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Upper Bounds on the Covering Radius of a Code with a Given Dual
Distance

S. LitsyN AND A. TIETAVAINEN

We derive new upper bounds on the covering radius of a binary linear code as a function of
its dual distance and dual-distance width. These bounds improve on the Delorme-Solé—Stokes
bounds, and in a certain interval for binary linear codes they are also better than Tietdvdinen’s
bound.
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1. INTRODUCTION

Let C be a code of length n, covering radius R = R(C) and dual distance d'. In 1973
Delsarte [2] proved that R(C) is at most the number of non-zero weights in the dual
code C*. Later a number of bounds have been obtained for the covering radius of a
code with a given dual distance. In 1978 Helleseth, Klgve and Mykkeltveit [4] proved
the so-called Norse bounds which say that, if C is a binary self-complementary code,
then

R< {%n ifd =2,
U —-Vn)  ifd =4

Recently, some remarkable generalizations were found in [6], [11], [7] and [12]. In
particular, the following asymptotic results were proved in [12]:

(a) Let € =(C,);,-1 be a sequence of codes C, of length n, dual distance d’' =d'(n)
and covering radius R = R(n), where R/n— p and d'/n— &' when n— «. Then

-1 -2)6' 1
R eV (RS VE )
q 2q q
and therefore in the binary case
p=i1-V5'2-5)). (n)

(b) There are sequences 6 such that, for 0 <8’ <(q —1)/q,
p=H, (1~ H,(5)

where H, is the g-ary entropy function. Thus in the binary case there are sequences €
for which

p=H;'(1- Hy(5")) @)

where H,(x) = —x log, x — (1 — x) log,(1 — x).

If C is a binary linear code of dimension k, the trivial redundancy bound R<n — k
together with the weak form of the McEliece—Rodemich—Rumsey-Welch bound [5]
implies

p<H(5-V5'(1-3")). ®)

Furthermore, in the case of even binary linear codes the Delsarte bound mentioned
above gives the result
p=<1-28". 4
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0195-6698/96/020265 + 06 $18.00/0 © 1996 Academic Press Limited


https://core.ac.uk/display/81958038?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

266 S. Litsyn and A. Tietdvdinen

0-5

0-4r
0-3F

0.2; 3)

(6)

0- PR S S SR [ S T SR I SR S S TR IS S SR S R |
0-0 0-1 0-2 0-3 0-4 0-5

9
FIGURE 1. The bound (1) and bounds for general linear codes.

In this case also, Delorme and Solé [1] improved earlier bounds in certain intervals by
showing that

p= (= V51 =57) floga( ). 5)
In the paper [8], Solé and Stokes were able to partially generalize the results in [1] for
unrestricted codes. They also considered the problem to find bounds of this type when
not only the dual distance but also the dual-distance width is known.
In this paper we introduce a new approach which generalizes a method presented in
[3] and [10]. Using this approach and Chebyshev polynomials, we show in Theorem 2
that, for binary linear codes,
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FIGURE 2. The bound (1) and bounds for even-weight linear codes.
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Further, we prove in Theorem 3 that, for even binary linear codes,

1+2VvVeée'(1—-96'
p= s~ Va(1 = 8)) flog( 22U

(™)

Finally, we find a corresponding bound (Theorem 4) for p as a function of the relative
dual-distance width. The bound (7) improves on the Delorme—Solé—Stokes bound (5).
The bound (6) is better than the redundancy bound (3) for 8’ > § and, in the case of
linear codes, better than (1) if 6’ > 0-298.

Generalizations for non-linear and non-binary codes will appear in a forthcoming
paper by Litsyn and Solé.

2. A NEw APPROACH

Assume that C is a binary linear code of length n, dimension k£, minimum distance d
(=3), covering radius R and dual distance d’. Let the (n —k)Xn matrix H=
(hy,...,h,) be a parity check matrix for C, and denote {h;,...,h,} by L. Let
N(L, s, b) be the number of solutions (xi,. .., X,) € L® of the equation

x;+--+x,=h. (8)

The covering radius R is the smallest integer r such that every syndrome of C is the
sum of at most r columns of H. Hence R <r if for every b € F; * there is a polynomial
g(x) =2"%_¢ v,x* such that X;_, y,(N(L, s, b) > 0.

Write e(a) = (—1)“ for a € F,. Then, for all k € F; *, the mapping s, defined by

(a)=e(k-a) forallaeF;*

is an additive character of F; %, and the characters i, form the dual group of F; %,
Thus

on—k ifa=0
k- :{ ’
ke%’ke( a) 0 otherwise,
and
YKL= 3 S S ek (it x b))
xiel xSeLkngik
= 2 e(k-b) X ek x) - > e(k-x,)
keF; ¢ xjeL xeL
= 3 e(k-b) (E e(k-x)). ©)
keF; ¥ xel
Furthermore,
S e(k - x) =n — 2wi(kH), (10)
xel

where wt means the Hamming weight. When k runs through the elements of F5 ¥, then
kH runs through all elements of the dual C* of C. Therefore, by (9) and (10),

2"EN(L, 5, b) = 2, Bi(b)(n — 2i)’,
i=0
where

B:d)= > e(k-b). (11)

k: we(kH)=i
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This implies that
27Ky N(L, s, b) = 2, v, >, Bi(b)(n — 2i)°
s=0 s=0 i=0
=2 Bi(b) ) ¥,(n =2y
i=0 s=0

- E B0 (),

where f(i) = g(n — 2i). Since By(b) =1, we have proved the following result.
THEOREM 1. Assume that there is a polynomial f of degree r such that, for each
beF; %
O+ 2 B () >0,

where B;(b) is defined by (11). Then R <r.

3. CHEBYSHEV POLYNOMIALS

In order to use Theorem 1 efficiently we should find a polynomial f of a low degree
such that |f(i)| is small compared to f(0) whenever i # 0 and B;(b) # 0. The Chebyshev
polynomial of the first kind and of degree r is defined by

T(x) =5((x + Vx> = 1)+ (x = Va* = 1)),
and for x =1 equivalently by
T,(x) = cosh(r cosh!(x)). (12)

It has the following optimality property (see [9, p. 42]). Let 0 <a <b. Let P, be the set
of all polynomials p,(x) of degree r or less such that p,(0) = 1. Then,

o=n{ ) (e

provides the minimum over the polynomials in P, of

max |p,(x)|.
xela,b]
Moreover,
b+
max |t (x)| = 1/T,< a) .
x ea,b] b—a
Furthermore, for x =1,
cosh '(x) =In(x + Vx*—1). (13)

Thus, fox x > 1,
cosh™'(x) = In(2x). (14)
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4. ASYMPTOTIC RESULTS

Choose f(x) =t.(x), a=d’' and b = n. Then

max |70 =1/7(" =)

xeld',n] n—d’

Therefore, by (11),

FO)+ 3 B0 =1- @~ 1) max |f0)

B n—k/ <n~l—d’>
>1-2 T, s
n—d’

and so Theorem 1 and the equation (12) yield the result

+d’ +d'
R<r if2"*< T,(n d’) = cosh(r cosh_1<n )) . (15)

n-— n—d’

by the McEliece—~Rodemich—Rumsey—Welch bound (5),
(n—k)/nsH,(3—V§'(1—-29§"), whenn—so and d'/n—§'. (16)

Combining the result (15) with the formulae (16), (13) and (14) gives the following
theorem.

THEOREM 2. Let (C,);7-, be a sequence of binary linear codes C, of length n, dual
distance d' and covering radius R, where R/n— p and d'[n— 8', when n— . Then
(1+V6')?

p<H,(}—-V5'(1-3")) / 10gz<1_73,) :

Assume then that the weights of the codewords of C are all even. Then 1 e C* and
hence there is a unique k, € F5 % such that k;H =1. Thus, for each beF;
B.(b)=e(k;-b) and B;(b) =0 when i € (0,d’)U (n —d’, n). Now we take a =d',b =
n—d' and f(x)=t.(x), and choose the parity of r in such a way that B,(b)f(n) is
positive (and so equal to 1). Therefore

FO+ 3 B =2-@ -2 max [£)

n
]
n—2d’

and the same argument as before Theorem 2 gives the following result.

THEOREM 3. Let (C,),,—1 be a sequence of binary linear even-weight codes satisfying
the conditions of Theorem 2. Then

1+2V5e'(1— 5’))

p= (= Vo1 =59) /log 20

The restriction that all the weights in C are even is not very essential because, in
any case, this is true for the even-weight subcode C,. Let us define (see [1]) w = w(C),
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dual-distance width of C, as the smallest integer w such that all the weights in C*
belong to the set

n wn w

S
R PRl b

Assume that in the sequence (C,); -1, w/n— @ when n— . Since R(C)<R(C,),
w(C)=w(Cy) and d’'(Cy) = 3(n —w(Cy)), we then see that Theorem 3 implies the
following corollary.

THEOREM 4. If the sequence (C,),—, satisfies the assumptions of Theorem 2, we have

p<H,(:(1-V1l-0w?) / 1og2<1+T1_“’2> .
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