i.e. mq → 0). Due to a particular
form of coupling between L and 〈ψ̄ψ〉 the PNJL model has a gen-
eral tendency to make two crossovers in L and 〈ψ̄ψ〉 come close
to each other [3]. Besides, it has turned out that the bulk thermo-
dynamics resulting from the model shows remarkable agreement
with numerical data from the lattice QCD simulation [7].

It is known by now that pathological behavior arises from a
simple mean-field ansatz for the Polyakov loop matrix [10,15,16,
22]. In Ref. [23] one of the present authors found that a saddle-
point approximation on the Polyakov loop matrix leads to unphys-
ical non-zero color density even in the normal phase of quark
matter (see also Refs. [24,25]). This is not a principle problem in-
herent to the PNJL model but rather a practical one associated with
the mean-field approximation; we have to assume a certain gauge
to make the color density definite, and at the same time, for the
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sake of the color density computation it is convenient to take a
special gauge in which the Polyakov loop L is diagonal. These two
gauge choices are, however, not necessarily compatible. In other
words, the color chemical potential matrix and the Polyakov loop
matrix are not commutable.

The problem comes from the fact that we need to treat the
Polyakov loop mean-field not as a traced quantity � ≡ 1

Nc
〈tr L〉 but

as a matrix L(ϕ1,ϕ2) ≡ diag(eiϕ1 ,eiϕ2 ,e−i(ϕ1+ϕ2)) when we evalu-
ate the color density. Then we face another undesirable situation.
That is, in terms of ϕ1 and ϕ2, it is hard to realize a difference be-
tween the Polyakov loop � and the anti-Polyakov loop �̄ ≡ 1

Nc
〈tr L†〉

which are both real numbers [11,26]. It is claimed in Ref. [18]
that the fluctuation around the mean-field induces a difference
between � and �̄. We should note, however, that all these prob-
lems do not appear if we treat � and �̄ as the relevant mean-fields,
which works unless we consider color degrees of freedom such as
color superconductivity [27]. In fact, in the color-superconducting
phase, we cannot express the quasi-quark contribution to the ther-
modynamic potential solely in terms of � and �̄, but it inevitably
involves the matrix elements of L [10].

The present Letter aims to propose a resolution to circum-
vent these shortcomings of the simple mean-field approximation.
We would emphasize that our prescription not only improves the
mean-field approximation but also encompasses correct gauge dy-
namics from which the neutrality with respect to gauge charge is
derived (i.e. the Gauss law).

2. Model and mean-field approximation

We here explain our model, the ingredients of which are the
Polyakov-loop matrix model [5,9] and the NJL model [28]. The dif-
ference from the PNJL model lies in a mean-field evaluation for the
Polyakov loop [1,3,6,29].
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First, let us address the pure gluonic sector. We assume that the
pure gluonic dynamics would be described by the nearest neighbor
interaction of the traced Polyakov loop as

Sg[L] = −N2
c e−a/T

∑
�x,n̂

l(�x)l∗(�x + n̂), (1)

with l ≡ 1
Nc

tr L and l∗ ≡ 1
Nc

tr L†. This form of the simplest matrix
model [30] is to be postulated from the leading-order contribution
in the strong coupling expansion, which specifies the T -dependent
interaction strength with a being a model parameter [3].

The action (1) looks like a spin model. We then make use of
the Weiss approximation with the neighboring spin sites treated
as the mean-fields. Hence, the mean-field action is

Smf[α,β] = −Nc

∑
x

[
α Re l(x) + iβ Im l(x)

]
, (2)

where α and β correspond to the Polyakov loop mean-fields. Finite
β would be induced by C -odd terms at finite μ. We denote the
Polyakov loop expectation values, hereafter, as � ≡ 〈l〉mf and �̄ ≡
〈l∗〉mf. The expectation value 〈. . .〉mf refers to the average over the
Polyakov loop matrix with the mean-field action.

In the Weiss mean-field approximation the free energy is de-
fined by1

V

T
fg(α,β) = 〈

Sg[L] − Smf[L]〉mf − ln
∫

D Le−Smf[L]. (3)

It is possible to find a closed analytic expression of fg(α,β = 0)

at μ = 0, but we have to rely on numerical calculation to evaluate
fg(α,β) for μ 	= 0.

We can fix the parameter a by requiring that the pure gluonic
theory has a first-order phase transition of color deconfinement at
T = 270 MeV when μ = 0. This condition results in

a = 542 MeV. (4)

Next, we shall consider how to add the contribution of dy-
namical quarks in the mean-field approximation. We simply add
dynamical quarks using the quasi-quark approximation with the
same Polyakov loop coupling as the PNJL model. In our notation
V
T Ωq(σi, L) denotes the quark thermodynamic potential with the
chiral condensates, σu , σd , and σs , giving the total mean-field free
energy,

fmf(σi,α,β) = fg(α,β) + 〈
Ωq(σi; L)

〉
mf. (5)

Although Ωq is a complex function of L for μ 	= 0, its expecta-
tion value as a function of α and β is real. This is because the
imaginary part contributing to the thermodynamic potential is odd
under C , i.e. L → L† transformation. That is,

〈
Ωq(σi, L)

〉
mf = 1

zmf

∫
dL eNcα Re l

× [
cos(Ncβ Im l)ReΩq − sin(Ncβ Im l) Im Ωq

]
, (6)

where zmf is the normalization given as zmf = ∫
dL eNcα Re l ×

cos(Ncβ Im l), which is manifestly real. As for the Polyakov loop,
we readily find

� = 1

zmf

∫
dL eNcα Re l[cos(Ncβ Im l)Re l − sin(Ncβ Im l) Im l

]
, (7)

�̄ = 1

zmf

∫
dL eNcα Re l[cos(Ncβ Im l)Re l + sin(Ncβ Im l) Im l

]
. (8)

1 Although the variational principle seems to break down due to the sign problem
at μ 	= 0, the saddle-point of this mean-field free energy leads to a good approxi-
mation. See Ref. [11] for details.
It is obvious from the above that � and �̄ are different by the pres-
ence of the imaginary (C -odd) part induced by β 	= 0 at finite μ
[11,31].

We now must specify the concrete form of Ωq(σi, L). To this
end, here, we shall augment the NJL model with the Polyakov loop
coupling (i.e. the PNJL model). Then Ωq(σi, L) take the following
form;

Ωq(σi, L)

= gS
(
σ 2

u + σ 2
d + σ 2

s

) + 4gDσuσdσs − 2Nc

∑
i

Λ∫
d3 p

(2π)3
εi(p)

− 2T
∑

i

∑
λ=±1

∞∫
d3 p

(2π)3
ln det

(
1 + Lλe−(εi(p)−λμ)/T )

, (9)

where the quasi-quark dispersion relations are εi(p) =
√

p2 + M2
i

with the constituent quark masses being Mu = mu − 2gSσu −
2gDσdσs , Md = md − 2gSσd − 2gDσsσu , and Ms = ms − 2gSσs −
2gDσuσd . We note that λ = +1 and −1 in the above are the quasi-
quark and quasi-antiquark contributions, respectively.

We take the same parameter set in the NJL part as in Ref. [28];
Λ = 631.4 MeV, mu = md = 5.5 MeV, ms = 135.7 MeV, gSΛ

2 =
3.67, and gDΛ5 = −9.29. Then σu = σd always holds due to
isospin symmetry in the strong interaction.

This model has one more parameter, that is the normalization
of fg(α,β). The right-hand side of Eq. (3) is proportional to the
number of space points, N , and thus fg(α,β) ∝ T · N/V which
carries the mass dimension of the energy density. Here, N/V is
a model parameter corresponding to b discussed in Ref. [21]. We
can fix N/V by the condition that the chiral and deconfinement
crossovers take place near T = 200 MeV. In this way, we find

N/V = 0.02Λ3. (10)

3. Quark and color densities

Once we determine the mean-fields {α,β,σi} by solving the
gap equations, ∂ fmf/∂α = ∂ fmf/∂β = ∂ fmf/∂σi = 0, we can calcu-
late various physical quantities.

The quark number density, i.e. nq = −∂ fmf/∂μ, can be ex-
pressed as

nq = 1

zmf

∑
i

∫
d3 p

(2π)3

∫
dL eNc(α Re l+iβ Im l)

× tr

[
1

L†e(εi(p)−μ)/T + 1
− 1

Le(εi(p)+μ)/T + 1

]
. (11)

Next we consider color densities. Since the phase A4 of the
Polyakov loop matrix, L = exp[iA4/T ], could be regarded as the
color chemical potential, the color density is then given by differ-
entiating the integrand of fmf with respect to (−iAa

4). This leads
to

na = 1

zmf

∑
i

∫
d3 p

(2π)3

∫
dL eNc(α Re l+iβ Im l)

× tr

[
1

L†e(εi(p)−μ)/T + 1
Ta − 1

Le(εi(p)+μ)/T + 1
Ta

]
. (12)

Here Ta ’s are the SU(Nc) algebra in the fundamental representa-
tion. In deriving this we have made use of the cyclicity in the
trace. The group integration in Eq. (12) is hard to perform in
general. Usually we take the Polyakov gauge in which L is diag-
onal with two angle variables ϕ1 and ϕ2, and then we can ex-
press dL as dϕ1 dϕ2 accompanied by the SU(Nc = 3) Haar measure
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μ(ϕ1,ϕ2) ≡ [sin(ϕ1 −ϕ2)+ sin(2ϕ1 +ϕ2)+ sin(ϕ1 + 2ϕ2)]2/(3π2).
This procedure works straightforwardly for Eq. (11) but not for
Eq. (12) because of the presence of Ta . The color density is gauge
dependent, however, so we should fix the gauge to define this
quantity. If we take the Polyakov gauge as usual, then the color
density for only the T3 and T8 components (belonging to the
Cartan subalgebra of SU(3)) have non-vanishing integrands. We
then can define the red, green, and blue quark densities as nr =
1
3 nq + 1

2 n3 + 1
2
√

3
n8, ng = 1

3 nq − 1
2 n3 + 1

2
√

3
n8, and nb = 1

3 nq − 1√
3

n8.

4. Approximation

Here we introduce an approximation which greatly reduces the
computational cost. That is,〈
ln det

(
1 + Le−(εi−μ)/T )〉

mf → ln
〈
det

(
1 + Le−(εi−μ)/T )〉

mf, (13)

and the same for the antiquark part. With this approxima-
tion applied to the free energy expression, we can reduce the
three-dimensional integral with respect to {ϕ1,ϕ2, p} to the one-
dimensional p-integral with given � and �̄ which result from the
integral over {ϕ1,ϕ2} independently of p. We have numerically
confirmed that this approximation works excellently well.

5. Standard PNJL model treatment

For comparison to the simple mean-field approximation used
in literature [10], we shall calculate the same physical quantities
using the standard PNJL model,

f̃mf(σi, L)

= V glue[l, l̄] + gS
(
σ 2

u + σ 2
d + σ 2

s

) + 4gDσuσdσs

− 2Nc

∑
i

Λ∫
d3 p

(2π)3
εi(p)

− 2T
∑

i

∑
λ=±1

∞∫
d3 p

(2π)3
ln det

(
1 + Lλe−(εi(p)−λμ)/T )

, (14)

where

V glue[l, l̄] = −bT
{

54e−a/T ll̄ + ln
[
1 − 6ll̄ − 3(ll̄)2 + 4

(
l3 + l̄3

)]}
(15)

with a = 664 MeV, b = 0.026Λ3 so that the transition (crossover)
temperatures with and without dynamical quarks are 270 MeV and
200 MeV respectively, as explained previously. We will refer to this
model as the standard PNJL model hereafter.

The above expression for f̃mf(σi, L) is given in terms of the
gauge invariant mean-fields, � and �̄, so that one can evaluate
them without difficulty to find �̄ > � at non-zero μ. The serious
problem arises when we are interested in quantities associated
with color degrees of freedom. We cannot express the color den-
sity, na , using � and �̄ only, as seen from Eq. (12). That is also the
case if the color-superconducting phase is considered in the PNJL
model.

Practically, in such a situation, one may well assume the mean-
fields, ϕ1 and ϕ2 (or φ3 and φ8), to characterize the Polyakov loop
matrix as L = diag(eiϕ1 ,eiϕ2 ,e−i(ϕ1+ϕ2)) = exp[i(φ3T3 + φ8T8)/T ].
This prescription is quite problematic, however, though adopted
frequently. The traced Polyakov loops, � and �̄, become complex
with non-zero φ3 and φ8 in general. To avoid this artifact, one
could assume φ8 = 0, but such an assumption is not consistent
with �̄ 	= � at finite μ. More seriously an unphysical color den-
sity is induced by the mean-fields, which is, of course, an artifact
of this prescription. One may want to cancel the color density by
introducing color chemical potentials [23,24], but as soon as one
does so, another undesirable problem seems to come out immedi-
ately [32].

We define the magnitude of the color density by nc =
(
∑8

a=1 n2
a)1/2 [23]. This quantity is invariant under gauge rotation.

Thus, under the assumption φ8 = 0, the color density magnitude is
nc = 2√

3
|n(φ3) − n(0)|, where we define

n(φ3) = 2
∑

i

∫
d3 p

(2π)3
Re

[
1

e(εi(p)−μ−iφ3)/T + 1

− 1

e(εi(p)+μ+iφ3)/T + 1

]
. (16)

We remark that nc is non-vanishing at finite φ3. This is simply
because the phase of the Polyakov loop matrix generally has the
physical meaning of the color imaginary chemical potential, and
so φ3 	= 0 induces nc 	= 0.

6. Order parameters and color densities

We first show the order parameters for chiral restoration and
color deconfinement in Fig. 1 as a function of T at μ = 0. The thick
curves represent the constituent quark masses and the Polyakov
loop obtained from Eq. (5), while the thin curves are the results
in the standard PNJL model with Eq. (14). We note that the thick
and thin curves are very close, which means that our formulation
would not spoil the nice feature established in the standard PNJL
model.

Now we shall move on to the finite density case. In Fig. 2
we display the physical quantities as a function of T at μ =
300 MeV. The left figure shows the constituent quark masses and
the Polyakov loop in the same way as in Fig. 1. The thin lines
are the results from the standard PNJL model again. The right
figure shows the quark number density nq and the color densi-
ties {nr,ng,nb}, where nq = nr + ng + nb should be fulfilled. We
see that the thick curves have significant difference from the thin
curves resulting from the standard PNJL model. In the case of our
prescription we have nr = ng = nb , meaning that nc = |nr + ng −
2nb|/

√
3 = 0, while nc is non-vanishing in the standard PNJL model

as depicted by the thin line with the label nc . It is also notable
that, despite drastic difference in the color densities, the quark
number density, nq , hardly changes; the thin line stays close to
the thick line for nq .

Fig. 1. The chiral and deconfinement crossovers at μ = 0. The constituent quark
masses are normalized by the vacuum values, Mu0 and Ms0. The thin lines show
the results from the standard PNJL model given in Eq. (14).
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Fig. 2. Left: Constituent quark masses, Mu and Ms , Polyakov loops, � and �̄, as a function of T at μ = 300 MeV. The thin curves are the results from the standard PNJL model.
Right: Color densities {nr ,ng ,nb} and the quark number density nq as a function of T . The net color density nc = |nr + ng − 2nb |/√3 is indicated by the thin line with the
label nc in the case of the standard PNJL model. In our prescription nc is always zero.
7. Casimir scaling at finite density

As already noted, the mean-field approximation discussed here
enables us to compute not only the traced Polyakov loop in the
fundamental representation but also the expectation value of arbi-
trary functions of the Polyakov loop. We shall take a close look at
the Polyakov loop in the higher representations as an immediate
application.

The Polyakov loop in the higher representations is of special in-
terest with regard to the Casimir scaling hypothesis [33], which
may provide a crucial key to understanding non-perturbative as-
pects of QCD such as confinement [30]. The Casimir scaling hy-
pothesis claims that the color singlet potential between static color
sources in the representation r is proportional to the Casimir in-
variant C2(r). The statement is rather obvious in the perturbative
regime, but it is quite non-trivial at large distances. From the theo-
retical perspective this hypothesis is verified up to two-loop order
in the lattice perturbation theory both in pure gauge theory [34]
and in QCD with massless dynamical quarks [35]. Beyond two-loop
order the Casimir scaling can be violated, though the violation is
tiny [34].

The scaling hypothesis is also tested numerically in the lattice
simulation. In the SU(3) pure gauge theory at T = 0 the hypothe-
sis has been verified up to the string breaking distance [33]. The
Casimir scaling hypothesis also brings a strong constraint on the
Polyakov loop expectation value; the traced Polyakov loop in any
representation r should satisfy the following scaling relation irre-
spective of the renormalization of the Polyakov loop [30];

�
1/dr
r ≈ �3. (17)

Here �3 = � is the Polyakov loop in the fundamental represen-
tation, dr is the ratio of the quadratic Casimir invariant; dr ≡
C2(r)/C2(3) = 3

4 C2(r). The relation (17) between the Polyakov
loops in different representations actually provides a useful test
for the hypothesis, and in Ref. [30] this test has been extensively
performed with use of lattice QCD data both in pure gauge theory
and in N f = 2 QCD. It has been found that the scaling violation is
visible only in the very vicinity of the first-order phase transition
in pure gauge theory, while the deviation from the scaling is more
evident in N f = 2 QCD particularly below the crossover tempera-
ture. The scaling (17) is almost exact at high temperature where �

is substantially large.
It has been reported recently that the Casimir scaling of the
Polyakov loop in the fundamental (3) and adjoint (8) representa-
tions is well realized in the PNJL model at μ = 0 [36]. We here
present the first systematic model study on the Casimir scaling
at non-zero chemical potential. We compute the Polyakov loop in
various representation from 3 to 27 as listed in Table 1. We can
construct the Polyakov loop matrix in higher representations by
the direct products of L and L† in the fundamental representation
using the Clebsch–Gordan coefficients. In the left of Fig. 3 we show
the various Polyakov loops as a function of T at μ = 300 MeV
as well as at μ = 0. We see that the scaling is good at high T
in both cases. The scaling regime is reached faster in the μ = 0
case; the violation of the Casimir scaling is small at the crossover
around T = 200 MeV, while in the case of μ = 300 MeV the
deviations in �

1/dr
r are significant at the crossover temperature

T = 120 MeV. The presence of finite density tends to enhance the
scaling violation. At the same time we should be careful about
the interpretation; in Ref. [30] it has been shown that this kind
of matrix-based model fails in reproducing the exact Casimir scal-
ing �

1/dr
r = �3 observed on the lattice in the pure gauge theory.

One comment which we should mention here is that the scaling
violation at higher representations may be attributed to the fact
that we limit ourselves to the simplest version of the matrix model
in Eq. (1). It could be possible that the inclusion of the Polyakov
loops in higher representations may diminish artificial violation of
the Casimir scaling. For example we could consider, l3(�x)l6(�x + n̂),
l6(�x)l∗6(�x + n̂), etc., in the model action, which are allowed by Z3
center symmetry in the pure gluonic sector. Moreover, as for the
Polyakov loops in the triality zero representations such as 8, 10,
and 27, one may well add their arbitrary functions in the model
action. It would be an interesting future problem to take account of
the Polyakov loop in higher representations into the matrix model
in such a way that the model preserves charge conjugation sym-
metry [31].

In the right of Fig. 3 we show the Polyakov loop �r as a func-
tion of μ for T = 100 MeV and for T = 150 MeV. At T = 100 MeV
the first-order chiral transition occurs at μ = 315 MeV, while chi-
ral restoration is smooth crossover with increasing μ when T =
150 MeV. Again we notice the significant scaling violation, though
the violation is exaggerated on the logarithmic plot. We observe in
Fig. 3 that some �

1/dr
r ’s cross each other as μ increases. We see

that the change in 6 is milder than those in 3 and 15. This is rea-
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Table 1
Group theoretical factors in various representations; r is the representation labeled by its dimension D(r), (p,q) is the corresponding weight factor, t = p − q modulo 3 is
the triality, z ≡ ei2π/3 is an element of Z3, C2(r) is the quadratic Casimir invariant, and dr defines the ratio dr ≡ C2(r)/C2(3). The dimension is given by D(r) = (p + 1)×
(q + 1)(p + q + 2)/2. In the triality zero representation (i.e. zt = 1), the Polyakov loop is insensitive to center symmetry, and thus it does not serve as an order parameter of
deconfinement.

r (p,q) zt C2(r) dr direct product expression of Vr ≡ D(r)lr

3 (1,0) z 4/3 1 V 3 = tr L
3̄ (0,1) z∗ 4/3 1 V 3̄ = tr L†

6 (2,0) z∗ 10/3 2.5 V 6 = (V 2
3 − V 3̄)

8 (1,1) 1 3 2.25 V 8 = (|V 3|2 − 1) (Im V 8 = 0)

10 (3,0) 1 6 4.5 V 10 = (V 3 V 6 − V 8)

15a (2,1) z 16/3 4 V 15a = (V 3̄ V 6 − V 3)

15s (4,0) z 28/3 7 V 15s = (V 3 V 10 − V 15a )

24 (3,1) z∗ 25/3 6.25 V 24 = (V 3̄ V 10 − V 6)

27 (2,2) 1 8 6 V 27 = (|V 6|2 − V 8 − 1) (Im V 27 = 0)

Fig. 3. Left: Scaled Polyakov loop �
1/dr
r as a function of T for μ = 0 and for μ = 300 MeV in various representations with dr = C2(r)/C2(3) being the ratio of the quadratic

Casimir invariant. Right: Scaled Polyakov loop as a function of μ for T = 100 MeV and for T = 150 MeV. It should be noted that the vertical axis is logarithmic.
sonable, for the excitation with the triality z∗ (like 6) should be
easier than that with z (like 3 and 15) in a medium carrying the
triality z at μ > 0.

8. Conclusion

We showed that the pathological problems associated with a
simple mean-field approximation in the PNJL model can be re-
solved by the use of the Weiss mean-field approximation. We
explicitly demonstrated that the color density is vanishing in the
normal phase of quark matter. This vanishing color density is
guaranteed by the integration with respect to the Polyakov loop,
which can translate into the Gauss law resulting from the A4-
integration. We also confirmed that �̄ > � at finite μ is naturally
realized.

Our mean-field prescription allows us to compute the expec-
tation value of any function of the Polyakov loop matrix, L and
L†, easily. As a demonstration, we computed the Polyakov loops in
various representations from 3 to 27. We observed that the Casimir
scaling is violated at finite μ more than at zero density, which is
quite natural. More interestingly, the Polyakov loop with the tri-
ality z turned out to have decreasing behavior as a function of μ
as long as μ is small. This means that the quark excitation bear-
ing the same triality charge with the background medium is less
favored. It would be an interesting future work to incorporate cou-
plings between the Polyakov loops in higher representations into
the matrix model and investigate the scaling violation in wider
model space.
An interesting extension of the present work would be the
QCD phase structure with the diquark condensation taken into
account. It would be of particular interest how the diquark con-
densates and the colored Polyakov loop matrix are entangled in a
color-superconducting medium. The work along this line certainly
deserves future investigations.
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