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Abstract 

With the increasing application of lithium-ion batteries, the function of battery management system (BMS) comes to 
be more sophisticated. The state-of-energy (SOE) of lithium-ion batteries is a critical index for energy optimization 
and management in electric vehicles. The conventional power integral methods are easy to cause accumulated error 
due to current or voltage drift of sensors. Therefore the EKF method is employed in this study. A data-driven model 
is established to describe the relationship between the open-circuit voltage (OCV) and SOE based on the 
experimental data of a Li(Ni1/3Co1/3Mn1/3)O2 battery. The dynamic urban driving schedule of Wuhui city in China has 
been conducted on the lithium-ion battery to verify the accuracy of the proposed method. The results show that 
accurate SOE estimation results can be obtained by the proposed method. 
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1. Introduction 

With the growing concerns on the depletion of energy resources and global warming problems caused 
by conventional internal combustion engine vehicles, electric vehicles have drawn more and more 
attentions. The battery is the key to the development of electric vehicles. Lithium-ion batteries as featured 
by high energy density, low self-discharge rate, long cycle life and environmental friendliness have found 
wide applications in the area of electric vehicle power supply system [1]. The lithium-ion battery is a 
strong nonlinear and time variability system for its complicated electrochemical process. The estimation 
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of cell state parameters, such as the open-circuit voltage (OCV), state-of-charge (SOC) and available 
energy, plays an important role in ensuring vehicle stability and reliability. 

In recent years, studies in estimation of residual energy have increased in literatures [2-5], among 
which the most direct algorithm is the power integral method. However through the integral methods, the 
estimation error increases conspicuously due to the accumulated error introduced by current or voltage 
drift of sensors. Therefore model-based estimation methods have been developed. 

The battery models used in electric vehicles can be divided into three types, the electrochemical 
models, the neural network models and the equivalent circuit models. The electrochemical model based 
on the electrochemical mechanism of the battery can accurately reflect the characteristics of the battery. 
The neural network model can simulate the high nonlinearity of lithium-ion batteries, but requires a large 
number of training samples. Based on the dynamic characteristics and working principles of the battery, 
the equivalent circuit model is developed by using resistors, capacitors, and voltage sources to form a 
circuit network. 

This paper proposes a method for SOE estimation of lithium-ion battery based on EKF. Since there is 
still not an accepted model for SOE, A data-driven model is established to describe the relationship 
between the open-circuit voltage (OCV) and SOE based on the experimental data. The paper is organized 
as follows: In Section 2, the definition of SOE is first introduced. Then a data-driven model for SOE 
estimation is proposed based on the real data of a lithium-ion cell. At last, the EKF implementation is 
presented. In Section 3, we first introduced the battery test bench, then experiments under dynamic current 
conditions are conducted to verify the accuracy of the proposed method. The results show that accurate 
SOE estimation results can be obtained by the proposed method. Finally, the conclusions of the study are 
given in Section 4. 

2. Model Based SOE Estimation 

2.1. Definition of SOE 

Real-time estimation of the available energy of the battery is a crucial need in the growing fields of 
electric vehicles applications. The SOE reflects the residual energy of a battery, and is defined as the ratio 
of the remaining energy to the total energy. The SOE can be expressed as the following equation: 
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where SOE(t) is the SOE value at time t, SOE(t0) is the SOE value at initial time t0, EN represents the nominal 
energy which can be obtained by the measurement average of multiple battery tests, P(τ) represents the power 
at time τ. 

2.2. Model for SOE estimation 

The equivalent circuit model has been widely used in various types of modeling and simulation for its 
high accuracy. Depending on different applications and the required accuracy, different types of cell 
models have been developed in literatures. Among which, the Thevenin equivalent circuit model is an 
effective model to represent the battery’s dynamics. 

As shown in Fig.1, the Thevenin equivalent circuit model includes an open-circuit voltage Uocv which 
is used to represent the voltage source and describe the static character of the cell, a serial resistance Ri 
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which is used to describe the cell ohmic internal resistance, a RC network which describes the cell 
polarization effect is composed by a polarization resistance Rp and a polarization capacitance Cp.  
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Figure 1 Battery model 

Based on the electric circuit analysis, the electrical behavior of the cell model can be expressed as: 
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where i represents the load current (negative for charge, positive for discharge), Uocv represents the open-
circuit voltage, Ut represents the terminal voltage, Up represents the polarization voltage over the RC 
network, Ri represents the ohmic internal resistance, Rp and Cp represent the polarization resistance and 
polarization capacitance, respectively.  

The electrical behavior of Thevenin model in Eq. (2) can be rewritten in the frequency domain as 
follows: 
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The transfer function G(s) of Eq. (3) can be written as follows: 
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A bilinear transformation method shown in Eq. (5) is employed for the discretization calculation of G(s) 
and the result is shown in Eq. (6): 

 1

1

1

12

z

z

T
s

s
 

(5) 

where z is the discretization operator and Ts is the sample interval. Herein, Ts is 1 s. 
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where 
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Then the discretization equation can be written as follows: 

 1321,1,1, )1( kkktkocvkt iaiaUaUaU
 

(8) 

where a1 , a2 and a3 are the coefficient. 
The static relationship between Uocv and the SOE in Eq. (8) is nonlinear which influences the 

complexity of the estimator. Since there is still not an accepted model for SOE, a data-driven model is 
established to describe the relationship between Uocv and SOE. Considering the Uocv-SOE curve of a 
Li(Ni1/3Co1/3Mn1/3)O2 battery from the experimental datas shown in Fig.2, the data-driven model can be 
expressed as Eq. (9): 

 
))(1ln())(ln(

)(/)(

)()()(

65

4
3

3

2
210

tSOEtSOE

tSOEtSOE

tSOEtSOEtU ocv

 
(9) 

where Uocv represents the open-circuit voltage at time t, SOE(t) represent the SOE at time t and βi (i = 0, 1, 
2, 3, 4, 5, 6) are model coefficients which can be identified by the least-square method. 
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Figure 2 Uocv-SOE curve of a Li(Ni1/3Co1/3Mn1/3)O2 battery 

2.3.  EKF based SOE estimation 

The system model in a state-space form can be written as: 
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Then the EKF algorithm can be applied for the state estimation. 

3. Experiment and Analysis 
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3.1. Test bench 

In order to sample the measurement data such as current, voltage, temperature, charge/discharge Amp-
hours (Ah) and Watt-hours (Wh) etc., the battery test bench is built in laboratory, as shown in Figure. 3, 
which consists of an UTEK battery test system UBTS60KW500V120A for loading the battery with a 
programmable current, a BMS for protection of circuits and a host computer for data recording. The 
measured data is transmitted to the host computer through TCP/IP. 

 

Battery test system Laptop
Battery pack BMS
Service switch Program downloader

 
Figure 3 Laboratory battery test bench 

3.2. Experiments Analysis 

In order to verify the applicability of the estimating algorithm based on EKF, a battery electric vehicle 
produced by Chery Automobile Co., Ltd. is tested in the experiment. The nominal capacity and the 
nominal energy of the battery system are 76 Ah and 320 Wh. The cut-off voltage of charge and discharge 
are 4.2 V and 3.0 V, respectively. Fig.4 (a) shows the dynamic urban driving schedule in Wuhui, China. 
Fig.4 (b) shows the Comparison of model and measured voltage of a cell in pack. As can be seen in the 
figure, the general shape of the model and measured voltage are almost the same. 

The SOE estimation result and the SOE estimation error are shown in Fig.5 (a) and Fig.5 (b), 
respectively. The root-mean square error and maximum absolute estimation error are calculated to assess 
and the estimated performance of the proposed algorithm. The results show that the proposed EKF based 
SOE estimation approach has a maximum absolute estimation error of 0.8119% and a root-mean square 
error of 0.4629%. 
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Figure 4 (a). Dynamic urban driving schedule of Wuhui city in China. (b). Comparison of model and measured voltage of a cell in 

pack. 
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Figure 5 (a). SOE estimation result. (b). SOE estimation error. 
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4. Conclusion  

The SOE of lithium-ion batteries is a critical index for energy optimization and management in electric 
vehicles. This paper proposes a SOE estimation method for lithium-ion battery based on EKF with a data-
driven model developed by the the real experimental data of a Li(Ni1/3Co1/3Mn1/3)O2 battery. The dynamic 
urban driving schedule is used for verifying the accuracy of the proposed method. The experiment results 
show that accurate SOE estimation results can be obtained by the proposed method. 
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